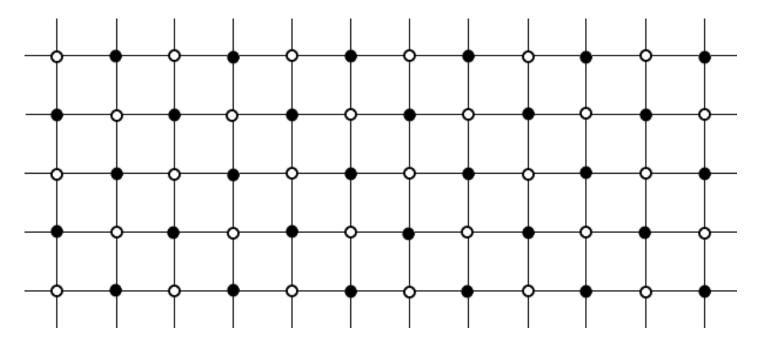
A New Type of Lattice Gauge Theory through Self-adjoint Extensions



A. Banerjee¹, D. Banerjee¹, G. Kanwar², A. Mariani² (speaker) T. Rindlisbacher², U.J. Wiese²

¹ Saha Institute for Nuclear Physics, India

² University of Bern, Switzerland

Hamiltonian U(1) Lattice Gauge Theory

For U(1) gauge theory, assign $e^{i\varphi_l} \in U(1)$ to each link

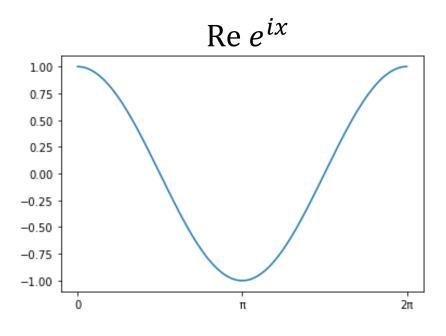
$$H = \frac{e^2}{2} \sum_{l} E_{l}^2 - \frac{1}{e^2} \sum_{\Box} B_{\Box}^2$$

Single-link wavefunctions $\psi(\varphi)$ are periodic

$$\psi(2\pi) = \psi(0)$$

The electric field $E = -i\partial_{\varphi}$ is self-adjoint.

But this is not the most general thing one can do!



A twisted Hilbert space

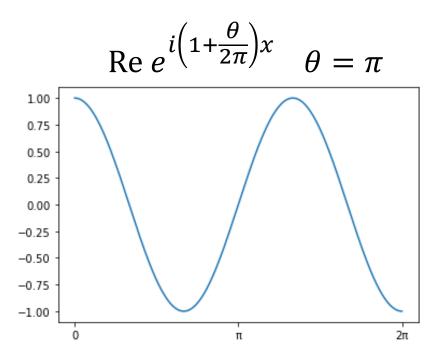
Introduce a twist (*self-adjoint extension*¹)

 $\psi(2\pi) = e^{i\theta}\psi(0)$

The electric field $E = -i\partial_{\varphi}$ is still self-adjoint.

- Different Hilbert space but
- Still a U(1) gauge theory!
- Change magnetic term B²_□ → (B'_□)² to restore lattice cubic symmetry





A new type of lattice gauge theory

Natural extension in the Hamiltonian picture, but not in the path-integral approach

This construction provides an **extension to the Wilsonian framework** of gauge theories

A new type of lattice gauge theory

Natural extension in the Hamiltonian picture, but not in the path-integral approach

This construction provides an **extension to the Wilsonian framework** of gauge theories

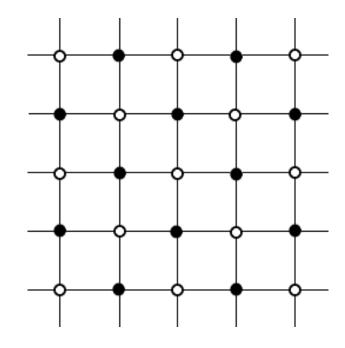
Now focus on extended U(1) in 2+1 dimensions

Does this extension give something new in the continuum?

Dualization in 3D

Go to the path-integral approach and dualize:

$$Z = \sum_{\{h\}} \exp\left[-\frac{e^2}{2} \sum_{\langle xy \rangle} (h_x - h_y)^2\right]$$



The h_x are scalars defined on the sites of the dual lattice.

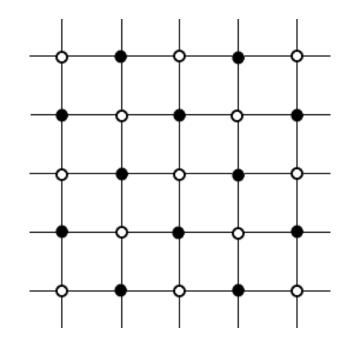
In 3D a site on the dual lattice corresponds to a **cube** in the original lattice.

Why dualization? Original partition function has a sign problem

Dualization in 3D

Go to the path-integral approach and dualize:

$$Z = \sum_{\{h\}} \exp\left[-\frac{e^2}{2} \sum_{\langle xy \rangle} (h_x - h_y)^2\right]$$



For $\theta = 0$ (usual U(1)) all the h_x are integer-valued.

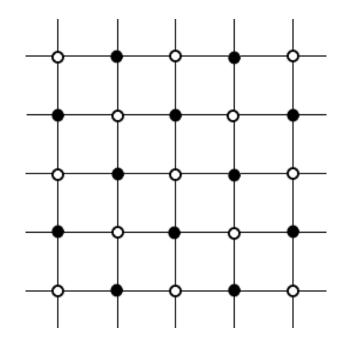
For $\theta = \pi$ the h_{χ} are staggered integer and half-integer.

For $\theta \neq 0, \pi$ charge conjugation is explicitly broken.

Dualization in 3D

Go to the path-integral approach and dualize:

$$Z = \sum_{\{h\}} \exp\left[-\frac{e^2}{2} \sum_{\langle xy \rangle} (h_x - h_y)^2\right]$$



For $\theta = 0$ (usual U(1)) all the h_x are integer-valued. \longrightarrow well-understood¹

For $\theta = \pi$ the h_x are staggered integer and half-integer.

For $\theta \neq 0, \pi$ charge conjugation is explicitly broken. \longrightarrow future work

¹Göpfert and Mack 1981

Symmetries of the dual $\theta = \pi$ theory

The h_x are staggered integer and half-integer on even and odd lattice sites:

$$Z = \sum_{\{h\}} \exp\left[-\frac{e^2}{2} \sum_{\langle xy \rangle} (h_x - h_y)^2\right]$$

Global \mathbb{Z} invariance: $h_x \rightarrow h_x + n$ for n integer.

Charge conjugation $C: h_x \to -h_x$

Shift by one lattice spacing S:
$$h_x \rightarrow h_{x+\hat{\mu}} + \frac{1}{2}$$

Order parameters for C and S breaking

$$O_{CS} = \sum_{x} (-1)^{x} h_{x}$$

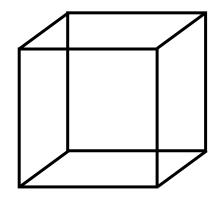
Under C and S separately,

$$O_{CS} \rightarrow -O_{CS}$$

Both O_{CS} and O_S are *local* and \mathbb{Z} -*invariant*.

$$O_S = \sum_{cubes} \sum_{x \in cube} (-1)^x (h_x - \bar{h}_{cube})^2$$

 O_S is *C* invariant but changes sign under *S*.



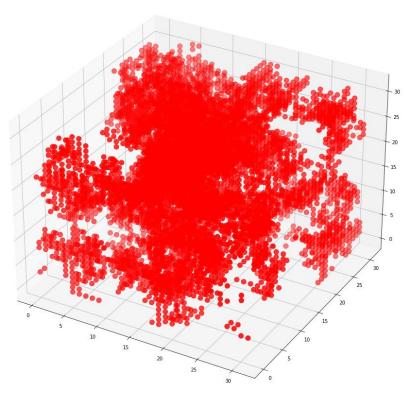
Numerical simulation of the dual $\theta = \pi$ theory

We simulate the staggered height model with an efficient cluster algorithm.

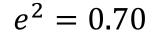
Range of couplings $e^2 = 0.3$ up to $e^2 = 2.0$

Lattices from L = 32 up to L = 256

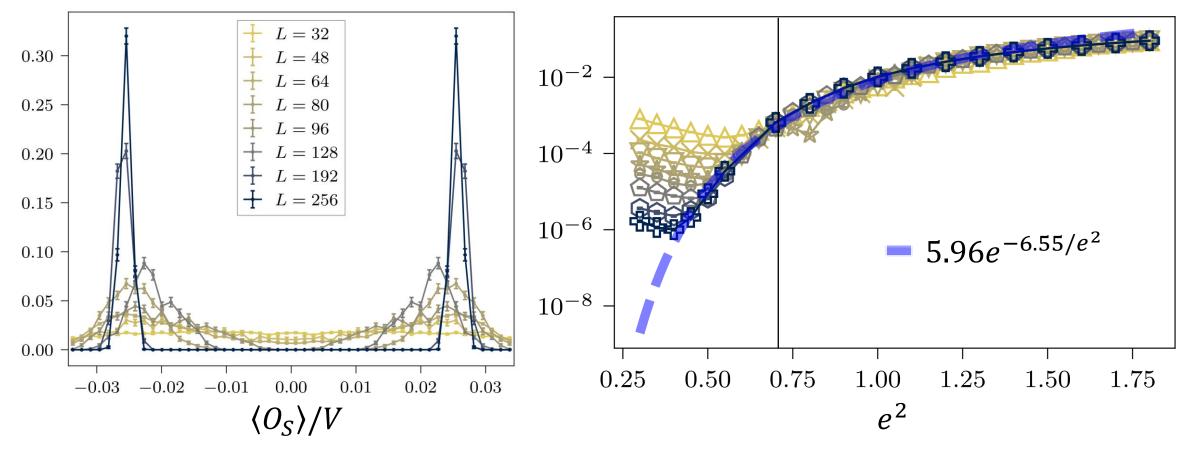
Continuum limit expected as $e^2 \rightarrow 0$ (same as usual $\theta = 0$ theory)



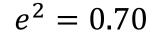
Shift by one lattice spacing S is broken



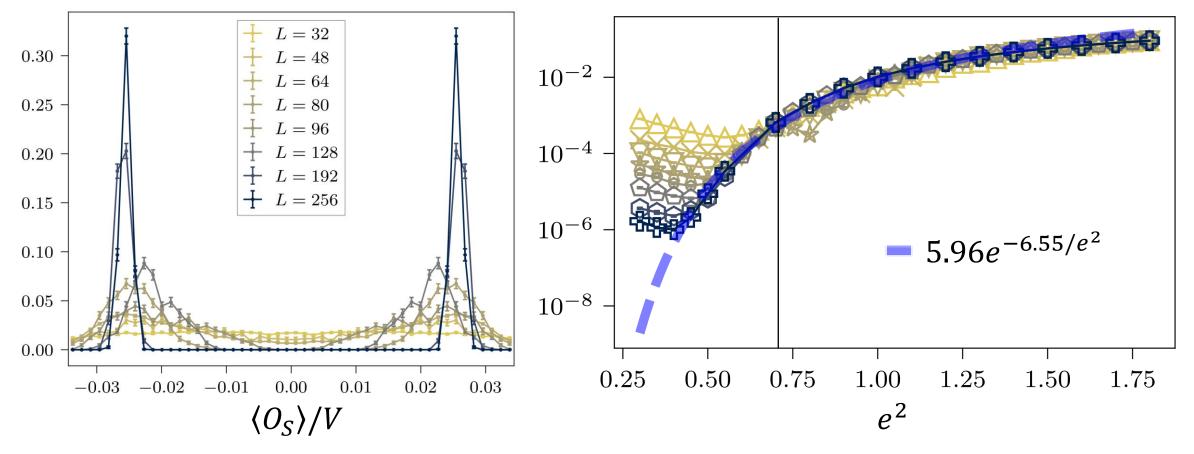
$\langle (O_S)^2 \rangle / V^2$



Shift by one lattice spacing S is broken



$\langle (O_S)^2 \rangle / V^2$

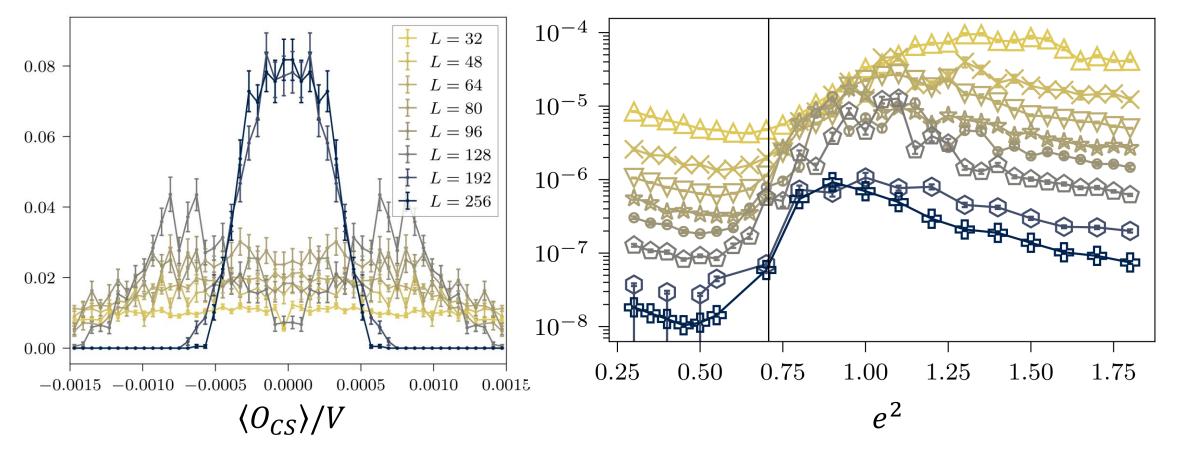


Evidence for S breaking down to the continuum limit $e^2 \rightarrow 0$

Charge conjugation is not broken

 $e^2 = 0.70$

$$\langle (O_{CS})^2 \rangle / V^2$$



Phase diagram

Charge conjugation *C* is **preserved** for all values of e^2

Shift by one lattice spacing *S* appears to be **broken** for all values of e^2

U(1) gauge theory with $\theta = \pi$ has a **broken** \mathbb{Z}_2 symmetry absent in the usual $\theta = 0$ case.

In the continuum, the broken *S* symmetry may manifest in **internal degrees of freedom**

Conclusion

We described a **non-perturbative extension** of the Hilbert space of U(1) gauge theory.

We simulated the extended 3D U(1) theory with $\theta = \pi$ and shown that it has a **broken** \mathbb{Z}_2 **symmetry** absent in the usual case.

Further questions: What is the **universality class** of the $\theta = \pi U(1)$ theory?

What happens for $\theta \neq 0, \pi$? What happens in 4D?

What happens in the non-Abelian case?

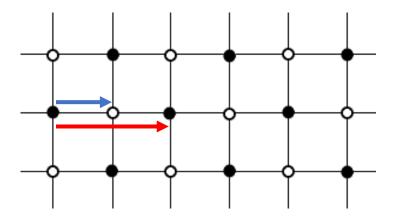
Backup slides

Phase diagram

Charge conjugation *C* is **preserved** for all values of e^2

Shift by one lattice spacing *S* appears to be **broken** for all values of e^2

But translation by an even number of lattice spacings remains unbroken



Intuition for C and S breaking

$$O_{CS} = \sum_{x} (-1)^{x} h_{x}$$

Under C and S separately,

 $O_{CS} \rightarrow -O_{CS}$

 $\langle O_{CS} \rangle \neq 0$ if both the even and odd sublattices order simultaneously.

$$O_S = \sum_{cubes} \sum_{x \in cube} (-1)^x (h_x - \bar{h}_{cube})^2$$

 O_S is *C* invariant but changes sign under *S*.

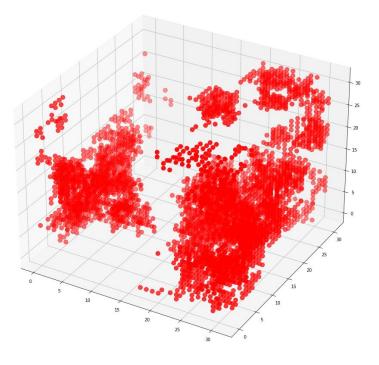
 $\langle O_S \rangle \neq 0$ if one sublattice orders and the other fluctuates.

Cluster algorithm

We simulated the staggered height model using the Swendsen-Wang multicluster algorithm

- 1. At each step, pick a "reflection plane" h_0 equal to one of the h_x chosen at random
- 2. Activate links between h_x and h_y only if they are on the same side of the reflection plane with probability

$$p = 1 - e^{-2e^2(h_x - h_0)(h_y - h_0)}$$



3. This partitions the h_x into clusters. Then reflect each cluster $h_x \rightarrow 2h_0 - h_x$ with probability 1/2