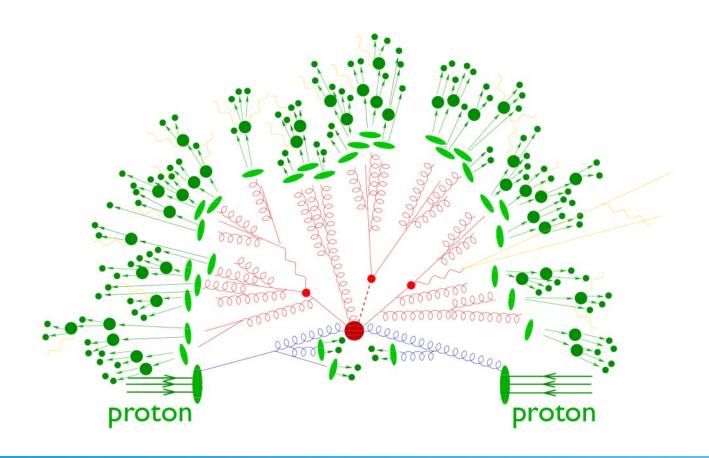
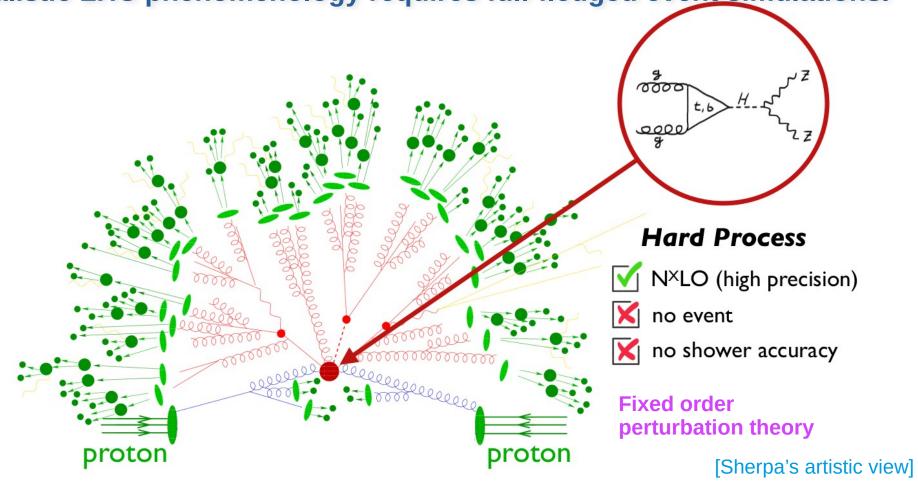
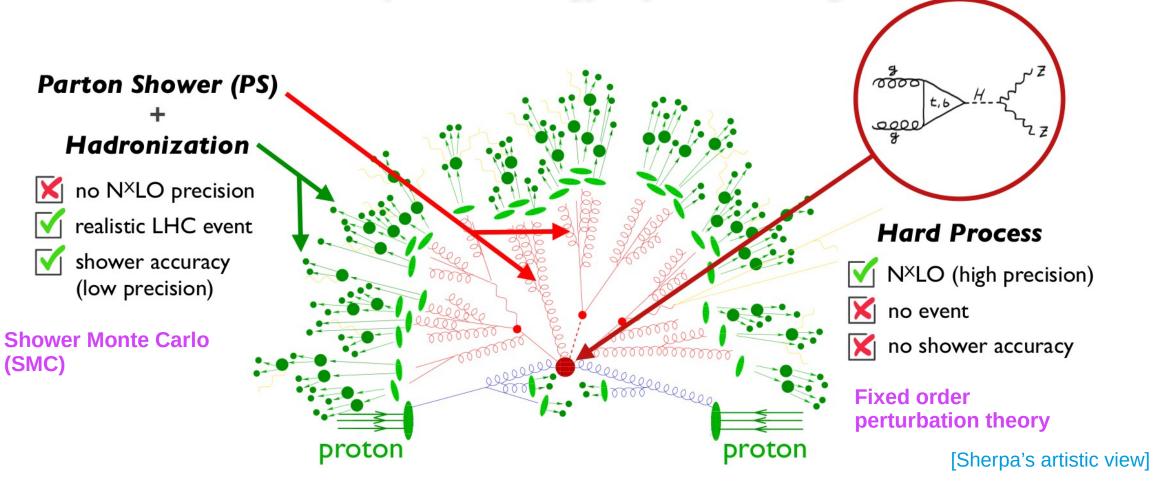
NNLO+PS predictions for Higgs production in bottom quark fusion with MiNNLO_{PS}

Aparna Sankar

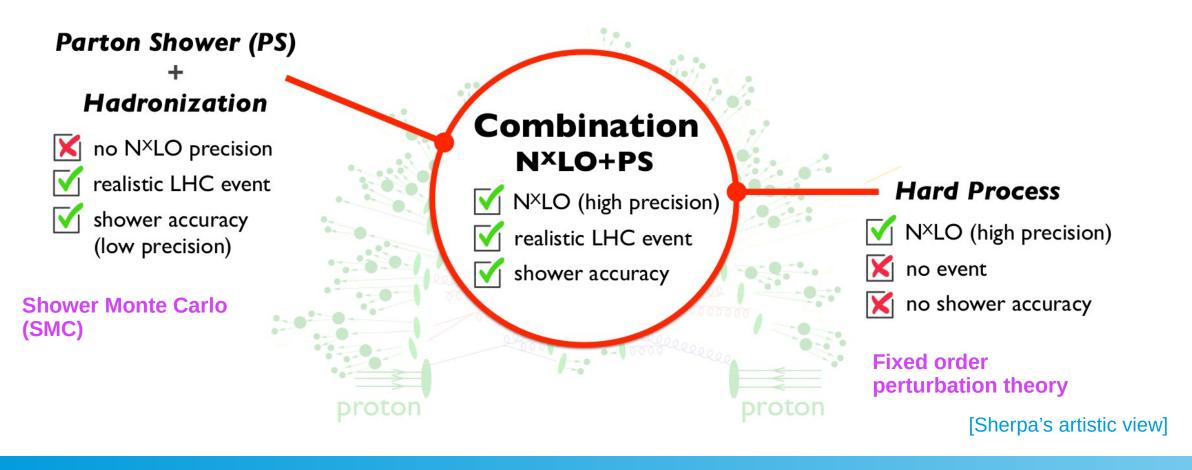

In collaboration with C. Biello, M. Wiesemann, G. Zanderighi + (J. Mazzitelli)

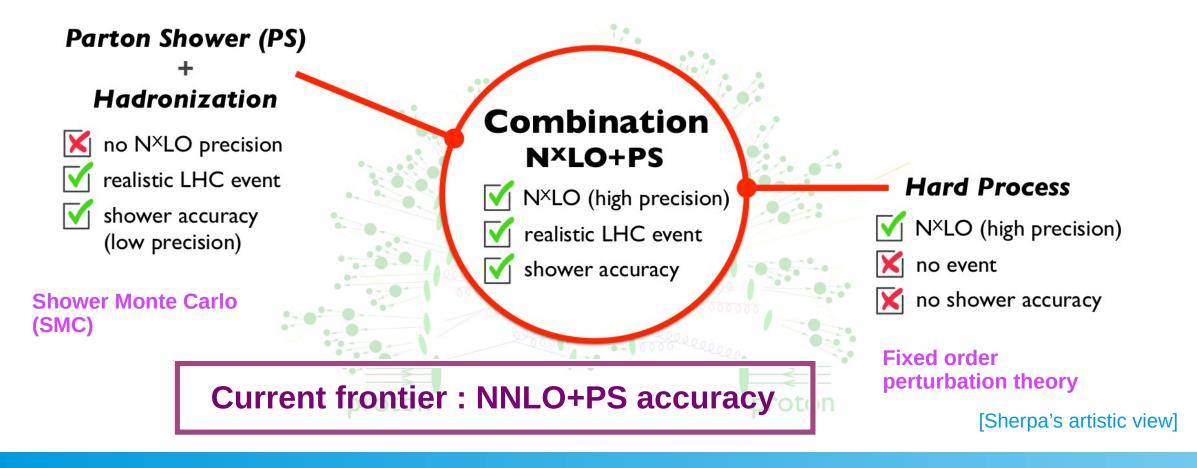

HEP Theory Seminar BCTP, University of Bonn, 3 June 2024

Precise and realistic LHC phenomenology requires full-fledged event simulations.



[Sherpa's artistic view]


Precise and realistic LHC phenomenology requires full-fledged event simulations.


Precise and realistic LHC phenomenology requires full-fledged event simulations.

Precise and realistic LHC phenomenology requires full-fledged event simulations.

Precise and realistic LHC phenomenology requires full-fledged event simulations.

3/06/24

NNLO+PS: what do we want to achieve?

- ▶ Consider F + X production (F=massive color singlet)
- NNLO accuracy for observables inclusive on radiation.

 $[d\sigma/dy_F]$

- ▶ NLO(LO) accuracy for F + 1(2) jet observables (in the hard region). $[d\sigma/dp_{T,j_1}]$
 - appropriate scale choice for each kinematics regime
- Sudakov resummation from the Parton Shower (PS)
- preserve the PS accuracy (leading log LL)

- MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]
- **Geneva** [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- **UNNLOPS** [Höche, Prestel (1507.05325)]

 MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]

- Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- UNNLOPS [Höche, Prestel (1507.05325)]

MINNLO_{PS}

2->1: [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)]

[Monni, Re, Wiesemann (2006.04133)]

2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]

tt: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi

(2012.14267)

bbz: [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

 MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]

- Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- UNNLOPS [Höche, Prestel (1507.05325)]

MINNLO_{PS}

2->1: [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)]

[Monni, Re, Wiesemann (2006.04133)]

2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]

tt: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi

(2012.14267)

bbz: [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

	F	F+J	F+JJ
F@MiNNLO _{PS}	NNLO	NLO	LO

 MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]

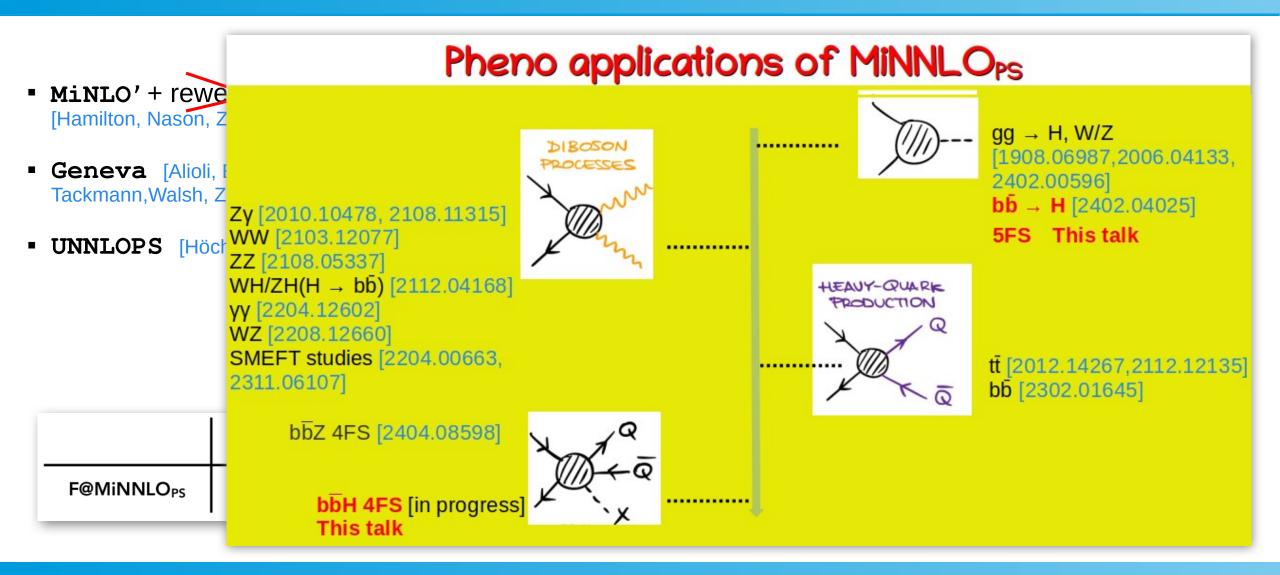
- Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- UNNLOPS [Höche, Prestel (1507.05325)]

MINNLO_{PS}

2->1: [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)]

[Monni, Re, Wiesemann (2006.04133)]

2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]

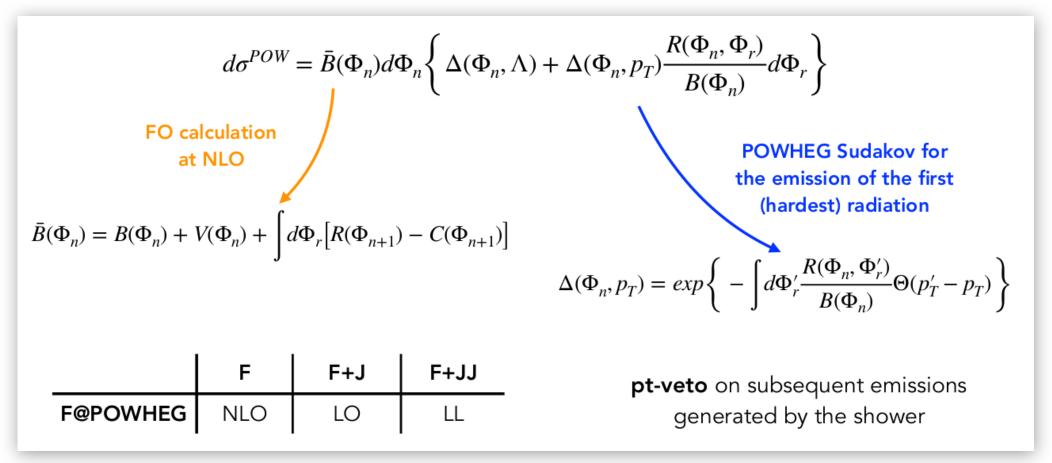

tt: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi

(2012.14267)

bbz: [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

	F	F+J	F+JJ
F@MiNNLO _{PS}	NNLO	NLO	LO

- No computationally intense reweighting
- No unphysical merging scale
- Leading-log (LL) accuracy of the shower preserved
- Numerically efficient



POWHEG

> The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]

POWHEG

> The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]

MiNLO'

$$\bar{B}(\Phi_n) = e^{-\tilde{S}(p_T)} \left(B(\Phi_n)(1 + \alpha_s(p_T)[\tilde{S}]^{(1)}) + V(\Phi_n) + \int d\Phi_r \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] \right)$$

Sudakov form factor

3/06/24

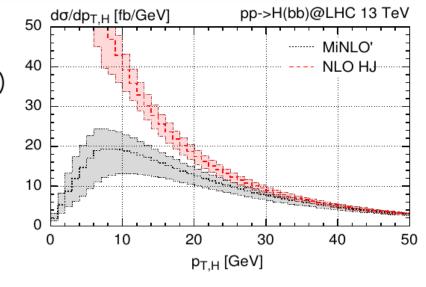
$$\tilde{S}(p_T) = \int_{p_r^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + B(\alpha_s(q^2)) \right]$$

$$A = \sum_{k=1}^{2} \left(\frac{\alpha_s}{2\pi}\right)^k A^{(k)}, \qquad B = \sum_{k=1}^{2} \left(\frac{\alpha_s}{2\pi}\right)^k B^{(k)}$$

	F	F+J	F+JJ
FJ@MiNLO'	NLO	NLO	LO

MiNLO'

$$\bar{B}(\Phi_n) = e^{-\tilde{S}(p_T)} \left(B(\Phi_n)(1 + \alpha_s(p_T)[\tilde{S}]^{(1)}) + V(\Phi_n) + \int d\Phi_r \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] \right)$$


Sudakov form factor

$$\tilde{S}(p_T) = \int_{p_r^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + B(\alpha_s(q^2)) \right]$$

$$A = \sum_{k=1}^{2} \left(\frac{\alpha_s}{2\pi}\right)^k A^{(k)}, \qquad B = \sum_{k=1}^{2} \left(\frac{\alpha_s}{2\pi}\right)^k B^{(k)}$$

- · Finite result for F+J production when the jet is unresolved
- Prescription in the **choice of the scales** μ_R and μ_F ($\mu_R = \mu_F \sim p_T$)
- NLO accuracy for observables inclusive in F and F+J

	F	F+J	F+JJ
FJ@MiNLO'	NLO	NLO	LO

Minnlops

♦ starting equation:

$$\frac{\mathrm{d}\sigma_F^{\mathrm{res}}}{\mathrm{d}p_T\,\mathrm{d}\Phi_\mathrm{B}} = \frac{\mathrm{d}}{\mathrm{d}p_T}\left\{e^{-S}\mathscr{L}\right\} = e^{-S}\left\{S'\mathscr{L} + \mathscr{L}'\right\} \qquad \qquad \mathscr{L} \sim H(C\otimes f)(C)$$

$$\equiv D$$
Luminosity (symbolically)

Hard function

$$\mathcal{L} \sim H(C \otimes f)(C \otimes f)$$
Luminosity (symbolically)

♦ starting equation:

$$\frac{\mathrm{d}\sigma_F^{\mathrm{res}}}{\mathrm{d}p_T\,\mathrm{d}\Phi_\mathrm{B}} = \frac{\mathrm{d}}{\mathrm{d}p_T}\left\{e^{-S}\mathscr{L}\right\} = e^{-S}\left\{S'\mathscr{L} + \mathscr{L}'\right\} \qquad \qquad \mathscr{L} \sim H(C\otimes f)(C\otimes f)$$

$$\equiv D$$
Luminosity (symbolically)

Hard function

 \bullet combine with F + jet fixed order $d\sigma_{FI}$:

$$d\sigma^{F} = d\sigma_{F}^{\text{res}} + [d\sigma_{FJ}]_{\text{f.o.}} - [d\sigma_{F}^{\text{res}}]_{\text{f.o.}} = e^{-S} \left\{ D + \underbrace{\frac{[d\sigma_{FJ}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{1-S^{(1)}\cdots} \underbrace{-\frac{[d\sigma_{F}^{\text{res}}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{-D^{(1)}-D^{(2)}\cdots} \right\}$$

♦ starting equation:

$$\frac{\mathrm{d}\sigma_F^{\mathrm{res}}}{\mathrm{d}p_T\,\mathrm{d}\Phi_\mathrm{B}} = \frac{\mathrm{d}}{\mathrm{d}p_T}\left\{e^{-S}\mathscr{L}\right\} = e^{-S}\left\{S'\mathscr{L} + \mathscr{L}'\right\} \qquad \qquad \mathscr{L} \sim H(C\otimes f)(C\otimes f)$$

$$\equiv D$$
Luminosity (symbolically)

Hard function

♦ combine with F + jet fixed order $d\sigma_{FI}$:

$$d\sigma^{F} = d\sigma_{F}^{\text{res}} + [d\sigma_{FJ}]_{\text{f.o.}} - [d\sigma_{F}^{\text{res}}]_{\text{f.o.}} = e^{-S} \left\{ D + \underbrace{\frac{[d\sigma_{FJ}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{1-S^{(1)}\cdots} \underbrace{-\frac{[d\sigma_{F}^{\text{res}}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{-D^{(1)}-D^{(2)}\cdots} \right\}$$

lacktriangle expanded up to $\alpha_s^3(p_T)$ we have: (resummation scheme: $\mu_R = \mu_F \sim p_T$)

$$\mathrm{d}\sigma_F^{\mathrm{MiNNLO}} \sim e^{-S} \left\{ \underbrace{\mathrm{d}\sigma_{FJ}^{(1)} \big(1 + S^{(1)}\big) + \mathrm{d}\sigma_{FJ}^{(2)}}_{\sim \alpha_s(p_T)} + \underbrace{\big(D - D^{(1)} - D^{(2)}\big)}_{\sim \alpha_s^3(p_T)} + \mathrm{regular} \right\}$$

♦ starting equation:

$$\frac{\mathrm{d}\sigma_F^{\mathrm{res}}}{\mathrm{d}p_T\,\mathrm{d}\Phi_\mathrm{B}} = \frac{\mathrm{d}}{\mathrm{d}p_T}\left\{e^{-S}\mathscr{L}\right\} = e^{-S}\left\{S'\mathscr{L} + \mathscr{L}'\right\} \qquad \qquad \mathscr{L} \sim H(C\otimes f)(C\otimes f)$$

$$\equiv D$$
Luminosity (symbolically)

Hard function

♦ combine with F + jet fixed order $d\sigma_{FI}$:

$$d\sigma^{F} = d\sigma_{F}^{\text{res}} + [d\sigma_{FJ}]_{\text{f.o.}} - [d\sigma_{F}^{\text{res}}]_{\text{f.o.}} = e^{-S} \left\{ D + \underbrace{\frac{[d\sigma_{FJ}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{1-S^{(1)}\cdots} \underbrace{-\frac{[d\sigma_{F}^{\text{res}}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{-D^{(1)}-D^{(2)}\cdots} \right\}$$

lacktriangle expanded up to $\alpha_s^3(p_T)$ we have: (resummation scheme: $\mu_R = \mu_F \sim p_T$)

$$\mathrm{d}\sigma_F^{\mathrm{MiNNLO}} \sim e^{-S} \left\{ \underbrace{\mathrm{d}\sigma_{FJ}^{(1)} \big(1 + S^{(1)}\big) + \mathrm{d}\sigma_{FJ}^{(2)}}_{\sim \alpha_s(p_T)} + \underbrace{\big(D - D^{(1)} - D^{(2)}\big)}_{\sim \alpha_s^3(p_T)} + \mathrm{regular} \right\}$$

MiNLO'

♦ starting equation:

$$\frac{\mathrm{d}\sigma_F^{\mathrm{res}}}{\mathrm{d}p_T\,\mathrm{d}\Phi_\mathrm{B}} = \frac{\mathrm{d}}{\mathrm{d}p_T}\left\{e^{-S}\mathscr{L}\right\} = e^{-S}\left\{S'\mathscr{L} + \mathscr{L}'\right\} \qquad \qquad \mathscr{L} \sim H(C\otimes f)(C\otimes f)$$

$$\equiv D$$
Luminosity (symbolically)

Hard function

♦ combine with F + jet fixed order $d\sigma_{FI}$:

$$d\sigma^{F} = d\sigma_{F}^{\text{res}} + [d\sigma_{FJ}]_{\text{f.o.}} - [d\sigma_{F}^{\text{res}}]_{\text{f.o.}} = e^{-S} \left\{ D + \underbrace{\frac{[d\sigma_{FJ}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{1-S^{(1)}\cdots} \underbrace{-\frac{[d\sigma_{F}^{\text{res}}]_{\text{f.o.}}}{[e^{-S}]_{\text{f.o.}}}}_{-D^{(1)}-D^{(2)}\cdots} \right\}$$

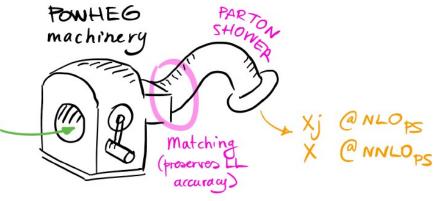
lacktriangle expanded up to $\alpha_{\rm s}^3(p_T)$ we have: (resummation scheme: $\mu_{\rm R}=\mu_{\rm F}\sim p_T$)

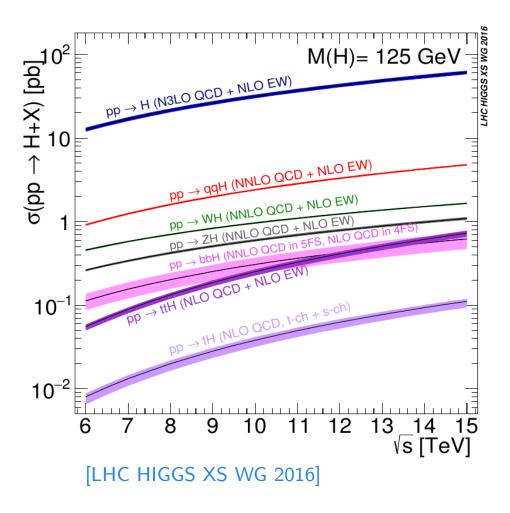
$$\mathrm{d}\sigma_F^{\mathrm{MiNNLO}} \sim e^{-S} \left\{ \underbrace{\mathrm{d}\sigma_{FJ}^{(1)} \big(1 + S^{(1)}\big) + \mathrm{d}\sigma_{FJ}^{(2)}}_{\sim \alpha_s(p_T)} + \underbrace{ \big(D - D^{(1)} - D^{(2)}\big)}_{\sim \alpha_s^3(p_T)} + \mathrm{regular} \right\}$$

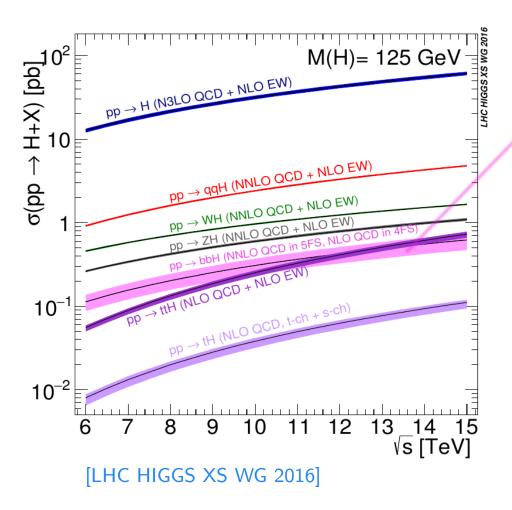
$$\mathbf{MiNLO'}$$
NNLO corrections
$$\mathbf{MiNLO'}$$
Beyond accuracy

$$d\sigma_{F}^{MiNNLO_{PS}} = d\Phi_{FJ}\bar{B}^{MiNNLO_{PS}} \times \left\{ \Delta_{pwg}(\Lambda_{pwg}) + \int\! d\Phi_{rad}\Delta_{pwg}(p_{T,rad}) \frac{R_{FJ}}{B_{FJ}} \right\}$$

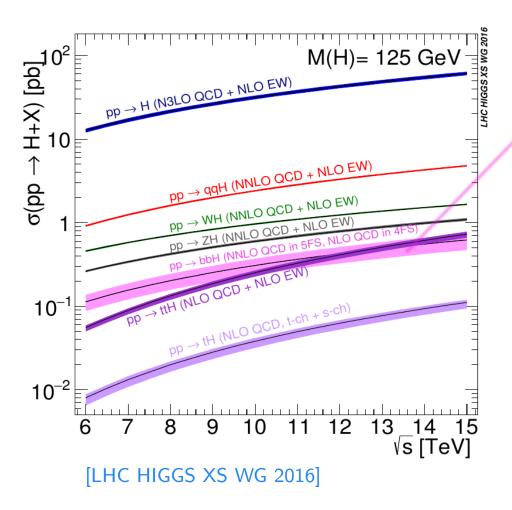
$$\bar{B}^{MiNNLO_{PS}} \sim e^{-S} \Bigg\{ d\sigma_{FJ}^{(1)} \big(1 + S^{(1)}\big) + d\sigma_{FJ}^{(2)} + \big(D - D^{(1)} - D^{(2)}\big) \Bigg\}^{\textit{Simplified notation!}}$$

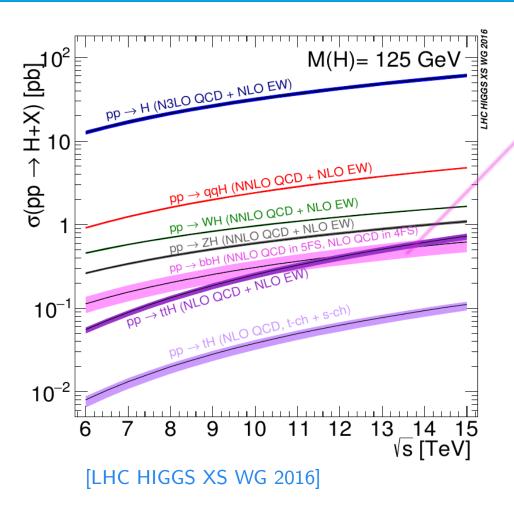

Minnlo_{PS}

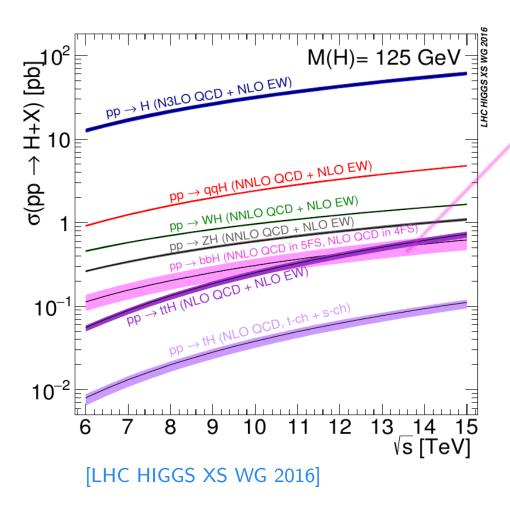

Calculation embedded in POWHEG


$$d\sigma_{F}^{MiNNLO_{PS}} = d\Phi_{FJ}\bar{B}^{MiNNLO_{PS}} \times \left\{ \Delta_{pwg}(\Lambda_{pwg}) + \int\! d\Phi_{rad}\Delta_{pwg}(p_{T,rad}) \frac{R_{FJ}}{B_{FJ}} \right\}$$

$$\bar{B}^{MiNNLO_{PS}} \sim e^{-S} \Bigg\{ d\sigma_{FJ}^{(1)} \big(1 + S^{(1)}\big) + d\sigma_{FJ}^{(2)} + \big(D - D^{(1)} - D^{(2)}\big) \Bigg\}^{\text{Simplified notation!}}$$






Although it is a subdominant channel, its cross section is large enough.

- Although it is a subdominant channel, its cross section is large enough.
- Point (y_b) Direct probe of **Higgs couplings to the bottom quark** (y_b) in production

- Although it is a subdominant channel, its cross section is large enough.
- Point (y_b) Direct probe of **Higgs couplings to the bottom quark** (y_b) in production
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM

- Although it is a subdominant channel, its cross section is large enough.
- Problem of Higgs couplings to the bottom quark (y_b) in production
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM
- bbH enters as a **background** in other **Higgs searches** (notably HH)

bbH is also interesting on how bottom quark is treated

bbH is also interesting on how bottom quark is treated

5 flavor scheme (5FS)

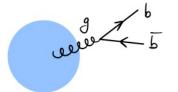
$$egin{aligned} \mathbf{m_b} &= \mathbf{0} \ \mathbf{f_b} &
eq \mathbf{0} \end{aligned}$$

4 flavor scheme (4FS)

$$\mathbf{m_b} \neq 0$$
$$\mathbf{f_b} = \mathbf{0}$$

bbH is also interesting on how bottom quark is treated

5 flavor scheme (5FS)



$$egin{aligned} \mathbf{m_b} &= \mathbf{0} \ \mathbf{f_b} &
eq \mathbf{0} \end{aligned}$$

4 flavor scheme (4FS)

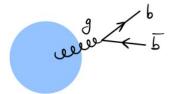
$$\mathbf{m_b} \neq 0$$
 $\mathbf{f_b} = \mathbf{0}$

- Active parton inside the proton.
- Included in the parton distribution functions (PDFs) of the proton.
- It is taken to be massless except in the Yukawa coupling

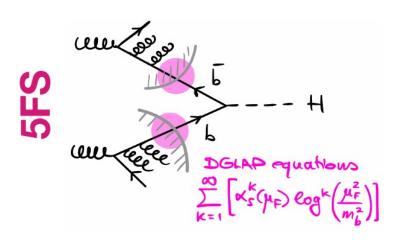
bbH is also interesting on **how bottom quark is treated**

5 flavor scheme (5FS)

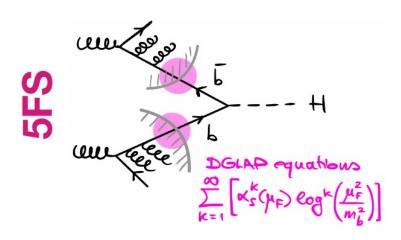
$$egin{aligned} \mathbf{m_b} &= \mathbf{0} \ \mathbf{f_b} &
eq \mathbf{0} \end{aligned}$$

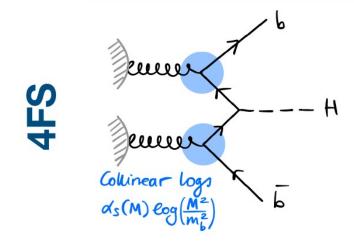


- Included in the parton distribution functions (PDFs) of the proton.
- It is taken to be massless except in the Yukawa coupling



4 flavor scheme (4FS)


$$\mathbf{m_b} \neq 0$$
$$\mathbf{f_b} = \mathbf{0}$$


- Considered as a heavy quark
- The bottom quark's contribution is neglected in the PDFs.
- A massive bottom quark is produced from gluon splitting

- Computing higher orders is easier
- The **DGLAP** evolution **resums** initial state collinear **logs** into the bottom PDFs
- Neglects power-suppressed terms of the $O(m_b/m_H)$

- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglects power-suppressed terms of the O(m_b/m_H)

- Computing **higher orders** is more **difficult** due to higher multiplicity & also due to the massive bottom
- It does not resum possibly large collinear logs
- Full kinematics of the massive bottom quark is taken into account already at LO

STATE OF THE ART:

N3LO for the total cross section in the 5FS

[Duhr, Dulat, Mistlberger (1904.09990)]

• N3LO matched to NLO in the 4FS by a prescription, namely, FONLL [Duhr, Dulat, Hirschi, Mistlberger (2004.04752)]

[Forte, Napoletano, Ubiali [1508.01529, (1607.00389)]

N3LO+ threshold resummation at N3LL in the 5FS

[AH, Chakraborty, Das, Mukherjee, Ravindran (1905.03771)]

• NLO+PS in the 4FS (MADGRAPH5_AMC@NLO framework) [Wiesemann, Frederix, Frixione, Hirschi, Maltoni, Torrielli (1409.5301)]

• NLO+PS in the 4FS using POWHEG+PYTHIA6

[Jäger, Reina, Wackeroth (1509.05843)]

NLO-QCD+PS combined with NLO-EW in the 4FS

[Pagani, Shao, Zaro (2005.10277)]

3/06/24

Higgs in bottom fusion (bbH)

STATE OF THE ART:

N3LO for the total cross section in the 5FS

[Duhr, Dulat, Mistlberger (1904.09990)]

N3LO matched to NLO in the 4FS by a prescription, namely, FONLL [Duhr, Dulat, Hirschi, Mistlberger (2004.04752)]

[Forte, Napoletano, Ubiali [1508.01529, (1607.00389)]

N3LO+ threshold resummation at N3LL in the 5FS

[AH, Chakraborty, Das, Mukherjee, Ravindran (1905.03771)]

• NLO+PS in the 4FS (MadGraph5_AMC@NLO framework) [Wiesemann, Frederix, Frixione, Hirschi, Maltoni, Torrielli (1409.5301)]

• NLO+PS in the 4FS using POWHEG+PYTHIA6

[Jäger, Reina, Wackeroth (1509.05843)]

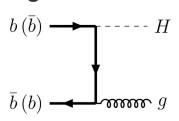
NLO-QCD+PS combined with NLO-EW in the 4FS

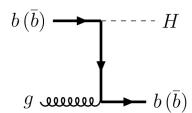
[Pagani, Shao, Zaro (2005.10277)]

THIS TALK:

We discuss the calculation of NNLO QCD matched to parton showers (NNLO+PS) for bbH in 5FS & 4FS.

3/06/24


The computation (5FS)

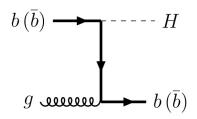

• Minnlo_{PS} $b\bar{b} \rightarrow H$ generator implemented in the Powheg-Box-Res

[T. Ježo and P. Nason (1509.09071)]

First, we implemented a **NLO+PS** generator for **HJ** production in bottom fusion using the **Powheg** method

[P. Nason (0409146), S. Alioli et al (1002.2581), S. Frixione et al (0709.2092)]

The computation (5FS)


• Minnlo_{PS} bb → H generator implemented in the Powheg-Box-Res

[T. Ježo and P. Nason (1509.09071)]

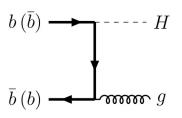
 First, we implemented a NLO+PS generator for HJ production in bottom fusion using the Powheg method

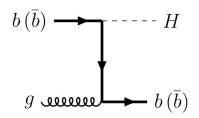
[P. Nason (0409146), S. Alioli et al (1002.2581), S. Frixione et al (0709.2092)]

- Tree-level amplitudes of the **HJ & HJJ**: **OPENLOOPS**
- **Virtual** corrections : Analytic results substantially improve the numerical performance of the code

[F. Buccioni, S. Pozzorini and M. Zoller (1710.11452), F. Buccioni et al (1907.13071)]

[R.V. Harlander et al (1007.5411)]


The computation (5FS)


• Minnlo_{ps} bb → H generator implemented in the Powheg-Box-Res

[T. Ježo and P. Nason (1509.09071)]

 First, we implemented a NLO+PS generator for HJ production in bottom fusion using the Powheg method

[P. Nason (0409146), S. Alioli et al (1002.2581), S. Frixione et al (0709.2092)]

• Tree-level amplitudes of the **HJ & HJJ**: **OPENLOOPS**

[F. Buccioni, S. Pozzorini and M. Zoller (1710.11452), F. Buccioni et al (1907.13071)]

 Virtual corrections: Analytic results substantially improve the numerical performance of the code

[R.V. Harlander et al (1007.5411)]

• In a second step, we extended the **HJ NLO+PS** implementation to **NNLO+PS accuracy** through the **MiNNLO**_{PS} method for the 2->1 case. [Monni, Nason, Re, Wiesemann, Zanderighi (1908.06987)] [Monni, Re, Wiesemann (2006.04133)]

Phenomenological Results for bbH (5FS)

The Setup

Inputs:

- Center-of-mass energy: 13 TeV at LHC.
- Higgs boson mass (m_H): **125 GeV**, Γ_H (decay width): 0 GeV.
- Default PDF: NNPDF40_nnlo_as_01180 with 5 active flavours.
- Central μ_R and μ_F scales set via **Minnlo**_{PS} method $[\mu_R \sim \mu_F \sim p_T]$.
- Yukawa coupling renormalized in MS scheme [Y_b(m_b=4.18 GeV) -> Y_b(m_H) = 2.79].

Scale Settings and Uncertainties:

• Scale uncertainities assessed through customary **7-point** μ_R and μ_F variation.

Matching to Parton Shower:

Predictions matched to parton shower using Pythia8 with leading-log (LL) accuracy.

Exclusion of Effects:

Hadronization, multi-parton interactions (MPI), and QED radiation effects are switched off.

Comparison of the total inclusive cross section of **MiNLO**' and **MiNNLO**_{PS} predictions with fixed-order results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

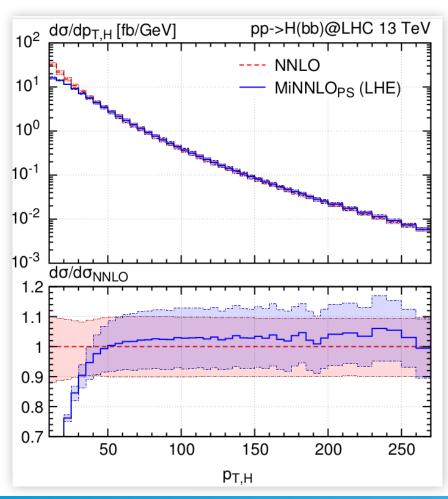
[Harlander, Liebler, Mantler (1212.3249)]

Process	NLO (SusHi)	NNLO (SusHi)	MiNLO'	MINNLO _{PS}
$bar{b} ightarrow H$	$0.646(0)^{+10.4\%}_{-10.9\%} \text{ pb}$	$0.518(2)^{+7.2\%}_{-7.5\%} \text{ pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \text{ pb}$	$0.509(8)^{+2.9\%}_{-5.3\%} \text{ pb}$

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

Comparison of the total inclusive cross section of **MiNLO**' and **MiNNLO**_{PS} predictions with fixed-order results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

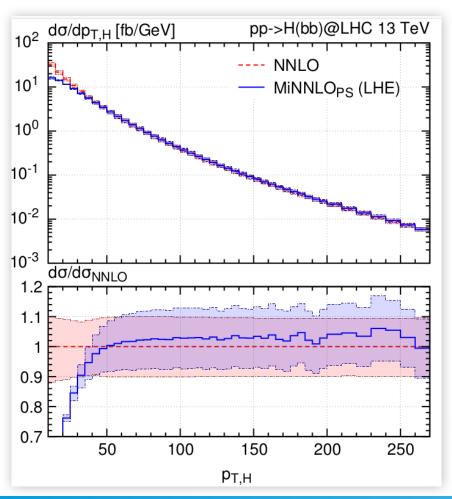
[Harlander, Liebler, Mantler (1212.3249)]


Process	NLO (SusHI)	NNLO (SusHi)	MiNLO'	MINNLO _{PS}
$oxed{bar{b} o H}$	$0.646(0)^{+10.4\%}_{-10.9\%} \text{ pb}$	$0.518(2)^{+7.2\%}_{-7.5\%} \text{ pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \text{ pb}$	$0.509(8)^{+2.9\%}_{-5.3\%} \text{ pb}$

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

- NNLO QCD corrections reduce cross section by > 10%
- Scale uncertainities significantly reduced with NNLO QCD corrections
- > Our Minnlops predictions are in agreement with NNLO QCD cross section within quoted uncertainties

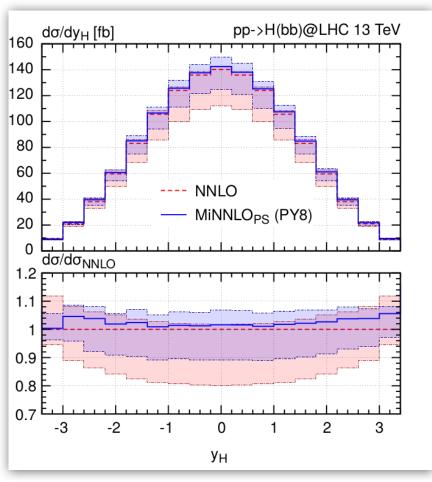
Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)


Les Houches level (LHE)

NNLO [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

Les Houches level (LHE)

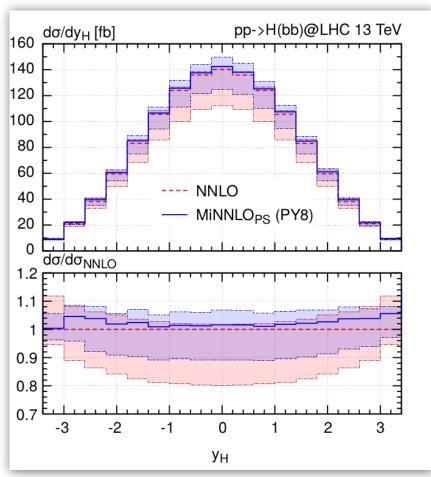

3/06/24

- Full agreement in large p_{T,H} regime with fixed-order predictions within quoted uncertainities
- Fixed-order calculations diverge for $p_{T,H} \rightarrow 0$ Minnlo_{PS} prediction remains finite

NNLO [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

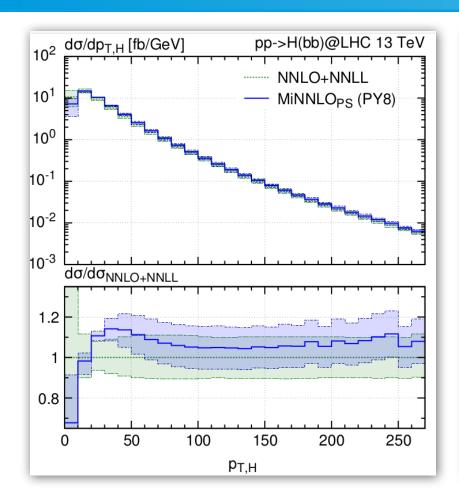
Rapidity distribution of the Higgs boson (y_H)

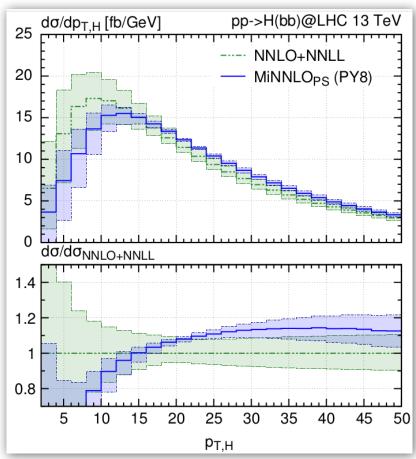
PY8 level

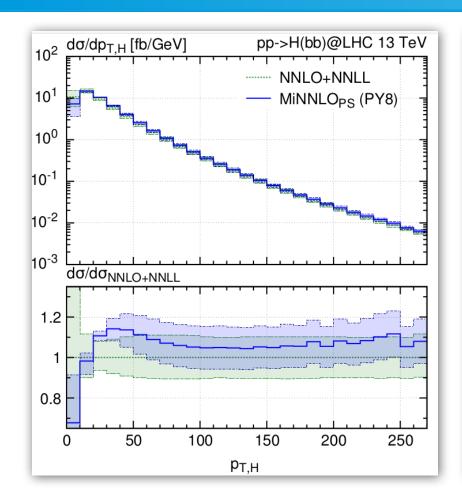


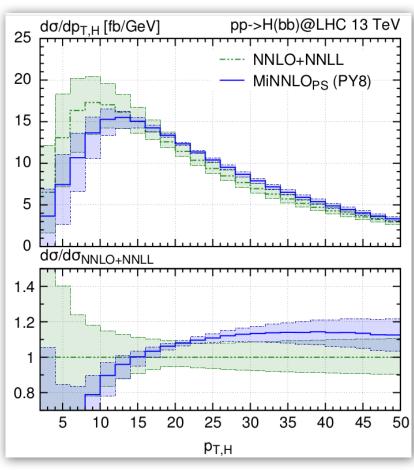
NNLO [Mondini, Williams (2102.05487)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

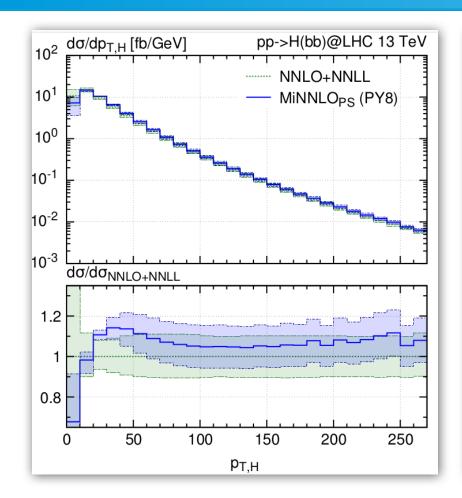
47

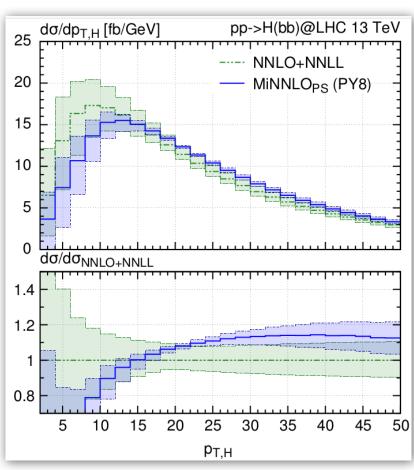

Rapidity distribution of the Higgs boson (y_H)


PY8 level

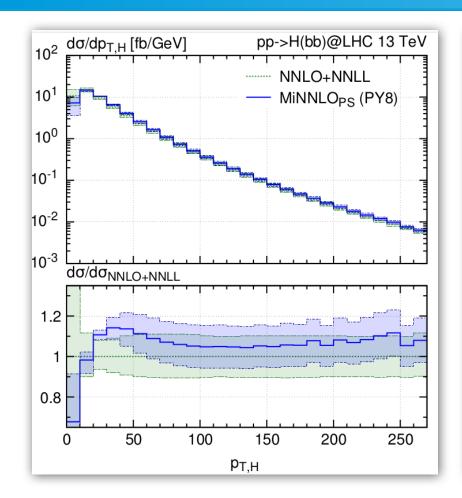

- A good agreement, both in terms of normalization and in terms of shape, between the two central predictions.
- The bands of Minnlo_{Ps} result are more symmetric & slightly smaller than the NNLO ones.

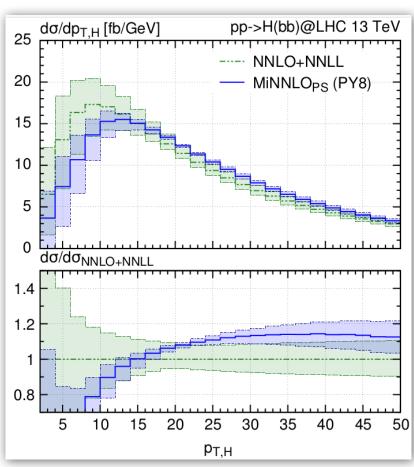

NNLO [Mondini, Williams (2102.05487)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]


NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]



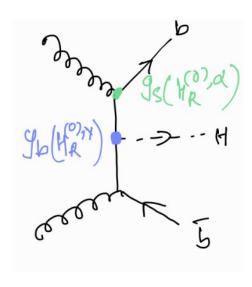
At large p_{T,H}: Minnlo_{PS} shifted 10% up, well within the given scaleuncertainty bands.


NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

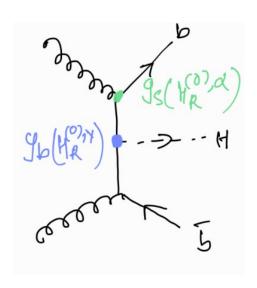


- At large p_{T,H}: Minnlo_{PS} shifted 10% up, well within the given scaleuncertainty bands.
- At small p_{T,H}:
 slightly worsen the agreement.
 Minnlo_{PS} uncertainities are
 underestimated.

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]


- At large p_{T,H}:

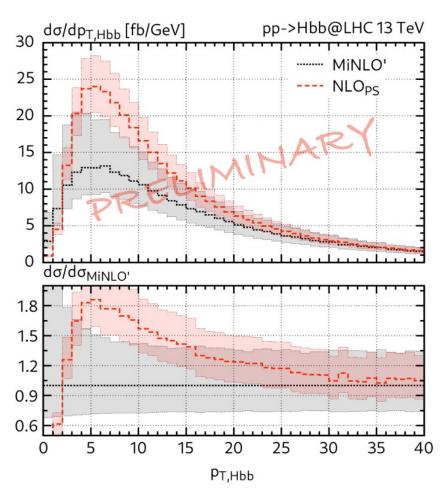
 Minnlo_{PS} shifted 10% up,


 well within the given scaleuncertainty bands.
- At small p_{T,H}: slightly worsen the agreement. Minnlo_{PS} uncertainities are underestimated.
- Massless approximation
 misses potentially relevant
 mass effects at small p_T,
 need to combine with
 massive 4FS calculation.

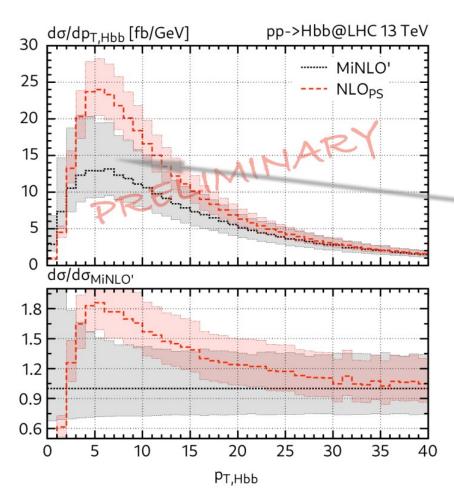
NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

We implemented **NLO+PS** for **Hbb** in **POWHEG** and compared it against Minlo obtained from a **Hbb** generator

We implemented **NLO+PS** for $Hb\overline{b}$ in **POWHEG** and compared it against Minlo' obtained from a $Hb\overline{b}$ generator



$(\mu_{ ext{ iny R}}^{(0),lpha},\mu_{ ext{ iny R}}^{(0),y})$	$ m NLO_{PS}$	MiNLO'
$(rac{H_{ m T}}{4},m_H)$	$0.381(2)^{+20.2\%}_{-15.9\%} \mathrm{pb}$	$0.277(5)^{+34.5\%}_{-27.0\%} \mathrm{pb}$
$(rac{H_{ m T}}{4},rac{H_{ m T}}{4})$	$0.406(4)^{+16.6\%}_{-14.3\%} \mathrm{pb}$	$0.315(3)^{+30.6\%}_{-27.5\%} \mathrm{pb}$


$$\frac{H_T}{4} = \frac{1}{4} \sum_{i \in \text{final}} \sqrt{m^2(i) + p_T^2(i)}$$

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

MiNLO' more than 20% less than NLO

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

- In Minlo', the large log(m_b) terms in RV & RR contributions are **not balanced**.
- We need the **double virtual** (VV) to **cancel** this quasi-collinear **divergence**.

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

Double virtual Amplitude

The **VV correction** for a **massive bottom** pair and Higgs production is not known: Approximation using the **massification procedure**: **leading mass corrections** are restored

Double virtual Amplitude

The **VV correction** for a **massive bottom** pair and Higgs production is not known: Approximation using the **massification procedure**: **leading mass corrections** are restored

Collinear poles in 5FS

Logs of m_b in 4FS

Double virtual Amplitude

The **VV correction** for a **massive bottom** pair and Higgs production is not known: Approximation using the **massification procedure**: **leading mass corrections** are restored

Logs of m_b in 4FS

$$\begin{split} \mathscr{A}^{(2)} &= \log(m_b)\text{-terms} + \mathrm{const.} + \mathscr{O}\left(\frac{m_b}{Q}\right) \\ \mathscr{F}^{(2)} \mathscr{A}^{(0)}_{m_b=0} + \mathscr{F}^{(1)} \mathscr{A}^{(1)}_{m_b=0} + \mathscr{F}^{(0)} \mathscr{A}^{(2)}_{m_b=0} \end{split}$$

Massification coefficients

Massless double virtual amplitude

Double virtual Amplitude

$(\mu_{ ext{ iny R}}^{(0),lpha},\mu_{ ext{ iny R}}^{(0),y})$	NLO_{PS}	MiNLO'	$\mathrm{MiNNLO_{PS}}\left(\mathcal{F}^{(0)}=0 ight)$
$(rac{H_{ m T}}{4},m_H)$	$0.381(2)^{+20.2\%}_{-15.9\%} \text{ pb}$	$0.277(5)^{+34.5\%}_{-27.0\%} \text{ pb}$	$0.434(1)_{-9.9\%}^{+6.4\%} \mathrm{pb}$
$(rac{H_{ m T}}{4},rac{H_{ m T}}{4})$	$0.406(4)^{+16.6\%}_{-14.3\%} \text{ pb}$	$0.315(3)^{+30.6\%}_{-27.5\%} \mathrm{pb}$	$0.443(9)^{+4.0\%}_{-8.7\%} \mathrm{pb}$

[Biello, Mazzitelli, **AS**, Wiesemann, Zanderighi (in progress)]

Predictions using recent extension of Minnlo_{Ps} for QQF

[Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Double virtual Amplitude

$(\mu_{ ext{R}}^{(0),lpha},\mu_{ ext{R}}^{(0),y})$	NLO_{PS}	MiNLO'	$MINNLO_{PS} (\mathcal{F}^{(0)} = 0)$
$(rac{H_{ m T}}{4},m_H)$	$0.381(2)^{+20.2\%}_{-15.9\%} \text{ pb}$	$0.277(5)^{+34.5\%}_{-27.0\%} \text{ pb}$	$0.434(1)_{-9.9\%}^{+6.4\%} \mathrm{pb}$
$(rac{H_{ m T}}{4},rac{H_{ m T}}{4})$	$0.406(4)_{-14.3\%}^{+16.6\%} \text{ pb}$	$0.315(3)^{+30.6\%}_{-27.5\%} \mathrm{pb}$	$0.443(9)^{+4.0\%}_{-8.7\%} \text{ pb}$

[Biello, Mazzitelli, **AS**, Wiesemann, Zanderighi (in progress)]

$$\mathcal{A}^{(2)} = \log(m_b) \text{-terms} + \text{const.} + \mathcal{O}\left(\frac{m_b}{Q}\right)$$

$$\mathcal{F}^{(2)} \mathcal{A}^{(0)}_{m_b=0} + \mathcal{F}^{(1)} \mathcal{A}^{(1)}_{m_b=0} + \mathcal{F}^{(0)} \mathcal{A}^{(2)}_{m_b=0}$$

Predictions using recent extension of Minnlops for QQF

[Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Minnlo_{Ps} with **only logarithmic** contributions in the 2-loop predicts a total cross-section **bigger** than the **NLO+PS** one.

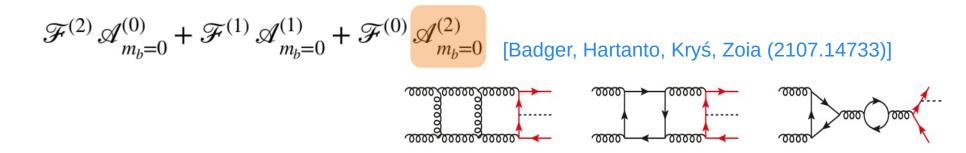
Double virtual Amplitude

$(\mu_{ ext{ iny R}}^{(0),lpha},\mu_{ ext{ iny R}}^{(0),y})$	NLO_{PS}	MiNLO'	$ ext{MiNNLO}_{ ext{PS}}\left(\mathcal{F}^{(0)}=0 ight)$
$(rac{H_{ m T}}{4},m_H)$	$0.381(2)^{+20.2\%}_{-15.9\%} \text{ pb}$	$0.277(5)^{+34.5\%}_{-27.0\%} \text{ pb}$	$0.434(1)^{+6.4\%}_{-9.9\%} \mathrm{pb}$
$(rac{H_{ m T}}{4},rac{H_{ m T}}{4})$	$0.406(4)^{+16.6\%}_{-14.3\%} \text{ pb}$	$0.315(3)^{+30.6\%}_{-27.5\%} \text{ pb}$	$0.443(9)^{+4.0\%}_{-8.7\%} \mathrm{pb}$

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

$$\mathcal{A}^{(2)} = \log(m_b)\text{-terms} + \text{const.} + \mathcal{O}\left(\frac{m_b}{Q}\right)$$
 [Mazzit
$$\mathcal{F}^{(2)}\mathcal{A}^{(0)}_{m_b=0} + \mathcal{F}^{(1)}\mathcal{A}^{(1)}_{m_b=0} + \mathcal{F}^{(0)}\mathcal{A}^{(2)}_{m_b=0}$$
 What about the 2-loop?

3/06/24


Predictions using recent extension of ${\tt Minnlo_{PS}}$ for $Q\overline{Q}F$

Minnlo_{PS} with only logarithmic contributions in the 2-loop predicts a total cross-section bigger than the NLO+PS one.

Double virtual Amplitude

We used analytic VV amplitudes for massless bottoms computed in the leading color approximation

- Evaluation of special functions through **PentagonFunctions++** [Chicherin, Sotnikov, Zoia (2110.10111)]
- C++ code interfaced with POWHEG
- We cross-checked against the Zurich implementation (Chiara Savoini)

Original massification (OM)

Original massification (OM)

- First two-loop massification in Bhabha scattering
- Extension for non-abelian theories from factorisation principles
- First check in qq
 → QQ

[Penin(hep-ph/0508127)]

[Mitov, Moch (hep-ph/0612149)]

[Czakon, Mitov, Moch (0705.1975)]

First massification of internal loops in Bhabha using the SCET formalism

[Becher, Melnikov (0704.3582)]

Recent application for QCD amplitudes

[Wang, Xia, Yang, Ye (2312.12242)]

Momentum mappings

- → In 4FS, the phase-space integration is performed with $m_b \neq 0$.
- → The massless amplitudes must be evaluated on on-shell phase-space points P_0 with $m_b = 0$.

$$\mathcal{F}^{(2)}\mathcal{A}_{m_b=0}^{(0)} + \mathcal{F}^{(1)}\mathcal{A}_{m_b=0}^{(1)} + \mathcal{F}^{(0)}\mathcal{A}_{m_b=0}^{(2)}$$

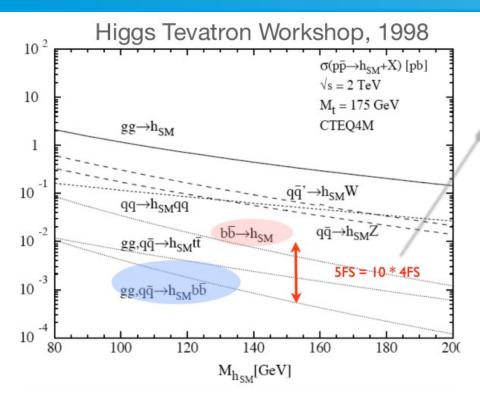
- → We need an explicit mapping of massive phase-space points P , η : P → P₀ , such that $\eta(P) = P_0 + O(m_b/m_H)$.
- Since the quark- and gluon-initiated channels have distinct leading order momentum flows, we use dedicated mappings $\eta_{q\bar{q}}$, η_{gg} for each of the channels.

Momentum mappings

- → In 4FS, the phase-space integration is performed with $m_b \neq 0$.
- → The massless amplitudes must be evaluated on on-shell phase-space points P_0 with $m_b = 0$.

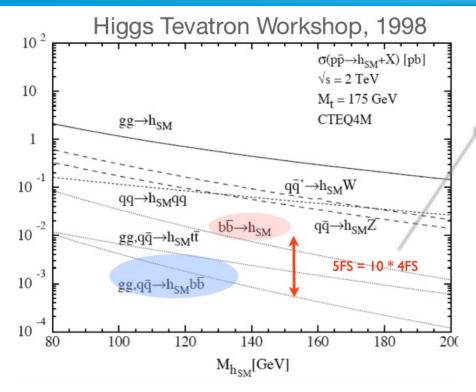
$$\mathcal{F}^{(2)}\mathcal{A}_{m_b=0}^{(0)} + \mathcal{F}^{(1)}\mathcal{A}_{m_b=0}^{(1)} + \mathcal{F}^{(0)}\mathcal{A}_{m_b=0}^{(2)}$$

- → We need an explicit mapping of massive phase-space points P , η : P → P₀ , such that $\eta(P) = P_0 + O(m_b/m_H)$.
- \Rightarrow Since the quark- and gluon-initiated channels have distinct leading order momentum flows, we use dedicated mappings $\eta_{q\bar{q}}$, η_{gg} for each of the channels.


Mapping
$$\eta: PS_{m_b} \mapsto PS_{m=0}$$

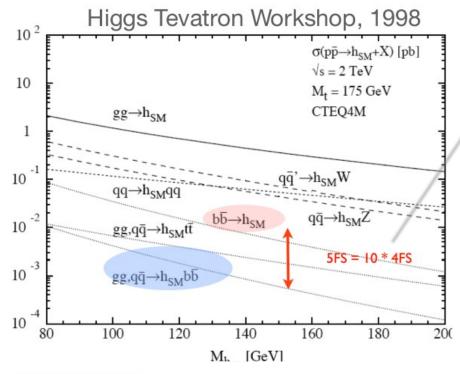
 $\eta_{q\bar{q}}$ preserves the total momentum of $b\bar{b}$ η_{gg} avoids a collinear singularity

Flavour scheme comparisons



Total cross-section

Large differences in the predictions were first observed at the **LO**: the effect of collinear resummation is extremely large.

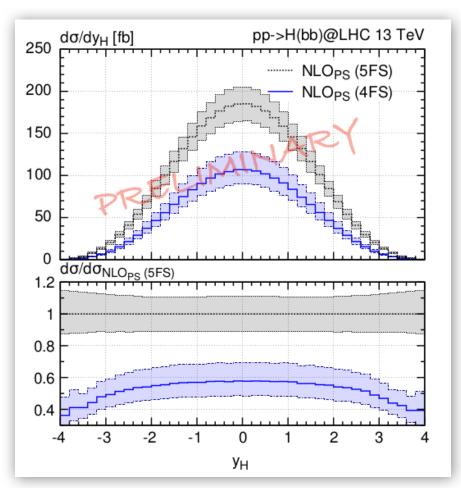

Total cross-section

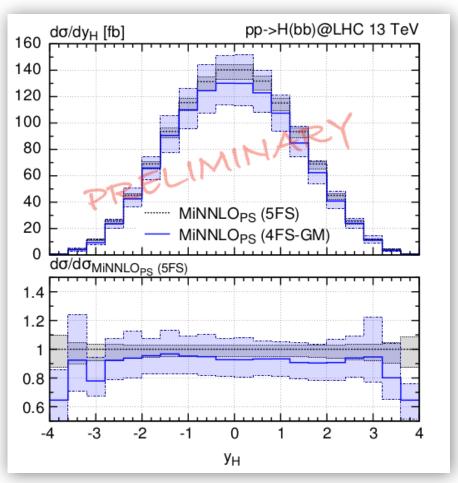
Large differences in the predictions were first observed at the **LO**: the effect of collinear resummation is extremely large.

NLO+PS (5FS)	NLO+PS (4FS)
$0.677(2)_{-11\%}^{+11\%} \text{ pb}$	$0.381(0)^{+20\%}_{-16\%} \mathrm{pb}$

Total cross-section

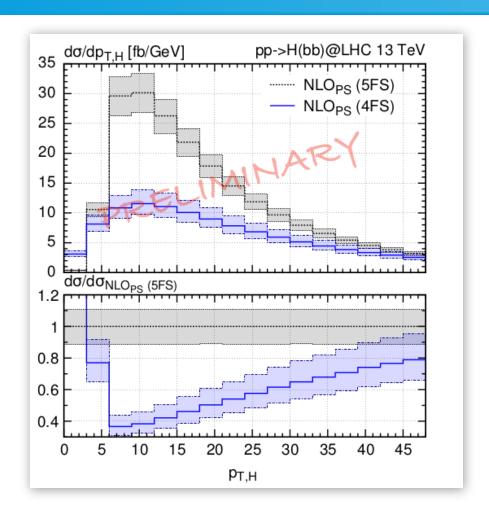
Large differences in the predictions were first observed at the **LO**: the effect of collinear resummation is extremely large.

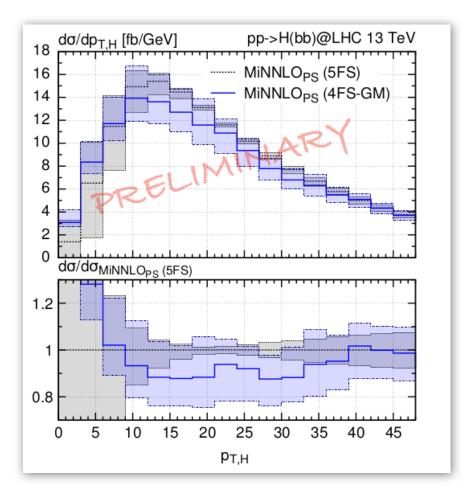

NLO+PS (5FS)	NLO+PS (4FS)
$0.677(2)_{-11\%}^{+11\%} \text{ pb}$	$0.381(0)^{+20\%}_{-16\%} \text{pb}$


NNLO: 5FS = 1.09 * 4 FS: The best prediction till today...

MINNLO _{PS} (5FS) MINNLO _{PS} (4FS- \mathscr{F}^0 =0, OM)		MINNLO _{PS} (4FS- \mathcal{F}^0 =1, OM)	MINNLO _{PS} (4FS- \mathcal{F}^0 =1, GM)
$0.509(8)^{+3.0\%}_{-5.0\%} \text{ pb}$	$0.434(1)^{+6.4\%}_{-9.9\%}$ pb	$0.460(7)^{+13.0\%}_{-13.0\%} \text{ pb}$	$0.464(9)_{-13\%}^{+14\%} \text{ pb}$

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]


Higgs rapidity



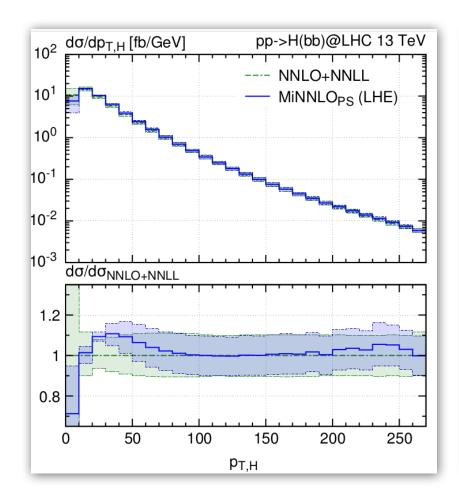
[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

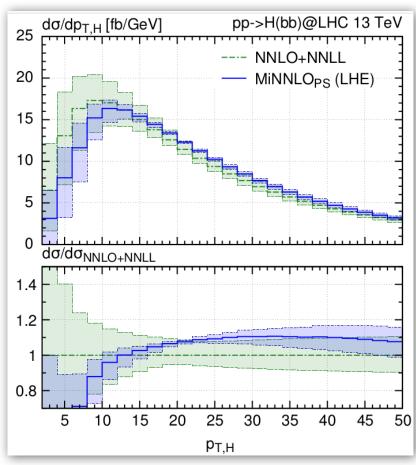
Higgs p_T spectrum

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

- NNLO+PS is required for precise & realistic LHC phenomenology.
- Discussed the first NNLO+PS computation for bbH in both 5FS & 4FS at the LHC by using MiNNLO_{PS} method.
- Extensive validation of 5FS predictions against fixed-order results from literature, showcasing consistency in relevant kinematical regions.

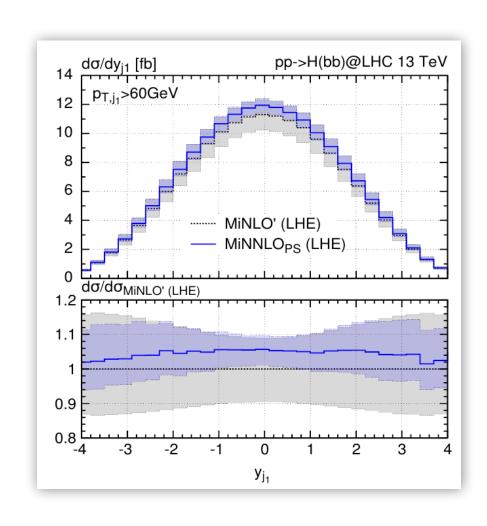
- NNLO+PS is required for precise & realistic LHC phenomenology.
- Discussed the first NNLO+PS computation for bbH in both 5FS & 4FS at the LHC by using MiNNLO_{PS} method.
- Extensive validation of 5FS predictions against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > For the 4FS, approximation of the double virtual using the massification procedure
- Theoretical tension between the 4FS & 5FS predictions seem to stabilise at NNLO.

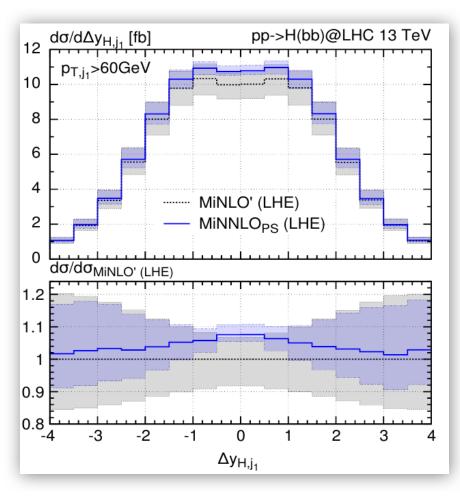

- NNLO+PS is required for precise & realistic LHC phenomenology.
- Discussed the first NNLO+PS computation for bbH in both 5FS & 4FS at the LHC by using MiNNLO_{PS} method.
- Extensive validation of 5FS predictions against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > For the 4FS, approximation of the double virtual using the massification procedure
- Theoretical tension between the 4FS & 5FS predictions seem to stabilise at NNLO.
- Future directions include combination of full 4FS-5FS at NNLO+PS and also b-tagging of the Minnlops events.


- NNLO+PS is required for precise & realistic LHC phenomenology.
- Discussed the first NNLO+PS computation for bbH in both 5FS & 4FS at the LHC by using MiNNLO_{PS} method.
- Extensive validation of 5FS predictions against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > For the 4FS, approximation of the double virtual using the massification procedure
- Theoretical tension between the 4FS & 5FS predictions seem to stabilise at NNLO.
- Future directions include combination of full 4FS-5FS at NNLO+PS and also b-tagging of the Minnlops events.

Backup slides.....

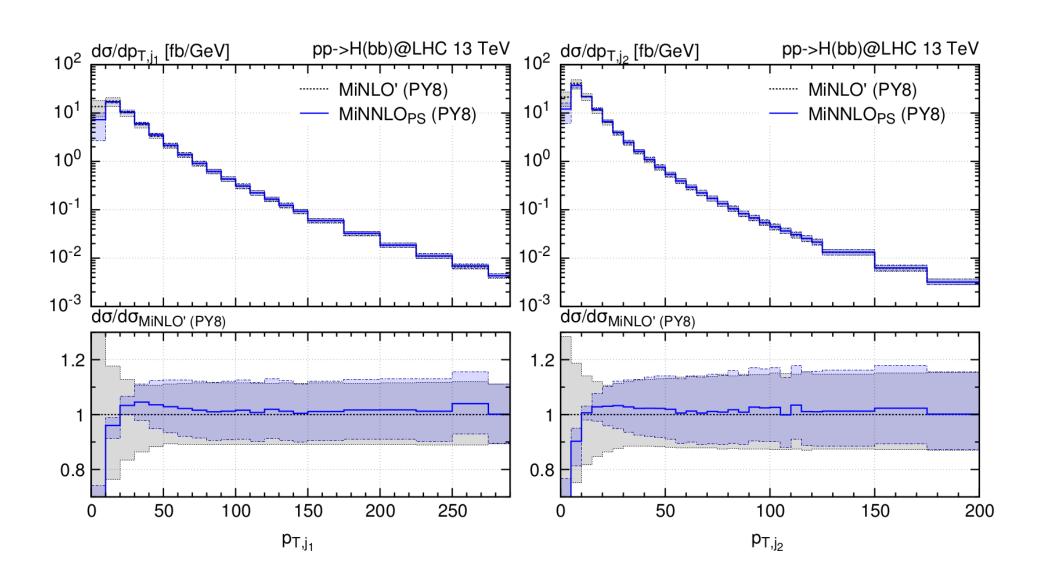
Comparison to NNLO+NNLL





At high $p_{T,H}$: they coincide again

At small p_{T,H}: Acceptable agreement


Comparison of Minlo' & Minnlops

- Very similar shapes for MiNLO' & MiNNLO_{PS} results
- MiNLO' & MiNNLO_{PS}: fully consistent within the quoted scale uncertainties

Comparison of Minlo' & Minnlops

- → In 4FS, the phase-space integration is performed with $m_b \neq 0$.
- \rightarrow The massless amplitudes must be evaluated on on-shell phase-space points P₀ with m_b = 0.

$$\mathcal{F}^{(2)}\mathcal{A}_{m_b=0}^{(0)} + \mathcal{F}^{(1)}\mathcal{A}_{m_b=0}^{(1)} + \mathcal{F}^{(0)}\mathcal{A}_{m_b=0}^{(2)}$$

- → We need an explicit mapping of massive phase-space points P , η : P → P₀ , such that $\eta(P) = P_0 + O(m_b/m_H)$.
- \rightarrow We have to ensure that η does not cause amplitudes to be evaluated near their singularities.
- → Since the quark- and gluon-initiated channels have distinct leading order momentum flows, we use dedicated mappings $\eta_{q\bar{q}}$, η_{gg} for each of the channels.

For $\eta_{q\bar{q}}$, we perform the simultaneous light-cone decomposition of the massive bottom and anti-bottom momenta p_b and $p_{\bar{b}}$, respectively, and determine the massless momenta \hat{p}_b and $\hat{p}_{\bar{b}}$ as

$$\hat{p}_{b} = \alpha^{+} p_{b} - \alpha^{-} p_{\bar{b}}, \qquad \alpha^{\pm} = \frac{1}{2} \left(1 \pm \left(1 - 4 \frac{m_{b}^{2}}{m_{b\bar{b}}} \right)^{-\frac{1}{2}} \right)$$

$$\hat{p}_{\bar{b}} = \alpha^{+} p_{\bar{b}} - \alpha^{-} p_{b},$$

which preserves the total momentum $\hat{p}_{b\bar{b}} \equiv p_{b\bar{b}}$ of the $b\bar{b}$ system and prevents a collinear $g \rightarrow b\bar{b}$ splitting in the quark channel.

The mapping $\eta_{q\bar{q}}$ is minimal in the sense that only the bottom-quark momenta are modified.

An side effect of the mapping $\eta_{q\bar{q}}$ (when applied in the gluon channel) is that p_b or $p_{\bar{b}}$ can become collinear to the initial state momenta p_1 or p_2 when the $b\bar{b}$ pair is produced at the threshold.

In the gluon channel this introduces a collinear singularity, and we therefore construct η_{gg} such that it avoids these configurations.

First, we set the massless momenta to

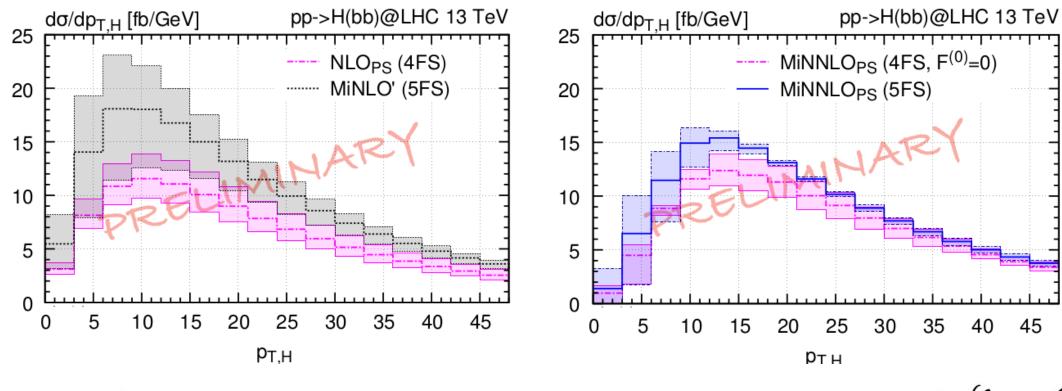
$$\hat{p}_x = p_x + \left(\sqrt{1 - \frac{m_b^2 n_x^2}{(p_x \cdot n_x)^2}} - 1\right) \frac{(p_x \cdot n_x)}{n_x^2} \ n_x \quad \text{with } x \in \{b, \bar{b}\}$$

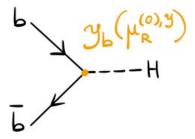
$$n_x = p_x - p_1 \frac{(p_2 \cdot p_x)}{(p_1 \cdot p_2)} - p_2 \frac{(p_1 \cdot p_x)}{(p_1 \cdot p_2)},$$

where n_x are transverse to both p1 and p2.

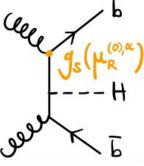
Then to restore momentum conservation we consider two options:

1. We redistribute $\Delta p_{b\bar{b}} = p_b + p_{\bar{b}} - \hat{p}_b - \hat{p}_{\bar{b}}$ into \hat{p}_1 and \hat{p}_2 , such that $\hat{p}_{12} = \hat{p}_1 + \hat{p}_2 = p_1 + p_2 - \Delta p_{b\bar{b}}$, by performing a Lorentz boost on p_1 and p_2 in the direction $-\hat{p}_{12}$ followed by rescaling with $\sqrt{\hat{p}_{12}^2/p_{12}^2}$


OR


2. we redistribute $\Delta p_{b\bar{b}}$ into the Higgs momentum instead.

Cross-section details (4FS)


K _R	K_F	MiNLO'	MINNLO _{PS} (Orig. Mass.)	MINNLO _{PS} (Gen. Mass.)
1	1	0.277(0)	0.460(7)	0.464(9)
1	2	0.268(8)	0.465(2)	0.470(7)
2	1	0.192(5)	0.403(0)	0.408(1)
2	2	0.195(5)	0.407(0)	0.412(1)
1	$\frac{1}{2}$	0.258(9)	0.457(8)	0.466(0)
$\frac{1}{2}$	1	0.382(7)	0.520(7)	0.527(4)
$\frac{1}{2}$	$\frac{1}{2}$	0.375(3)	0.519(3)	0.525(1)
		$0.277(0)^{+34\%}_{-27\%} \mathrm{pb}$	$0.460(7)^{+13\%}_{-13\%} \mathrm{pb}$	$0.464(9)^{+14\%}_{-13\%} pb$

Before the two-loop | 4FS

)	$(\mu_{\mathtt{R}}^{(0),\alpha},\mu_{\mathtt{R}}^{(0),y})$	NLO _{PS} (5FS)	NLO _{PS} (4FS)	MINNLO _{PS} (5FS)	$ MINNLO_{PS} (4FS, \mathscr{F}^{(0)} = 0) $
Ī	$\left(\frac{1}{4}H_T, m_H\right)$	$0.646(0)^{+10.4\%}_{-10.9\%} \text{ pb}$	$0.381(2)^{+20.2\%}_{-15.9\%}$ pb	$0.509(8)^{+2.9\%}_{-5.3\%}$ pb	$0.434(1)^{+6.4\%}_{-10.0\%}$ pb

FONLL matching

FONLL matches the flavour schemes

$$\sigma^{FONNL} = \sigma^{4FS} + \sigma^{5FS}$$
 – double couting.

For a consistent subtraction, we have to express the two cross-sections in terms of the same α_s and PDFs.

Currently, the flavour matching for bbH is performed at

$$FONNL_C := N^3LO_{5FS} \oplus NLO_{4FS}$$
.