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The Frankfurt group

Cuteri et al.

F. Cuteri et. al., 2021: On the order
of the QCD chiral phase transition for
different numbers of quark flavours,
arXiv:2107.12739

2nd order for Nf ≤ 6 and ml → 0

unimproved staggered
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This work

Cuteri et al.

HISQ fermions

plan: look at regions, where a 1st

order signal is expected

small masses
large Nf

Nf = 5

ml = 0.001− 0.016

V = 163 − 243 × 6

β = 4.50− 5.35
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Why Nf = 5?

always considering Nf degenerate flavors with mass ml

chiral phase transition is expected to be

crossover for larger ml

first order for larger Nf

“phase transition of the phase transition” at mc(Nf )

Nf = 3 already investigated (S. Sharma et al., 2021:
The Chiral Phase Transition in three-flavor QCD from Lattice QCD,
arXiv:2111.12599)

first step: find 1st order for any Nf ≥ 3 at small ml
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Time histories
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Time histories
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β-reweighting

way to interpolate any observable between βs

this includes histogram bins

reweighting in volume or mass not possible

fine sampling in β required
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β-reweighting
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β-reweighting
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Number of measurements per volume and mass

ns 0.001 0.002 0.003 0.0035 0.004 0.0045 0.005

16 17601 19167 11526 0 18866 0 0
24 5294 87176 149135 24278 29821 14904 15212

ns 0.006 0.008 0.010 0.012 0.014 0.016

16 59782 60420 61456 61456 61256 61256
24 24756 40237 23648 13380 25574 25499
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Number of measurements per volume and mass

ns 0.001 0.002 0.003 0.0035 0.004 0.0045 0.005

16 17601 19167 11526 0 18866 0 0
24 5294 87176 149135 24278 29821 14904 15212

ns 0.006 0.008 0.010 0.012 0.014 0.016

16 59782 60420 61456 61456 61256 61256
24 24756 40237 23648 13380 25574 25499

about 300.000 GPUh
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Convolutional neural networks (CNNs)

Picture
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Convolutional neural networks (CNNs)

Picture Features
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Convolutional neural networks (CNNs)

Picture Features Pixels

9 An ML approach to the classification of phase transitions in many flavor QCD



Convolutional neural networks (CNNs)

Picture Features Pixels Dense
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense Output
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense Output

catness      
dogness     
horseness 
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense Output

catness      0.10
dogness     0.85
horseness  0.05
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Convolutional neural networks (CNNs)

encoder
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Transposed CNNs

encoder
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decoder
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Transposed CNNs

encoder
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volume
beta
mass
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Model Output: p (<ψ̄ψi>)
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Decoder only Model Summary

layer shape

input units = 3
Dense units = 64
Dense units = 265
Dense units = 1024
Reshape shape = (32, 32)

Conv1DTranspose filters = 64, kernel size = 2
Conv1DTranspose filters = 128, kernel size = 5

Conv1DTranspose
filters = 275, kernel size = 10,

activation = softmax
output GlobalAveragePooling1D

Dropout (rate = 0.2)
between all layers

loss: categorical
crossentropy

implemented in
Tensorflow Keras

model maps 3
parameters
(Nσ, β,ml) to 275
histogram bins
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reweighted chiral condensate
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ML-reweighted chiral condensate
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ML-reweighted chiral condensate
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ML-reweighted chiral condensate

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4

Nf = 5
V = 243×6

β

<ψ̄ψ> ml = 0.002
0.003
0.004
0.005
0.006
0.008
0.010
0.012
0.014
0.016

12 An ML approach to the classification of phase transitions in many flavor QCD



An equation-of-state-meter
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An equation-of-state-meter
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An equation-of-state-meter
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H. Petersen et al., 2016: An equation-of-state-meter of QCD transition from deep learning,
arXiv:1612.04262
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Encoder only Model Summary

layer shape

input units = (500, 275)

Conv2D
filters = 50, kernel size = 10,

strides = (5, 10)

Conv2D
filters = 10, kernel size = 3,

strides = (2, 2)
Pooling GlobalAveragePooling2D
Dense units = 32
Dense units = 16
output units = 2, activation = sigmoid

activation = relu for all layers

Dropout (rate = 0.2)
between all layers

loss: binary crossentropy

implemented in Tensorflow
Keras

model maps (500× 275)
pixels to firstordernes /
crossoverness
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Conclusion

1st order chiral phase transition observed for small ml , Nf = 5, Nτ = 6 in HISQ

good interpolation of p (<ψ̄ψi>) in Nσ, ml and β

“phase transition of the phase transition” described by decoder-only CNN ML
model

Work in progress: mc extraction via “EOS-meter”

add Nσ dependence

next: add Nf and Nτ dependence to ML model
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