A New Type of Lattice Gauge Theory through Self-adjoint Extensions

A. Banerjee ${ }^{1}$, D. Banerjee ${ }^{1}$, G. Kanwar², A. Mariani ${ }^{2}$ (speaker) T. Rindlisbacher², U.J. Wiese²

[^0]
Hamiltonian U(1) Lattice Gauge Theory

For $\mathrm{U}(1)$ gauge theory, assign $e^{i \varphi_{l}} \in \mathrm{U}(1)$ to each link

$$
H=\frac{e^{2}}{2} \sum_{l} E_{l}^{2}-\frac{1}{e^{2}} \sum_{\square} B_{\square}^{2}
$$

Single-link wavefunctions $\psi(\varphi)$ are periodic

$$
\psi(2 \pi)=\psi(0)
$$

The electric field $E=-i \partial_{\varphi}$ is self-adjoint.

But this is not the most general thing one can do!

A twisted Hilbert space

Introduce a twist (self-adjoint extension¹)

$$
\psi(2 \pi)=e^{i \theta} \psi(0)
$$

The electric field $E=-i \partial_{\varphi}$ is still self-adjoint.

- Different Hilbert space but
- Still a U(1) gauge theory!
- Change magnetic term $B_{\square}^{2} \rightarrow\left(B_{\square}^{\prime}\right)^{2}$ to restore lattice cubic symmetry

[^1]
A new type of lattice gauge theory

Natural extension in the Hamiltonian picture, but not in the path-integral approach

This construction provides an extension to the Wilsonian framework of gauge theories

A new type of lattice gauge theory

Natural extension in the Hamiltonian picture, but not in the path-integral approach

This construction provides an extension to the Wilsonian framework of gauge theories

Now focus on extended $U(1)$ in $\mathbf{2 + 1}$ dimensions

Does this extension give something new in the continuum?

Dualization in 3D

Go to the path-integral approach and dualize:

$$
Z=\sum_{\{h\}} \exp \left[-\frac{e^{2}}{2} \sum_{\langle x y\rangle}\left(h_{x}-h_{y}\right)^{2}\right]
$$

The h_{x} are scalars defined on the sites of the dual lattice.
In 3D a site on the dual lattice corresponds to a cube in the original lattice.

Why dualization? Original partition function has a sign problem

Dualization in 3D

Go to the path-integral approach and dualize:

$$
Z=\sum_{\{h\}} \exp \left[-\frac{e^{2}}{2} \sum_{\langle x y\rangle}\left(h_{x}-h_{y}\right)^{2}\right]
$$

For $\theta=0$ (usual $\mathrm{U}(1)$) all the h_{x} are integer-valued.
For $\theta=\pi$ the h_{x} are staggered integer and half-integer.
For $\theta \neq 0, \pi$ charge conjugation is explicitly broken.

Dualization in 3D

Go to the path-integral approach and dualize:

$$
Z=\sum_{\{h\}} \exp \left[-\frac{e^{2}}{2} \sum_{\langle x y\rangle}\left(h_{x}-h_{y}\right)^{2}\right]
$$

For $\theta=0$ (usual $\mathrm{U}(1)$) all the h_{x} are integer-valued. \longrightarrow well-understood 1
For $\theta=\pi$ the h_{x} are staggered integer and half-integer.
For $\theta \neq 0, \pi$ charge conjugation is explicitly broken. \longrightarrow future work
${ }^{1}$ Göpfert and Mack 1981

Symmetries of the dual $\theta=\pi$ theory

The h_{x} are staggered integer and half-integer on even and odd lattice sites:

$$
Z=\sum_{\{h\}} \exp \left[-\frac{e^{2}}{2} \sum_{\langle x y\rangle}\left(h_{x}-h_{y}\right)^{2}\right]
$$

Global \mathbb{Z} invariance: $h_{x} \rightarrow h_{x}+n$ for n integer.
Charge conjugation $C: h_{x} \rightarrow-h_{x}$
Shift by one lattice spacing $S: h_{x} \rightarrow h_{x+\hat{\mu}}+\frac{1}{2}$

Order parameters for \boldsymbol{C} and \boldsymbol{S} breaking

$$
o_{C S}=\sum_{x}(-1)^{x} h_{x}
$$

$$
o_{S}=\sum_{\text {cubes }} \sum_{x \in \text { cube }}(-1)^{x}\left(h_{x}-\bar{h}_{\text {cube }}\right)^{2}
$$

O_{S} is C invariant but changes sign under S.

Both $O_{C S}$ and O_{S} are local and \mathbb{Z}-invariant.

Numerical simulation of the dual $\theta=\pi$ theory

We simulate the staggered height model with an efficient cluster algorithm.

Range of couplings $e^{2}=0.3$ up to $e^{2}=2.0$
Lattices from $L=32$ up to $L=256$

Continuum limit expected as $e^{2} \rightarrow 0$ (same as usual $\theta=0$ theory)

Shift by one lattice spacing \mathbf{S} is broken

Shift by one lattice spacing \mathbf{S} is broken

Evidence for S breaking down to the continuum limit $e^{2} \rightarrow 0$

Charge conjugation is not broken

Phase diagram

Charge conjugation C is preserved for all values of e^{2}

Shift by one lattice spacing S appears to be broken for all values of e^{2}
$U(1)$ gauge theory with $\theta=\pi$ has a broken \mathbb{Z}_{2} symmetry absent in the usual $\theta=0$ case.

In the continuum, the broken S symmetry may manifest in internal degrees of freedom

Conclusion

We described a non-perturbative extension of the Hilbert space of $U(1)$ gauge theory.

We simulated the extended 3D $U(1)$ theory with $\theta=\pi$ and shown that it has a broken \mathbb{Z}_{2} symmetry absent in the usual case.

Further questions:
What is the universality class of the $\theta=\pi U(1)$ theory?
What happens for $\theta \neq 0, \pi$? What happens in 4D?
What happens in the non-Abelian case?

Backup slides

Phase diagram

Charge conjugation C is preserved for all values of e^{2}

Shift by one lattice spacing S appears to be broken for all values of e^{2}

But translation by an even number of lattice spacings remains unbroken

Intuition for \boldsymbol{C} and \boldsymbol{S} breaking

$$
o_{C S}=\sum_{x}(-1)^{x} h_{x}
$$

Under C and S separately,

$$
O_{C S} \rightarrow-O_{C S}
$$

$\left\langle O_{c s}\right\rangle \neq 0$ if both the even and odd sublattices order simultaneously.
$O_{S}=\sum_{\text {cubes }} \sum_{x \in \text { cube }}(-1)^{x}\left(h_{x}-\bar{h}_{\text {cube }}\right)^{2}$
O_{S} is C invariant but changes sign under S.
$\left\langle O_{S}\right\rangle \neq 0$ if one sublattice orders and the other fluctuates.

Cluster algorithm

We simulated the staggered height model using the Swendsen-Wang multicluster algorithm

1. At each step, pick a "reflection plane" h_{0} equal to one of the h_{x} chosen at random
2. Activate links between h_{x} and h_{y} only if they are on the same side of the reflection plane with probability

$$
p=1-e^{-2 e^{2}\left(h_{x}-h_{0}\right)\left(h_{y}-h_{0}\right)}
$$

3. This partitions the h_{x} into clusters. Then reflect each cluster $h_{x} \rightarrow 2 h_{0}-h_{x}$ with probability $1 / 2$

[^0]: ${ }^{1}$ Saha Institute for Nuclear Physics, India
 ${ }^{2}$ University of Bern, Switzerland

[^1]: ${ }^{1}$ see e.g. quant-ph/9907069

