We consider a \(U(1)\) gauge theory in \(2+1\) dimensions and regularize it on a asymmetric lattice (Degrand and DeTar (2006)):
\[ S = \frac{\beta}{\xi} \sum_{x} \sum_{\nu} \left[1 - \frac{1}{N_c} \operatorname{ReTr} (P_{0\nu}(x)) \right] + \beta \xi \sum_{x} \sum_{j<i} \left[1 - \frac{1}{N_c} \operatorname{ReTr} (P_{ij}(x)) \right] \] where \(P_{\mu \nu}\) is the standard Wilson Plaquette (Gattringer and Lang (2009)): \[ P_{\mu \nu}(x) = U_\mu(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}^{\dagger}(x) %\quad (\mu,\nu=0,..,d-1) \quad . \] At the boundary we impose periodic boundary conditions. \(\beta=\frac{2 N_c}{g^2}\) and \(\xi\) is the bare anisotropy.