Quantum computing for lattice supersymmetry

C. Culver in collaboration with D. Schaich

Department of Mathematical Sciences University of Liverpool

August 10, 2022

UK Research and Innovation

Outline

1 Motivation

2 Introduction

(3) 0 + 1D supersymmetric quantum mechanics

(4) 1 + 1D Wess-Zumino model

(5) Conclusion

Motivation

Physics Motivation

Supersymmetry as an extension to the standard model

Dynamical symmetry breaking

Holographic duality

NISQ devices

Introduction

Quantum computing

- Map d.o.f of bosons/fermions to qubit d.o.f.
- Choose quantum computation
 - ▶ VQE variational method to solve for lowest lying eigenvalues
 - ▶ Time evolution study dynamics of Hamiltonian

Mapping degrees of freedom

• Bosonic

- ▶ Harmonic oscillator basis with cutoff Λ excitations
- *n* excitation to binary string of length N^q , $|n\rangle \rightarrow \left|\sum_{i}^{N^q-1} a_i 2^i\right\rangle$

Matrix Elements

$$\begin{array}{l} \left| 0 \right\rangle \left\langle 1 \right| = \left(X + iY \right)/2, & \left| 1 \right\rangle \left\langle 0 \right| = \left(X + iY \right)/2, \\ \left| 0 \right\rangle \left\langle 0 \right| = \left(1 + Z \right)/2, & \left| 1 \right\rangle \left\langle 1 \right| = \left(1 - Z \right)/2 \end{array}$$

• Fermionic

Jordan-Wigner Transformation $\hat{b}^{\dagger} = \frac{1}{2} (X - iY), \ \hat{b} = \frac{1}{2} (X + iY)$

Supersymmetry Facts

Hamiltonian

 $H=Q^2$

- $E \ge 0$
- Supersymmetry conserved if $\langle \Omega | H | \Omega \rangle = 0$ [Witten, Nucl. Phys. B 188,513 (1981)]
- Non-zero E states appear in pairs
- Lagrangian formalism

Path integral

 $\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathrm{d}\hat{q} \, \mathrm{d}\hat{b} \, \mathrm{d}\hat{b}^{\dagger} \, \mathcal{O} \, e^{iS(\hat{q},\hat{b},\hat{b}^{\dagger})}$

• Condition for symmetry breaking

Witten index

$$\mathcal{W} = \operatorname{Tr}\left[(-1)^F e^{-iHt}\right] = 0$$

0 + 1D supersymmetric quantum mechanics

0+1 dimensional quantum mechanics

Hamiltonian

$$H = \frac{1}{2} \left(\hat{p}^2 + [W'(\hat{q})]^2 - W''(\hat{q}) \left[\hat{b}^{\dagger}, \hat{b} \right] \right)$$

• Superpotentials W studied with complex Langevin [Joseph-Kumar, arxiv:2011.08107]:

- HO: $\frac{1}{2}m\hat{q}^2$ preserves supersymmetry
- AHO: $\frac{1}{2}m\hat{q}^2 + \frac{1}{4}g\hat{q}^4$ preserves supersymmetry
- ► DW: $\frac{1}{2}m\hat{q}^2 + g(\frac{1}{3}\hat{q}^3 + \hat{q}\mu^2)$ breaks supersymmetry
- For HO with $\Lambda = 2, H = 1.5I^0I^1 + I^0Z^1 0.5Z^0I^1$

Supersymmetric anharmonic oscillator spectrum

12 / 23

Supersymmetric anharmonic oscillator spectrum

Double well spectrum

VQE

Λ	Exact	VQE		Λ	Exact	VQE
2	9.38e-01	9.38e-01		2	1.08e+00	1.08e+00
4	1.27 e-01	1.27 e- 01		4	9.15e-01	9.15e-01
8	2.93e-02	2.93e-02		8	8.93e-01	8.93e-01
16	1.83e-03	6.02 e- 02		16	8.92e-01	8.94e-01
32	1.83e-05	6.63 e- 01		32	8.92e-01	8.95e-01
(a)	(a) Anharmonic oscillator			(b) Double well		

(a) Anharmonic oscillator.

(b) Double well.

VQE

Λ	Exact	VQE		Λ	Exact	VQE
2	9.38e-01	9.38e-01		2	1.08e + 00	1.08e+00
4	1.27 e-01	1.27 e-01		4	9.15e-01	9.15e-01
8	2.93e-02	2.93e-02		8	8.93e-01	8.93e-01
16	1.83e-03	6.02 e- 02		16	8.92e-01	8.94 e-01
32	1.83e-05	6.63e-01		32	8.92e-01	8.95e-01
(a) Anharmonic oscillator.			(b) Double well.			

• Similar problems to (a) in BMN matrix model [Rinaldi et al, PRX Quantum 3 (2022)]

Gate costs for $0{+}1$

1 + 1D Wess-Zumino model

1 + 1D Wess-Zumino model

Lattice Hamiltonian

$$H = \sum_{n=0}^{N-1} \left[\frac{p_n^2}{2a} + \frac{a}{2} \left(\frac{\phi_{n+1} - \phi_{n-1}}{2a} \right)^2 + \frac{a}{2} V(\phi_n)^2 + a V(\phi_n) \frac{\phi_{n+1} - \phi_{n-1}}{2a} + (-1)^n V'(\phi_n) \left(\chi_n^{\dagger} \chi_n - \frac{1}{2} \right) + \frac{1}{2a} \left(\chi_n^{\dagger} \chi_{n+1} + \chi_{n+1}^{\dagger} \chi_n \right) \right], \tag{1}$$

- Potentials
 - ▶ Linear: $m\phi$

- $\dim(H) = \Lambda^N \times 2^N$
- > Quadratic: $c + \phi^2$ [Beccaria, Campostrini, Feo, hep-lat/0109005 (2001)]
- ▶ Cubic: $\frac{1}{3}g\phi^3 \frac{m^2}{4q}\phi$ [Steinhauer, Wenger, PRL 113, 231601 (2014)]

3 site linear potential

4 site linear potential

3 site quadratic potential

Conclusion

Conclusion

Results

- 0 + 1D
 - Classical diagonalization works as expected
 - ▶ VQE struggles with AHO
 - ▶ Trotter step gate counts appropriate for NISQ
- 1 + 1D
 - Classical preparation is severly limited
 - ▶ Bosonic cutoff introduces more error?
 - Energies trending in the correct direction

Ongoing

- Cubic potential for WZ
- Quantum approach to WZ
- Optimizing the quantum approach

0+1 harmonic oscillator spectrum

0+1 harmonic oscillator spectrum

Λ	Exact	VQE
2	0.00e+00	5.34e-10
4	0.00e + 00	1.07 e-09
8	0.00e + 00	4.06e-09
16	0.00e + 00	1.13e-08
32	0.00e+00	4.81e-08

(a) Harmonic oscillator.