8–13 Aug 2022
Hörsaalzentrum Poppelsdorf
Europe/Berlin timezone

A new type of lattice gauge theory through self-adjoint extensions

8 Aug 2022, 16:50
20m
CP1-HSZ/1.001 (CP1-HSZ) - HS5 (CP1-HSZ)

CP1-HSZ/1.001 (CP1-HSZ) - HS5

CP1-HSZ

50
Show room on map
Oral Presentation Theoretical Developments and Applications beyond Particle Physics Theoretical Developments

Speaker

Alessandro Mariani (University of Bern)

Description

A generalization of Wilsonian lattice gauge theory may be obtained by considering the possible self-adjoint extensions of the electric field operator in the Hamiltonian formalism. In the special case of 3D U(1) gauge theory these are parametrised by a phase θ, and the ordinary Wilson theory is recovered for θ=0. We consider the case θ=π, which, upon dualization, turns into a theory of staggered integer and half-integer height variables. We investigate order parameters for the breaking of the relevant symmetries, and thus study the phase diagram of the theory, which could reveal a new universality class of 3D Abelian gauge theories with a broken Z2 symmetry absent in the ordinary theory.

Primary authors

Alessandro Mariani (University of Bern) Gurtej Kanwar (University of Bern) Tobias Rindlisbacher (AEC, Institute for Theoretical Physics, University of Bern) Uwe-Jens Wiese (University of Bern, Switzerland) Prof. Debasish Banerjee (Saha Institute of Nuclear Physics) Dr Aditya Banerjee (Saha Institute of Nuclear Physics)

Presentation materials