UPS and electric maintenance is scheduled for Wednesday, November 27th, 2024, 08:30 - 12:00. A downtime of this service might occur for up to 30 minutes.

8–13 Aug 2022
Hörsaalzentrum Poppelsdorf
Europe/Berlin timezone

Quantum computing for lattice supersymmetry

10 Aug 2022, 14:20
20m
CP1-HSZ/1.004 (CP1-HSZ) - HS7 (CP1-HSZ)

CP1-HSZ/1.004 (CP1-HSZ) - HS7

CP1-HSZ

70
Show room on map
Oral Presentation Algorithms (including Machine Learning, Quantum Computing, Tensor Networks) Algorithms

Speaker

Christopher Culver (University of Liverpool)

Description

Future quantum computers will enable the study of real-time dynamics of non-perturbative quantum field theories without the introduction of the sign problem. We present ongoing progress on low-dimensional lattice systems which will serve as suitable testbeds for near-term quantum devices. The two systems studied to date are 0+1 dimensional supersymmetric quantum mechanics and the Wess-Zumino model in 1+1 dimensions. In both we comment on whether supersymmetry is dynamically broken for various superpotentials.

Primary authors

Christopher Culver (University of Liverpool) David Schaich (University of Liverpool)

Presentation materials