Speaker
Nils Meyer
(Universität Regensburg)
Description
We describe our implementation of a multigrid solver for Wilson clover fermions, which increases parallelism by solving for multiple right-hand sides (MRHS) simultaneously. The solver is based on Grid and thus runs on all computing architectures supported by the Grid framework. We present detailed benchmarks of the relevant kernels, such as hopping and clover term on the various multigrid levels, intergrid operators, and reductions. The benchmarks were performed on the JUWELS Booster system at FZ Jülich, which is based on Nvidia A100 GPUs. For example, solving a $48^4$ lattice on 16 GPUs, the overall speedup obtained solely from MRHS is about 7x.
Primary authors
Nils Meyer
(Universität Regensburg)
Daniel Richtmann
(Universität Regensburg)
Tilo Wettig
(Universität Regensburg)