UPS and electric maintenance is scheduled for Wednesday, January 22nd, 2025, 08:30 - 16:00. A downtime of this service will occur for up to 3 hours! Multiple reboots may occur!

8–13 Aug 2022
Hörsaalzentrum Poppelsdorf
Europe/Berlin timezone

An ML approach to the classification of phase transitions in many flavor QCD

10 Aug 2022, 17:30
20m
CP1-HSZ/1.004 (CP1-HSZ) - HS7 (CP1-HSZ)

CP1-HSZ/1.004 (CP1-HSZ) - HS7

CP1-HSZ

70
Show room on map
Oral Presentation Algorithms (including Machine Learning, Quantum Computing, Tensor Networks) Algorithms

Speaker

Marius Neumann (Bielefeld University)

Description

Supervised machine learning with a decoder-only CNN architecture is used to interpolate the chiral condensate in QCD simulations with five degenerate quark flavors in the HISQ action. From this a model for the probability distribution of the chiral condensate as function of lattice volume, light quark mass and gauge coupling is obtained. Using the model, first order and crossover regions can be classified, and the boundary between these regions can be marked by a critical mass. An extension of this model to studies of phase transitions in QCD with variable number of flavors is expected to be possible.

Primary author

Marius Neumann (Bielefeld University)

Co-authors

Anirban Lahiri (Bielefeld University) Frithjof Karsch (Bielefeld University) Christian Schmidt (Bielefeld University)

Presentation materials