Anisotropy from the Wilson flow
in QED 2+1

Simone Romiti, Carsten Urbach, Christiane Grol3
2022-08-11




Lattice action

We consider a U(1) gauge theory in 2 + 1 dimensions and regularize it on a
asymmetric lattice (Degrand and DeTar (2006)):

x j<i

b Z Z 1 - ReTr(POV(x))] +pEY > 1 - —ReTr(P (x))]

where P, is the standard Wilson Plaquette (Gattringer and Lang (2009)):
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At the boundary we impose periodic boundary conditions. = —- and ¢{is the
g

bare anisotropy.



Due to its group structure, this theory is often referred as (here anisotropic) QED
2+1orQED;.

It is relevant for some condensed matter systems (see e.g. Kosinski et al. (2012)).
It resembles QCD (in 3 + 1 dimensions), showing:

- dynamical mass generation (Maris and Lee (2003))
- confinement (DeGrand (2019)).



It is studied with Monte Carlo techniques :
Z = de,e—sw] _ jw@—zxﬁ[qﬁ](gf)

software: https://github.com/urbach/su2

- There exist Hamiltonian formulations (Clemente et al. (2022)) suited to run on
NISQ (Noisy Intermediate-Scale Quantum) devices in the near future.

Ut) = e M)

We want to combine Lagrangian and Hamiltonian results

— required non-perturbative matching of the couplings g..


https://github.com/urbach/su2

Hamiltonian limit

A little background...

Lattice correlators are defined as:

Tr[e_H(T_t)Ole_HtOz] > (n e_H(T_t)Ole_HtOZ | n)

C(1) = (01(H0,(0)) = Tr[e 7] > (nle T n)

- We insert N identity operators for each timeslice ¢, = ek(aka ak):
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- After some algebra we find:

[Dpe 511910 ,(0,(0)

where S is the discretized action (but with different lattice spacings in the time
and space directions!).

Now one says that in the limit a,, a, — 0 spacetime symmetry is recovered.
—> we define the path integral with a, = a,.

+ Thelimita, — 0, a, # 0 is the limit to the lattice Hamiltonian.



Non perturbative matching

Steps:

- Calculation of n observables O; in the two formalisms

- Lagrangian — Monte Carlo

- Hamiltonian — tensor network, quantum simulation, ...

- In the action we introduce an anisotropy ¢ = different temporal and
spatial lattice spacings:

at;éas

- Find the limit ¢, — 0 of the O,

" Find the couplings gf' that match this limit of the Lagrangian



Motivation

- Small g region: harder determination of &, from the static potential

- Wilson flow renormalizes fields and the determination of &, from the Wilson
flow is known to work in QCD (Borsanyi et al. (2012))

Main idea

- Compute observables at fixed a

- 2
TOE(TO) =c

vary ¢ and find the g s.t. a, is constant

Find &, = &(z,) for each ensemble

Gotoép, — 0

- Extrapolate to a, — 0 through &, = a,/a;



Matching with the Hamiltonian

Here we consider the pure gauge theory and want to match the 1st eigenvalue
(mass gap). This is the lightest state of the theory (Loan and Ying (2006)): glueball

0~ -

Numerical studies in U(1) (Athenodorou and Teper (2019)) and SU(N) (Teper
(1998)) theories find that the glueball 0~ ™ is the lightest state.

Interpretation

In the continuum limit we expect a theory of free screened photons of mass
mp = mo__ (Athenodorou and Teper (2019)):

3
exl _ 7 g = gas
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Glueball correlators

¢px)=Tr H Uﬂk(karék) , X=X, =X
ke L,

We use spatial square loops of size
length

r r
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PC combination

Combination of ¢, with its transform under parity ¢ (©) (Gattringer and Lang
(2009)) and taking their real/imaginary part:
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. Finally, we project to 3 = 0:
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Glueball correlation functions

The glueball correlators are build averaging over all possible timeslices:
| T
PC, _ © PC PC
Crn = TT_le (t+ 19, (@)

Ty

The large-time behavior is:

PC ~EPS . —EPC(T-1)
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wherev, . = (goPC(O)gofC(O)).
rj r;

The VEV is subtracted exactly as C, () = C(¢) — C(¢ + 1). Combining the C,. . we
vy
can apply the GEVP.



(work in progress...)
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Renormalized anisotropy

Lagrangian and Hamiltonian formalism are equivalent at zero temporal lattice
spacing: a, — 0.

We write the action as:

§=BiS+ BS;
-, = p/étemporal coupling (electric field)
- p, = p¢ spatial coupling (magnetic field)

p,# B, — anisotropy of the lattice: we have a temporal and spatial lattice

spacings, a,and a.



¢# 1




Howtogotoa, — 07?

Need to compute the renormalized anisotropy:

a;
fR:a_5éf

N

and extrapolate along a, = const.
How to compute &p?
- Static potential 7(r) between gg pairs at distance r.

* Wilson flow: &) fixed at some to/ai along the flow.



Static potential

In 2+ 1d the pair e”e™ at distance r has potential (Clemente et al. (2022)):
V(r) = Vo + alog(r) + or

Anisotropy
aV(ax) = CpaV(ax)

Vis extracted from the ¢ > 1 behavior of Wilson loop expectation values (r = | x|
)
Wts(x’ L+ 1) =

e % V(r)
Wts(xﬁ t)
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¢&p from the static potential
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Wilson flow

Wilson flow evolution (Luscher (2010)):
1

V)= - 3

{Vlu(x)SG[ VT]} Vf(x’ /’t)’ V()(x9 :u) = U(X, :u)

where
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Main properties:
For any ¢ > 0 the fields are renormalized.

— we can extract &, from the flow evolution of £,  and E
Perturbative calculation:
<E> - t—D/Z

— choose 7, in the non perturbative region of the flow.



<)

The energy density of the system is:

£ ZF; +2) Foo=(d—1)d—2E +2d~ DE,
i#] i

In the continuum limit £ = E,, = E



On the lattice we compute:

EMT = g% d - 1)d-2E,, EXT=2d7a2d - 1E,

S8 ss? ts

Renormalized anisotropy:

LAT 22
LAT2 B d—2 <Ets > d—2atas<Ets>
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In the limit a, — 0 we have:



1.0

Energy

0.02 0.04 0.06 0.08 0.10 0.12

0.00

L=16 , T=64 , beta=1.530000, xi=1.000000, Ng=100, ntherm=50

10 20 30 40 50




t7(3/2) E

30

20

10

tA(3/2) * E_i(t)

10 20 30 40 50

t/a_s"2




Renormalized anisotropy

xi_R

1.006

1.004
1

1.002

1.000




0.5

Energy

L=16 , T=64 , beta=1.530000, xi=0.500000, Ng=100, ntherm=50

0.15
|

0.10
|

0.05
|

0.00




t7(3/2) E

40

30

20

10

tA(3/2) * E_i(t)

10 20 30 40 50

t/a_s"2




xi_R

0.38 0.40 0.42 0.44 0.46 0.48 0.50

0.36

Renormalized anisotropy

20 30

t/a_s"2

40

50




¢ =0.25

L=16 , T=64 , beta=1.530000, xi=0.250000, Ng=100, ntherm=50

0.4

0.3

Energy
0.2

0.1

0.0

0 20 40 60 80 100



t7(3/2) E

300

250

200

150

100

50

tA(3/2) * E_i(t)

20

40 60

t/a_s"2

80

100




xi_R

0.20 0.21 0.22 0.23 0.24 0.25

0.19

Renormalized anisotropy

t/a_s"2




Future prospects

- Complete determination of the glueball spectrum

- Determine &, from the Wilson flow at small g

- Expected better precision with respect to static potential

- Way) - V(aS\/E) available for the matching at small volume

- Inclusion of staggered fermions (in progress):

Lr= D D wDE|y©)
S ox.y



Thank you for the attention!




Backup

Backup slides following



V., and V. after rescaling with &,
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Preliminary results

(work in progress...)
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