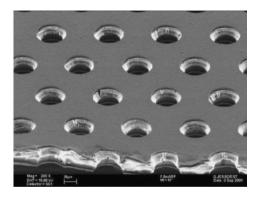
GEMs at the FTD

<u>Tim Schüttler</u>^{1,2}, Markus Ball^{1,2}, Yevgen Bilevych², Philip Hauer^{1,2}, Dmitri Schaab², Bernhard Ketzer^{1,2}

 1 Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn - 2 Forschungs- und Technologiezentrum Detektorphysik, Universität Bonn

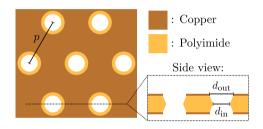
FTD Electronics & Applications Seminar 19th May 2025

OUTLINE

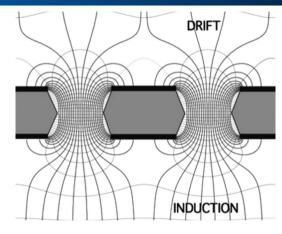

- Overview GEMs
- Detailed production steps
- Quality assurance
- Latest results

[pictures by V. Lannert]

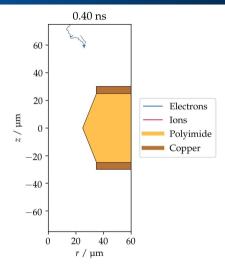
1. Overview on GEMs


GEMS IN GENERAL

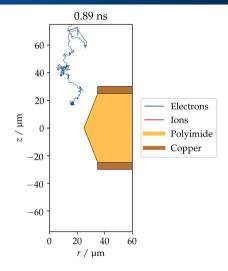
[F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, 2016]


- ➤ **G**as **E**lectron **M**ultiplier (GEM)
- Variant of the Micro Pattern Gaseous Detectors (MPGDs)
- Developed by Fabio Sauli in 1996
- $ightharpoonup 50\,\mu m$ polyimide, coated with $5\,\mu m$ copper
- Polyimide has interesting properties:
 - ightharpoonup Dielectric strength $\geq 200 \, \frac{\text{V}}{\text{\mu m}}$
 - ightharpoonup specific resistivity $= 8 \cdot 10^{15} \, \Omega \, \mathrm{m}$
- Manufactured using photolithography

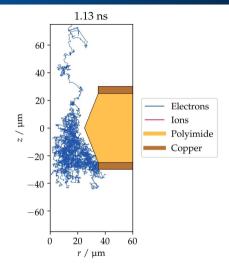
GEMS IN GENERAL

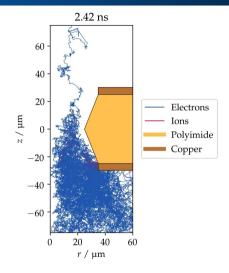

[P. Hauer, PhD thesis, 2022]

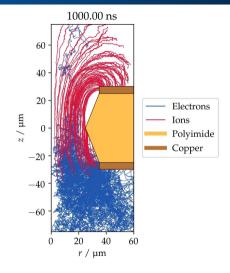
- ➤ Gas Electron Multiplier (GEM)
- ➤ Variant of the *Micro Pattern Gaseous*Detectors (MPGDs)
- Developed by Fabio Sauli in 1996
- $ightharpoonup 50\,\mu\mathrm{m}$ polyimide, coated with $5\,\mu\mathrm{m}$ copper
- Polyimide has interesting properties:
 - ightharpoonup Dielectric strength $\geq 200\,rac{
 m V}{
 m \mu m}$
 - ightharpoonup specific resistivity $= 8 \cdot 10^{15} \, \Omega \, \mathrm{m}$
- ➤ Manufactured using photolithography



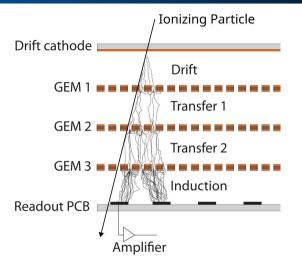
[F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, 2016]


- Microscopic holes are etched into the foil (50 μm to 70 μm)
- ightharpoonup Applying voltage \Rightarrow Gas amplification happens within holes due to strong $ec{E}$ -field
- ➤ Gain depends exponentially on voltage, but ranges from 5 20
- Moles typically arranged hexagonally, pitch $p=140\,\mu\mathrm{m}$ (standard pitch)
- $\Rightarrow \approx 60$ holes per ${\rm mm^2},$ making the foil partially transparent


- Microscopic holes are etched into the foil (50 μm to 70 μm)
- Applying voltage \Rightarrow Gas amplification happens within holes due to strong \vec{E} -field
- ➤ Gain depends exponentially on voltage, but ranges from 5 20
- Moles typically arranged hexagonally, pitch $p=140\,\mu\mathrm{m}$ (standard pitch)
- $\Rightarrow \approx 60$ holes per ${\rm mm^2},$ making the foil partially transparent


- Microscopic holes are etched into the foil (50 μm to 70 μm)
- Applying voltage \Rightarrow Gas amplification happens within holes due to strong \vec{E} -field
- Gain depends exponentially on voltage, but ranges from 5 - 20
- Moles typically arranged hexagonally, pitch $p=140\,\mu\mathrm{m}$ (standard pitch)
- $\Rightarrow \approx 60 \text{ holes per mm}^2,$ making the foil partially transparent

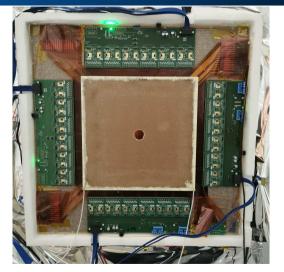
- Microscopic holes are etched into the foil (50 μm to 70 μm)
- Applying voltage \Rightarrow Gas amplification happens within holes due to strong \vec{E} -field
- Gain depends exponentially on voltage, but ranges from 5 - 20
- Moles typically arranged hexagonally, pitch $p=140\,\mu\mathrm{m}$ (standard pitch)
- $\Rightarrow \approx 60 \text{ holes per mm}^2,$ making the foil partially transparent



- Microscopic holes are etched into the foil (50 μm to 70 μm)
- ightharpoonup Applying voltage \Rightarrow Gas amplification happens within holes due to strong \vec{E} -field
- Gain depends exponentially on voltage, but ranges from 5 - 20
- Moles typically arranged hexagonally, pitch $p=140\,\mu\mathrm{m}$ (standard pitch)
- $\Rightarrow \approx 60 \text{ holes per mm}^2,$ making the foil partially transparent

- Microscopic holes are etched into the foil (50 μm to 70 μm)
- Applying voltage \Rightarrow Gas amplification happens within holes due to strong \vec{E} -field
- Gain depends exponentially on voltage, but ranges from 5 - 20
- Moles typically arranged hexagonally, pitch $p=140\,\mu\mathrm{m}$ (standard pitch)
- $\Rightarrow \approx 60$ holes per ${\rm mm^2},$ making the foil partially transparent

EXAMPLES OF GEM DETECTORS

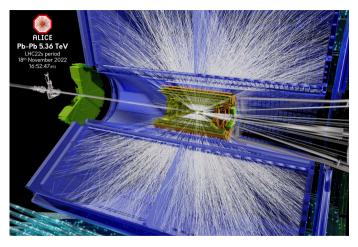


Prominent examples:

- Triple GEM tracking detectors (e.g. AMBER / COMPASS / INSIGHT)
- GEM time projection chamber (TPC) (e.g. ALICE / FOPI / etc.)

[Colaleo et al., CMS TDR for the Muon Endcap GEM Upgrade, 2015], modified

Examples of GEM Detectors

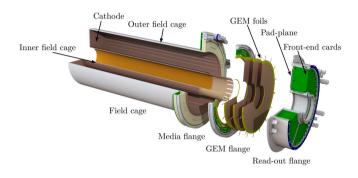


Prominent examples:

- Triple GEM tracking detectors (e.g. AMBER / COMPASS / INSIGHT)
- ➤ GEM time projection chamber (TPC) (e.g. ALICE / FOPI / etc.)

[AG Ketzer, 2022]

Examples of GEM Detectors



[https://cds.cern.ch/record/2841865]

Prominent examples:

- Triple GEM tracking detectors (e.g. AMBER / COMPASS / INSIGHT)
- ➤ GEM time projection chamber (TPC) (e.g. ALICE / FOPI / etc.)

Examples of GEM Detectors

[Berger et al., A Large Ungated TPC with GEM Amplification, 2017]

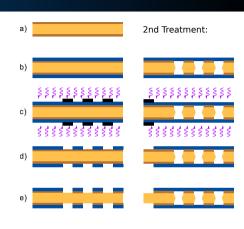
Prominent examples:

- Triple GEM tracking detectors (e.g. AMBER / COMPASS / INSIGHT)
- GEM time projection chamber (TPC) (e.g. ALICE / FOPI / etc.)

GEM PRODUCTION STEPS

Seven steps to produce a GEM:

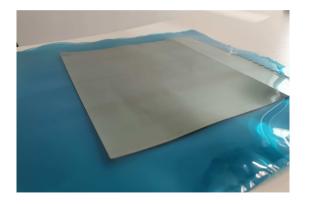
- Lamination with photoresist (b)
- Exposition with UV light (c)
- Photoresist development (d)
- Copper etching (e)
- Stripping of photoresist (f)
- Ohromium etching (f)
- Polyimide etching (g)



GEM PRODUCTION STEPS

Seven steps to produce a GEM:

- Lamination with photoresist (b)
- Exposition with UV light (c)
- Photoresist development (d)
- Copper etching (e)
- Stripping of photoresist (f)
- Ohromium etching (f)
- Polyimide etching (g)



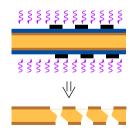
2. Detailed production steps

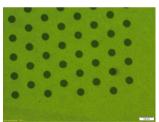
STEP 1-3: PATTERNING OF PHOTORESIST

Lamination

- ightharpoonup Use negative dry film photoresist (15 µm)
- ➤ Laminating both sides simultaneously

RLM419p by Bungard

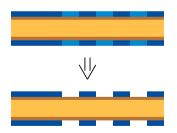



STEP 1-3: PATTERNING OF PHOTORESIST

Exposition

- ➤ Using UV LEDs from both sides
- ➤ Crucial step: alignment of top and bottom mask
 - ⇒ Align masks once under microscope and glue them together (pocket)

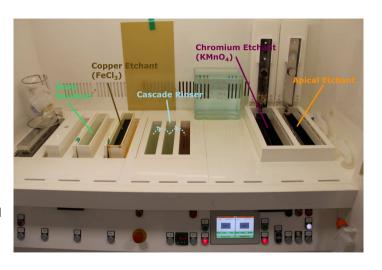
Aligned masks:



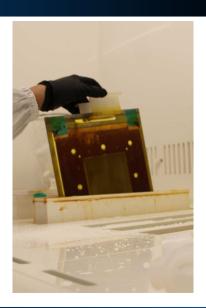
Exp 3040 LED by Bungard

STEP 1-3: PATTERNING OF PHOTORESIST

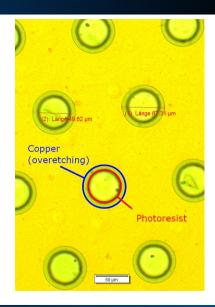
Development


- Dissolve photoresist which has not been exposed
- Performed in beaker with Na₂CO₃-based solution

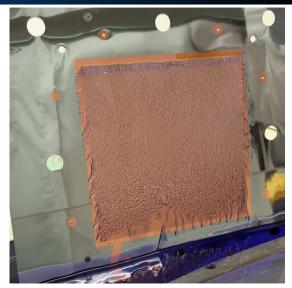
WETBENCH


- ➤ Installed in ISO 7 of cleanroom
- Especially designed/built for GEM production
 - 3 stainless steel beaker
 - > 3 PP beaker (non-heated)
 - cascade rinser
 - generously designed exhaust

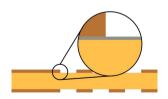
STEP 4: COPPER ETCHING

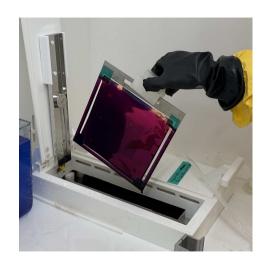

- Etch accessible copper through patterned photoresist
- Performed in beaker with FeCl₃-based solution
- **Etches isotropically:**
 - Copper below photoresist is partially etched away, creating larger diameter

STEP 4: COPPER ETCHING


- Etch accessible copper through patterned photoresist
- Performed in beaker with FeCl₃-based solution
- > Etches isotropically:
 - Copper below photoresist is partially etched away, creating larger diameter

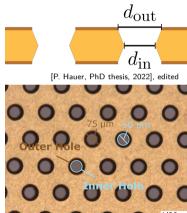
STEP 5: STRIPPING OF PHOTORESIST




- Mixture of Aceton and Ethanol
 - > Photoresist peels off
 - Does not dissolve photoresist
- Sometimes help with small brush to get rid of photoresist

STEP 6: CHROMIUM ETCHING

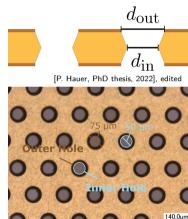
- Adhesive layer between copper and polyimide
 - > Typically only a few nm thick
- ➤ Etching performed in beaker with KMnO₄-based solution
- > Then neutralize with aqueous solution


Tim Schüttler 19^{th} May 2025 GEMs at the FTD 10/20

STEP 7: POLYIMIDE ETCHING

- Strong and really dangerous chemicals involved
- ➤ Heated up
- Afterwards: Outer and inner holes visible under microscope
 - > Outer diameter: $d_{\rm out} \approx 75 \, \mu {\rm m}$
 - Inner diameter: $d_{\rm in} \approx 50 \, \mu {\rm m}$

Cross Section:

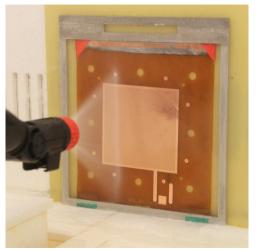


STEP 7: POLYIMIDE ETCHING

- Strong and really dangerous chemicals involved
- ➤ Heated up
- Afterwards: Outer and inner holes visible under microscope
 - > Outer diameter: $d_{\rm out} \approx 75 \, \mu {\rm m}$
 - Inner diameter: $d_{\rm in} \approx 50 \, \mu {\rm m}$

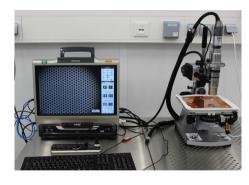
Cross Section:

STEP 8: 2ND TREATMENT & CLEANING


Repeat steps 1 to 6 for electrode patterning and clean using high-pressure DI water

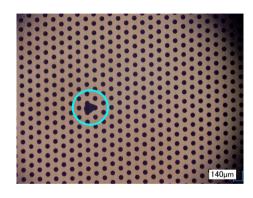
STEP 8: 2ND TREATMENT & CLEANING

Repeat steps 1 to 6 for electrode patterning and clean using high-pressure DI water



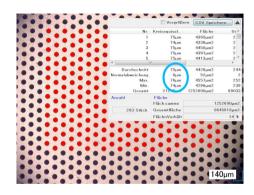
3. Quality assurance

High quality of GEMs is key for **optimal** and **longterm** detector performance


- ⇒ Quality Assurance (QA) is very important
- ➤ The previous process (e.g. ALICE, CMS, COMPASS) includes:
- Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - size/uniformity of inner and outer holes
- ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired

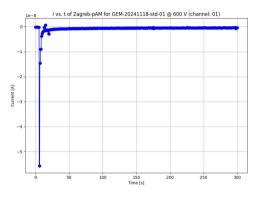
Digital microscope Keyence VHX 2000

High quality of GEMs is key for **optimal** and **longterm** detector performance


- ⇒ Quality Assurance (QA) is very important
 - ➤ The previous process (e.g. ALICE, CMS, COMPASS) includes:
 - Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - > size/uniformity of inner and outer holes
 - ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired

Microscope picture of a defect (connected holes)

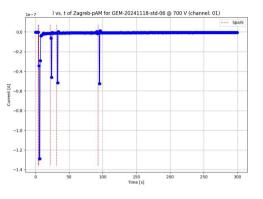
High quality of GEMs is key for **optimal** and **longterm** detector performance


- ⇒ Quality Assurance (QA) is very important
 - ➤ The previous process (e.g. ALICE, CMS, COMPASS) includes:
- Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - size/uniformity of inner and outer holes
- ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired

Microscope picture with measurement of outer hole diameter (copper)

High quality of GEMs is key for **optimal** and **longterm** detector performance

- ⇒ Quality Assurance (QA) is very important
 - ➤ The previous process (e.g. ALICE, CMS, COMPASS) includes:
 - Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - size/uniformity of inner and outer holes
 - ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired



Measurement of leakage current $\approx 0.4\,\mathrm{nA}$ @ $600\,\mathrm{V}$

High quality of GEMs is key for **optimal** and **longterm** detector performance

- ⇒ Quality Assurance (QA) is very important
 - ➤ The previous process (e.g. ALICE, CMS, COMPASS) includes:
 - Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - > size/uniformity of inner and outer holes
 - ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired

QUALITY ASSURANCE OF GEMS

Measurement of leakage current $\approx 0.5\,\mathrm{nA}$ (with 8 sparks) @ $700\,\mathrm{V}$

High quality of GEMs is key for **optimal** and **longterm** detector performance

- ⇒ Quality Assurance (QA) is very important
- ➤ The previous process (e.g. ALICE, CMS, COMPASS) includes:
- Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - size/uniformity of inner and outer holes
- ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired

Tim Schüttler 19th May 2025 GEMs at the FTD 13/20

DESIGN OF THE SMALL SDS

Requirements for smaller design:

- ightharpoonup sufficiently large for uncut $10 \times 10 \, \mathrm{cm^2}$ GEMs ($\Rightarrow \approx 20 \times 20 \, \mathrm{cm^2}$)
- easy & cost-effective to manufacture (3d printed)
- simple, non-invasive HV connection
- clean room suitable
- ightharpoonup low leakage current ($I_{leak} < 25 \, pA$)
- camera mount in the middle above the GEM

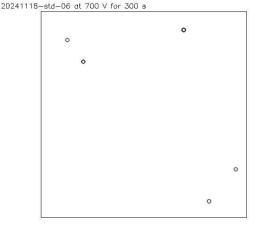
rendered image of the SDS design (section view)

Tim Schüttler 19th May 2025 GEMs at the FTD 14/20

DESIGN OF THE SMALL SDS

> Requirements for smaller design:

- > sufficiently large for uncut $10 \times 10 \text{ cm}^2$ GEMs $(\Rightarrow \approx 20 \times 20 \text{ cm}^2)$
- easy & cost-effective to manufacture (3d printed)
- > simple, non-invasive HV connection
- > clean room suitable
- ightharpoonup low leakage current ($I_{leak} < 25 \, pA$)
- camera mount in the middle above the GEM



finished Spark Detection System (SDS) with a GFM-foil inside

Tim Schüttler 19th May 2025 GEMs at the FTD 14/20

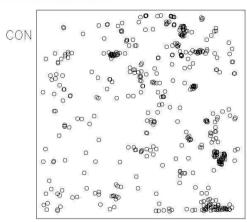
EXAMPLE SDS MEASUREMENTS

- Software makes use of python and library OpenCV for ease of use
- Primarily threshold scan, then SimpleBlobDetector()
- Save time, position and brightness of spark in text file
- Draw spark on sparkmap
- Test shows: efficiency $\epsilon > (95.5 \pm 0.7) \%$

Sparkmap of typical GEM

EXAMPLE SDS MEASUREMENTS

- Software makes use of python and library OpenCV for ease of use
- Primarily threshold scan, then SimpleBlobDetector()
- Save time, position and brightness of spark in text file
- Draw spark on sparkmap
- Test shows: efficiency $\epsilon \geq (95.5 \pm 0.7) \%$

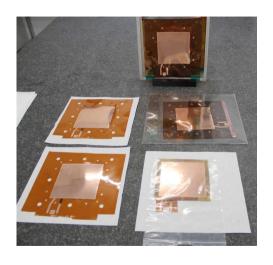

20230613-STD-01 at 600 V for 300 s CON

Sparkmap of GEM with crinkle \rightarrow bad

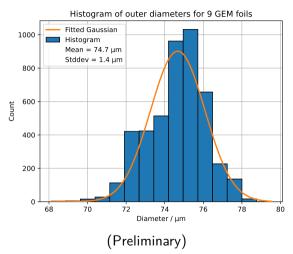
EXAMPLE SDS MEASUREMENTS

- Software makes use of python and library OpenCV for ease of use
- Primarily threshold scan, then SimpleBlobDetector()
- Save time, position and brightness of spark in text file
- Draw spark on sparkmap
- Test shows: efficiency $\epsilon > (95.5 \pm 0.7) \%$

GEM 2023-08-28-02 at 600 V for 600s


Sparkmap of very bad GEM

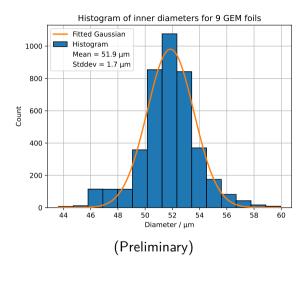
15/20


4. Present results

PRODUCED FOILS

- Took some time to produce high-quality foils reliably
- Electrical QA requirements (from previous experiences):
 - $I_{\text{leak}} \le 2 \, \text{nA}$ (stored in dry-cabinet)
 - ightharpoonup little to no discharges even $\ensuremath{\text{@}} \geq 500\,\ensuremath{\,\mathrm{V}}$
- Most foils directly fulfill this condition ($\approx \frac{9}{10}$)
- Remaining ones can be retreated until they meet requirements

HOLE STATISTICS

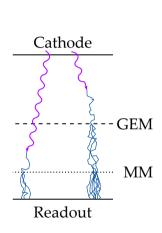


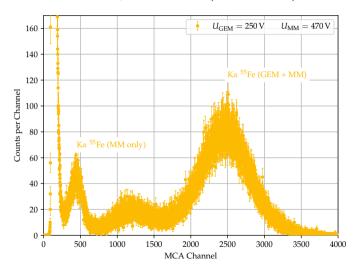
Measured hole diameters across 9 recently produced foils

- ➤ Outer:
- > Across different foils: $(74.7 \pm 1.4) \, \mu \mathrm{m}$
- Within one foil (exemplary): $(73.8 \pm 1.3) \, \mu \text{m}$
- > Inner:
- > Across different foils: $(51.9 \pm 1.7) \, \mu m$
- > Within one foil (exemplary): $(51.4 \pm 1.4) \, \mu \mathrm{m}$

Tim Schüttler 19th May 2025 GEMs at the FTD 17/20

HOLE STATISTICS

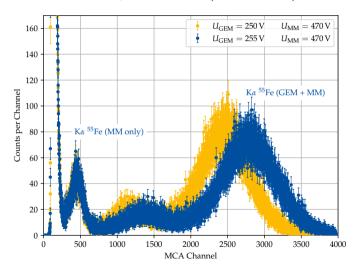

Measured hole diameters across 9 recently produced foils


- ➤ Outer:
- ightharpoonup Across different foils: $(74.7\pm1.4)\,\mu\mathrm{m}$
- Within one foil (exemplary): $(73.8 \pm 1.3) \, \mu \text{m}$
- > Inner:
- ightharpoonup Across different foils: $(51.9 \pm 1.7) \, \mu m$
- > Within one foil (exemplary): $(51.4 \pm 1.4) \, \mu \mathrm{m}$

Tim Schüttler 19th May 2025 GEMs at the FTD 17/20

FIRST FE55 SPECTRA

Performed a test measurement with a hybrid detector (MM + GEM)



Tim Schüttler 19th May 2025 GEMs at the FTD 18/20

FIRST FE55 SPECTRA

Performed a test measurement with a hybrid detector (MM + GEM)

Tim Schüttler 19th May 2025 GEMs at the FTD 18/20

Summary

- > Successful implementation of a process to produce $10 \times 10\,\mathrm{cm^2}$ GEM foils for research and development purposes (other possible use cases, e.g. flex PCs)
- Investigated the achievable quality of the foils using optical and electrical QA
- Most produced foils are (very) good if none are lost due to handling issues

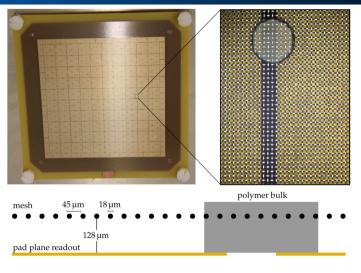
Outlook

- ➤ Look into improvements to make the process more efficient or reliable
- ➤ Try different pitches, hole sizes and geometries (e.g. using MLA) to investigate important characteristics (IBF, energy resolution, gain)

Tim Schüttler 19th May 2025 GEMs at the FTD 19/20

Thanks for your attention!

Tim Schüttler - schuettler@hiskp.uni-bonn.de

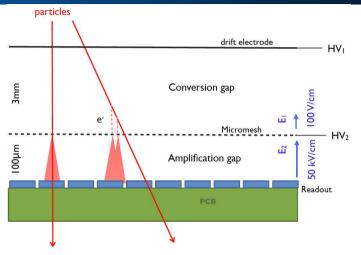

Markus Ball, Yevgen Bilevych, Philip Hauer, Shania Müller, Dmitri Schaab, Bernhard Ketzer

Tim Schüttler 19th May 2025 GEMs at the FTD 20/20

Backup

Tim Schüttler 19th May 2025 GEMs at the FTD 21/20

MICROMEGAS



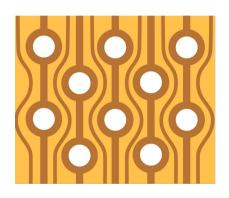
- Micro-Mesh Gaseous Structure
- Another variant of MPGDs
- ➤ Invented in 1996

[P. Hauer, PhD thesis, 2022]

Tim Schüttler 19th May 2025 GEMs at the FTD 22/20

MICROMEGAS

- Micro-Mesh Gaseous Structure
- Another variant of MPGDs
- ➤ Invented in 1996


[Jeanneau et al., Performances and ageing study of resistive-anodes Micromegas detectors for

HL-LHC environment, 2012], edited

Tim Schüttler 19th May 2025 GEMs at the FTD 22/20

Cobra GEM

- Additional amplification stage at the bottom side of the GEM
- ightharpoonup Highly reduced IBF (< 1 %)
- 2nd treatment with perfectly aligned mask
- ➤ So far only small samples ($\approx 2 \, \text{cm} \times 2 \, \text{cm}$)
- Production of larger samples could be possible with MLA

STEP 1: LAMINATION

- \triangleright Use negative dry film photoresist (15 µm)
- Up to now: lamination of each side individually

RLM419p by Bungard

Tim Schüttler 19th May 2025 GEMs at the FTD 24/20

STEP 4: COPPER ETCHING - SPRINT

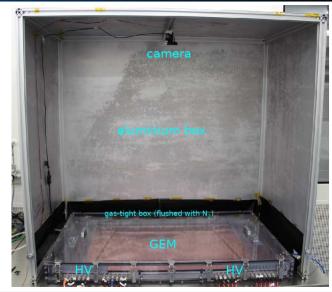
- Etch accessible copper through holes in photoresist
- Performed in beaker with FeCl₃-based solution
- Expected overetching
 - Copper below photoresist is partially etched away
- Investigated different approaches
 - Spraying of chemical did not work properly (Sprint machine)

Sprint 3000 by Bungard

Tim Schüttler 19th May 2025 GEMs at the FTD 25/20

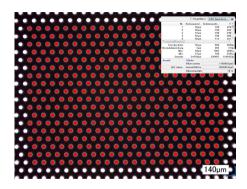
STEP 5: STRIPPING OF PHOTORESIST

- Mixture of Aceton and Ethanol
 - > Photoresist peels off
 - Does not dissolve photoresist
- Sometimes help with small brush to get rid of photoresist


Tim Schüttler 19th May 2025 GEMs at the FTD 26/20

Large SDS used for ALICE GEM QA

- Working principle and crucial features:
 - camera observes electric discharges
 - aluminum box needs to be dark/lightproof
 - shielding for leakage current measurement


see:

DOI 10.1088/1742-6596/1498/1/012056

Tim Schüttler 19th May 2025 GEMs at the FTD 27/20

QUALITY ASSURANCE OF GEMS

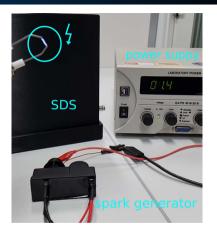
Microscope picture with measurement of inner holes (polyimide)

* see: DOI 10.1088/1748-0221/12/01/C01081

High quality of GEMs is key for **optimal** and **longterm** detector performance.

- ⇒ Quality Assurance (QA) is very important
 - ➤ The previous process (e.g. ALICE*, CMS, COMPASS) includes:
 - Optical QA:
 - number and size of defects (visual inspection by eye and microscope)
 - size/uniformity of inner and outer holes
 - ➤ Electrical QA:
 - > leakage current measurements
 - high-voltage stability
- spatially resolved detection of electric discharges is desired

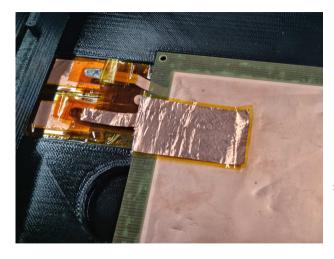
CAMERA USED


- Used camera: Logitech HD C270:
 - > 0.9 MP (1280 \times 720 pixel)
 - > up to 30 FPS
 - ➤ USB-A 2.0
 - easily attachable
 - > affordable (≤ 20 €)

 $source:\ https://www.logitech.com/de-de/products/webcams/c270-hd-webcam.960-001063.html$

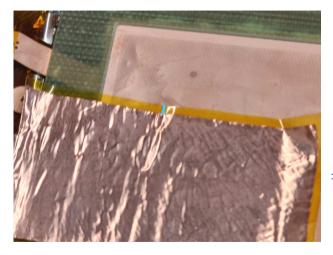
Tim Schüttler 19th May 2025 GEMs at the FTD 29/20

EFFICIENCY TESTING SETUP


- Use spark generator to create short, stable periodic HV pulses
- Imitate a sparking GEM by creating sparks on top of it
- Count missed sparks by calculating the time difference between detected sparks and find outliers
- Calculate efficiency at different spark rates (vary spark frequency with power supply)

⇒ Test the efficiency of the system in different exceptional cases

Tim Schüttler 19th May 2025 GEMs at the FTD 30/20


EFFICIENCY TESTING SETUP - ADDENDUM

- How to get sparks on top of the GFM:
 - > piece of copper tape
 - insulate with polyimide
 - apply HV between copper tape and topside of the GEM
- → Comparable to real spark inside GEM hole

Tim Schüttler 19th May 2025 GEMs at the FTD 31/20

EFFICIENCY TESTING SETUP - ADDENDUM

- How to get sparks on top of the GFM:
 - piece of copper tape
 - > insulate with polyimide
 - apply HV between copper tape and topside of the GEM
- Comparable to real spark inside GEM hole

Tim Schüttler 19th May 2025 GEMs at the FTD 31/20

EFFICIENCY EVALUATION

spark frequency	efficiency $arepsilon$
10.49 Hz	$(96.6 \pm 0.5) \%$
6.33 Hz	$(95.5 \pm 0.7) \%$
3.36 Hz	$(97.2^{+0.7}_{-0.8})\%$

- Note: different errors for \pm due to error propagation
 - ➤ based on: "Review of Particle Physics", PDG, Zvla, P. A. and others, 2020

- Satisfying efficiency, even for high spark rates
 - ➤ 10.5 Hz ⇒ typically only 2 empty frames between sparks
 - close to limit of the current system
- Efficiency certainly high enough for regular use cases

Tim Schüttler 19th May 2025 GEMs at the FTD 32/20