Quantum computing for lattice supersymmetry

C. Culver
in collaboration with D. Schaich
Department of Mathematical Sciences
University of Liverpool

August 10, 2022

UK Research and Innovation

Outline

(1) Motivation

(2) Introduction
(3) $0+1 D$ supersymmetric quantum mechanics
(4) $1+1 D$ Wess-Zumino model
(3) Conclusion

Motivation

Supersymmetry as an extension to the standard model

Physics Motivation

Dynamical symmetry breaking

Unbroken symmetry

Spontaneously broken symmetry

Holographic duality

Practical Motivation

NISQ devices

Introduction

Quantum computing

- 0
- 1
Classical Bit

Qubit

- Map d.o.f of bosons/fermions to qubit d.o.f.
- Choose quantum computation
- VQE - variational method to solve for lowest lying eigenvalues
- Time evolution - study dynamics of Hamiltonian

Mapping degrees of freedom

- Bosonic
- Harmonic oscillator basis with cutoff Λ excitations
- n excitation to binary string of length $N^{q},|n\rangle \rightarrow\left|\sum_{i}^{N^{q}-1} a_{i} 2^{i}\right\rangle$

Matrix Elements

$$
\begin{array}{ll}
|0\rangle\langle 1|=(X+i Y) / 2, & \\
|1\rangle\langle 0|=(X+i Y) / 2, \\
|0\rangle\langle 0|=(1+Z) / 2, & \\
|1\rangle\langle 1|=(1-Z) / 2
\end{array}
$$

- Fermionic

Jordan-Wigner Transformation
$\hat{b}^{\dagger}=\frac{1}{2}(X-i Y), \hat{b}=\frac{1}{2}(X+i Y)$

Supersymmetry Facts

Hamiltonian

$H=Q^{2}$

- $E \geq 0$
- Supersymmetry conserved if $\langle\Omega| H|\Omega\rangle=0 \quad$ [Witten, Nucl. Phys. B 188,513 (1981)]
- Non-zero E states appear in pairs
- Lagrangian formalism

Path integral
$\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathrm{~d} \hat{q} \mathrm{~d} \hat{b} \mathrm{~d} \hat{b}^{\dagger} \mathcal{O} e^{i S\left(\hat{q}, \hat{b}, \hat{b}^{\dagger}\right)}$

- Condition for symmetry breaking

Witten index
$\mathcal{W}=\operatorname{Tr}\left[(-1)^{F} e^{-i H t}\right]=0$
$0+1 D$ supersymmetric quantum mechanics

$0+1$ dimensional quantum mechanics

Hamiltonian

$$
H=\frac{1}{2}\left(\hat{p}^{2}+\left[W^{\prime}(\hat{q})\right]^{2}-W^{\prime \prime}(\hat{q})\left[\hat{b}^{\dagger}, \hat{b}\right]\right)
$$

- Superpotentials W studied with complex Langevin [Joseph-Kumar, arxiv:2011.08107]:
- HO: $\frac{1}{2} m \hat{q}^{2} \quad$ preserves supersymmetry
- AHO: $\frac{1}{2} m \hat{q}^{2}+\frac{1}{4} g \hat{q}^{4} \quad$ preserves supersymmetry
- DW: $\frac{1}{2} m \hat{q}^{2}+g\left(\frac{1}{3} \hat{q}^{3}+\hat{q} \mu^{2}\right) \quad$ breaks supersymmetry
- For HO with $\Lambda=2, H=1.5 I^{0} I^{1}+I^{0} Z^{1}-0.5 Z^{0} I^{1}$

Supersymmetric anharmonic oscillator spectrum

Supersymmetric anharmonic oscillator spectrum

$$
m=1, g=1
$$

Double well spectrum

Λ	Exact	VQE
2	$9.38 \mathrm{e}-01$	$9.38 \mathrm{e}-01$
4	$1.27 \mathrm{e}-01$	$1.27 \mathrm{e}-01$
8	$2.93 \mathrm{e}-02$	$2.93 \mathrm{e}-02$
16	$1.83 \mathrm{e}-03$	$6.02 \mathrm{e}-02$
32	$1.83 \mathrm{e}-05$	$6.63 \mathrm{e}-01$

(a) Anharmonic oscillator.

Λ	Exact	VQE
2	$1.08 \mathrm{e}+00$	$1.08 \mathrm{e}+00$
4	$9.15 \mathrm{e}-01$	$9.15 \mathrm{e}-01$
8	$8.93 \mathrm{e}-01$	$8.93 \mathrm{e}-01$
16	$8.92 \mathrm{e}-01$	$8.94 \mathrm{e}-01$
32	$8.92 \mathrm{e}-01$	$8.95 \mathrm{e}-01$

(b) Double well.

Λ	Exact	VQE
2	$1.08 \mathrm{e}+00$	$1.08 \mathrm{e}+00$
4	$9.15 \mathrm{e}-01$	$9.15 \mathrm{e}-01$
8	$8.93 \mathrm{e}-01$	$8.93 \mathrm{e}-01$
16	$8.92 \mathrm{e}-01$	$8.94 \mathrm{e}-01$
32	$8.92 \mathrm{e}-01$	$8.95 \mathrm{e}-01$

(b) Double well.
(a) Anharmonic oscillator.

- Similar problems to (a) in BMN matrix model [Rinaldi et al, PRX Quantum 3 (2022)]

Gate costs for $0+1$

$1+1 D$ Wess-Zumino model

$1+1 \mathrm{D}$ Wess-Zumino model

Lattice Hamiltonian

$$
\begin{align*}
H=\sum_{n=0}^{N-1} & {\left[\frac{p_{n}^{2}}{2 a}+\frac{a}{2}\left(\frac{\phi_{n+1}-\phi_{n-1}}{2 a}\right)^{2}+\frac{a}{2} V\left(\phi_{n}\right)^{2}+a V\left(\phi_{n}\right) \frac{\phi_{n+1}-\phi_{n-1}}{2 a}\right.} \\
& \left.+(-1)^{n} V^{\prime}\left(\phi_{n}\right)\left(\chi_{n}^{\dagger} \chi_{n}-\frac{1}{2}\right)+\frac{1}{2 a}\left(\chi_{n}^{\dagger} \chi_{n+1}+\chi_{n+1}^{\dagger} \chi_{n}\right)\right] \tag{1}
\end{align*}
$$

- Potentials
- Linear: $m \phi$

$$
\operatorname{dim}(H)=\Lambda^{N} \times 2^{N}
$$

- Quadratic: $c+\phi^{2}$ [Beccaria, Campostrini, Feo, hep-lat/0109005 (2001)]
- Cubic: $\frac{1}{3} g \phi^{3}-\frac{m^{2}}{4 g} \phi \quad$ [Steinhauer, Wenger, PRL 113, 231601 (2014)]

3 site linear potential

$$
m=1
$$

4 site linear potential

$$
m=1
$$

3 site quadratic potential

Conclusion

Conclusion

Results

- $0+1 D$
- Classical diagonalization works as expected
- VQE struggles with AHO
- Trotter step gate counts appropriate for NISQ
- $1+1 D$
- Classical preparation is severly limited
- Bosonic cutoff introduces more error?
- Energies trending in the correct direction

Ongoing

- Cubic potential for WZ
- Quantum approach to WZ
- Optimizing the quantum approach

$0+1$ harmonic oscillator spectrum

$$
m=1.0
$$

$0+1$ harmonic oscillator spectrum

Λ	Exact	VQE
2	$0.00 \mathrm{e}+00$	$5.34 \mathrm{e}-10$
4	$0.00 \mathrm{e}+00$	$1.07 \mathrm{e}-09$
8	$0.00 \mathrm{e}+00$	$4.06 \mathrm{e}-09$
16	$0.00 \mathrm{e}+00$	$1.13 \mathrm{e}-08$
32	$0.00 \mathrm{e}+00$	$4.81 \mathrm{e}-08$

(a) Harmonic oscillator.

