With the growing precision of experimental measurements, combining fixed-order perturbative calculations with parton-shower effects becomes essential for an accurate description of LHC phenomenology. In this talk, we focus on the computation of Higgs production via bottom-quark annihilation (bbH) at next-to-next-to-leading order (NNLO) in QCD perturbation theory, consistently matched with parton showers (NNLO+PS) using the MiNNLOPS technique. We extend the MiNNLOPS framework to accommodate a scale-dependent Yukawa coupling renormalized in the scheme. Given the flexibility in schemes for the process calculation, where the bottom quark can be treated as massless or massive at the LHC production scale, we explore both the five-flavour scheme (5FS) with massless bottom quarks and the four-flavour scheme (4FS) incorporating massive bottom quarks. In the 4FS computation, we employ the MiNNLOPS method tailored for the QQF scenario, featuring a heavy quark (Q) and a color singlet final state (F).