Speakers
Michael Johnson
(Max Planck Institute for Radio Astronomy)Dr
Kristen Lackeos
(Max Planck Institute for Radio Astronomy)
Description
We have developed VAMPIRA, software capable of automatically generating provenance for data-intensive scientific workflows. Provenance generated by VAMPIRA describes the record of the data processing, metadata, infrastructure and user data involved within a workflow as well as the interactions between them. Armed with this extra information, scientists will be able to make more informed decisions on the trustworthiness of data products, pipelines, or pipeline components. Therefore, VAMPIRA can help to solve the so-called “black box problem” which is prevalent in modern artificial intelligence (AI) research due to the increasing intricacy and complexity of AI workflows.
Primary authors
Michael Johnson
(Max Planck Institute for Radio Astronomy)
Dr
Kristen Lackeos
(Max Planck Institute for Radio Astronomy)
Co-authors
Dr
Hans-Rainer Kloeckner
(Max-Planck-Institut für Radioastronomie)
Dr
David Champion
(Max-Planck-Institut für Radioastronomie)
Dr
Sirko Schindler
(DLR-Institut für Datenwissenschaften)
Dr
Marta Dembska
(DLR-Institut für Datenwissenschaften)
Dr
Marcus Paradies
(DLR-Institut für Datenwissenschaften)