Speaker
Description
With the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the data-driven theory prediction has increased to $4.2\sigma$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction closer to the experimental measurement. Euclidean time windows in the time-momentum representation of the hadronic vacuum polarization contribution to the muon $g-2$ can help clarify the discrepancy between the phenomenological and lattice predictions.
We present our calculation of the intermediate distance window contribution using $N_\mathrm{f}=2+1$ flavors of O$(a)$ improved Wilson quarks. We employ ensembles at six lattice spacings below $0.1\,$fm and pion masses down to the physical value. We present a detailed study of the continuum limit, using two discretizations of the vector current and two independent sets of improvement coefficients.
Our result at the physical point displays a tension of $3.8\sigma$ with a recent evaluation of the intermediate window based on the data-driven method.