Speaker
Simone Romiti
(uni-bonn)
Description
Lattice simulations of QED in 2+1 dimensions are done both in the Lagrangian and Hamiltonian formalism. Though equivalent in the continuum limit, at finite lattice spacing there is no trivial correspondence among the physical parameters, and a matching is required. This can be done non-perturbatively, finding the Hamiltonian parameters that reproduce the $a_t \to 0$ limit of asymmetric lattice actions. In this work we consider the pure gauge theory on a torus $L^2 \times T$ for several values of $\beta$ and of the anisotropy $\xi$. We show how to extract the mass gap of the theory and how to compute the renormalized anisotropy using both the static potential and the Wilson flow evolution of gauge fields.
Primary authors
Carsten Urbach
(Helmholtz-Institut für Strahlen- und Kernphysik)
Simone Romiti
(uni-bonn)
Christiane Gross
(uni-bonn)