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Motivation
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Physics Motivation

Supersymmetry as an extension to the standard model
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Dynamical symmetry breaking Holographic duality



Practical Motivation
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Lattice N = 4 SYM
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Sign problem NISQ devices



Introduction
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Quantum computing

Map d.o.f of bosons/fermions to qubit d.o.f.

Choose quantum computation

▶ VQE - variational method to solve for lowest lying eigenvalues

▶ Time evolution - study dynamics of Hamiltonian
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Mapping degrees of freedom

Bosonic
▶ Harmonic oscillator basis with cutoff Λ excitations
▶ n excitation to binary string of length Nq, |n⟩ →

∣∣∣∑Nq−1
i ai2

i
〉

Matrix Elements

|0⟩ ⟨1| = (X + iY ) /2, |1⟩ ⟨0| = (X + iY ) /2,
|0⟩ ⟨0| = (1 + Z) /2, |1⟩ ⟨1| = (1− Z) /2

Fermionic

Jordan-Wigner Transformation

b̂† = 1
2 (X − iY ), b̂ = 1

2 (X + iY )
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Supersymmetry Facts

Hamiltonian

H = Q2

E ≥ 0
Supersymmetry conserved if ⟨Ω |H|Ω⟩ = 0 [Witten, Nucl. Phys. B 188,513 (1981)]

Non-zero E states appear in pairs

Lagrangian formalism

Path integral

⟨O⟩ = 1
Z

∫
dq̂ db̂ db̂† O eiS(q̂,b̂,b̂†)

Condition for symmetry breaking

Witten index

W = Tr
[
(−1)F e−iHt

]
= 0
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0 + 1D supersymmetric quantum mechanics
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0 + 1 dimensional quantum mechanics

Hamiltonian

H = 1
2

(
p̂2 + [W ′(q̂)]2 −W ′′(q̂)

[
b̂†, b̂

])
Superpotentials W studied with complex Langevin [Joseph-Kumar, arxiv:2011.08107]:

▶ HO: 1
2mq̂2 preserves supersymmetry

▶ AHO: 1
2mq̂2 + 1

4gq̂
4 preserves supersymmetry

▶ DW: 1
2mq̂2 + g( 13 q̂

3 + q̂µ2) breaks supersymmetry

For HO with Λ=2, H = 1.5I0I1 + I0Z1 − 0.5Z0I1
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Supersymmetric anharmonic oscillator spectrum
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m = 1, g = 1



Supersymmetric anharmonic oscillator spectrum
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m = 1, g = 1



Double well spectrum
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m = 1, g = 1, µ = 1



VQE

Λ Exact VQE

2 9.38e-01 9.38e-01
4 1.27e-01 1.27e-01
8 2.93e-02 2.93e-02
16 1.83e-03 6.02e-02
32 1.83e-05 6.63e-01

(a) Anharmonic oscillator.

Λ Exact VQE

2 1.08e+00 1.08e+00
4 9.15e-01 9.15e-01
8 8.93e-01 8.93e-01
16 8.92e-01 8.94e-01
32 8.92e-01 8.95e-01

(b) Double well.
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(b) Double well.

Similar problems to (a) in BMN matrix model [Rinaldi et al, PRX Quantum 3 (2022)]
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Gate costs for 0+1
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1 + 1D Wess-Zumino model
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1 + 1D Wess-Zumino model

Lattice Hamiltonian

H =

N−1∑
n=0

[
p2n
2a

+
a

2

(
ϕn+1 − ϕn−1

2a

)2

+
a

2
V (ϕn)

2 + aV (ϕn)
ϕn+1 − ϕn−1

2a

+(−1)nV ′(ϕn)

(
χ†
nχn − 1

2

)
+

1

2a

(
χ†
nχn+1 + χ†

n+1χn

)]
, (1)

Potentials
▶ Linear: mϕ

▶ Quadratic: c+ ϕ2 [Beccaria, Campostrini, Feo, hep-lat/0109005 (2001)]

▶ Cubic: 1
3gϕ

3 − m2

4g ϕ [Steinhauer, Wenger, PRL 113, 231601 (2014)]
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dim(H) = ΛN × 2N



3 site linear potential
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m = 1



4 site linear potential
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m = 1



3 site quadratic potential
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Conclusion
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Conclusion

Results

0 + 1D
▶ Classical diagonalization works as expected
▶ VQE struggles with AHO
▶ Trotter step gate counts appropriate for NISQ

1 + 1D
▶ Classical preparation is severly limited
▶ Bosonic cutoff introduces more error?
▶ Energies trending in the correct direction

Ongoing

Cubic potential for WZ

Quantum approach to WZ

Optimizing the quantum approach
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0+1 harmonic oscillator spectrum
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m = 1.0



0+1 harmonic oscillator spectrum

Λ Exact VQE

2 0.00e+00 5.34e-10
4 0.00e+00 1.07e-09
8 0.00e+00 4.06e-09
16 0.00e+00 1.13e-08
32 0.00e+00 4.81e-08

(a) Harmonic oscillator.
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