BO5 – A novel approach to the baryon spectrum based on stochastic methods

NuMeriOS Retreat

September 16, 2025 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich Project members: Ulf-G. Meißner (PL), Deborah Rönchen (PL), Oleh Luniachek (PhD student)

Supported by DFG, MKW NRW

HPC support by Jülich Supercomputing Centre

Baryon spectroscopy

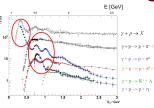
Extract the spectrum of excited states from experimental data

 \rightarrow What are those bumps?

Abs|S11| (KΛ→KΛ

- energy & angular momentum excitations of baryons (resonances)?
- conventional 3 quark baryons or more complicated objects?

1500



■ Theoretical challenge: build a model that includes as many constraints from symmetries of nature as possible

$$T_{\mu\nu}(q, \rho', W) = V_{\mu\nu}(q, \rho', W) + \sum_{\kappa} \int_{0}^{\infty} d\rho \, \rho^{2} \, V_{\mu\kappa}(q, \rho, W) G_{\kappa}(\rho, W) \, T_{\kappa\nu}(\rho, \rho', W)$$

150

source: FLSA: data: FLSA, JLab, MAMI

- Numerical challenge: large number of free model parameters. heterogeneous data base, uncertainty quantification, ...
 - \rightarrow use HMC and Bayesian inference to sample parameter space
 - → determine resonance uncertainties from samples (means, standard deviation)

Bayesian parameter estimation with HMC

Bayes':

$$\log \pi(\theta \mid D) \propto \log L(D \mid \theta) + \log \pi(\theta) = -\frac{1}{2}\chi^{2}(D, \theta) + \log \pi(\theta)$$

 $D\sim \mathsf{data}$

 $\theta \sim$ vector of model parameters, dim \sim 900 (assumed gaussian likelihood)

Hamilton's equations:

with
$$H = \frac{1}{2}p^{T}M^{-1}p + \frac{1}{2}\chi^{2}(\theta)$$

$$\frac{d\theta}{dt} = M^{-1}p \ , \ \frac{dp}{dt} = \nabla_{\theta_i}(\frac{1}{2}\chi^2(\theta) - \log \pi(\theta))$$

leapfrog to propose updates for the Markov chain \to need numerical gradient of $\chi^2(\theta)$ (costly in high-dim parameter space)

Idea: reevaluate gradient only every *n*-th step?

Mass matrix M (parameters are highly correlated)

$$\rightarrow$$
 ($M=1$,) $M=diag(Cov(\theta))$ or $M=Cov(\theta)$ (from warm-up phase, Euclidean HMC)?

or beyond "vanilla" HMC: Riemannian kinetic energy?

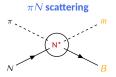
 $lue{}$ Integration time: o hand-tuned to achieve a good acceptance rate

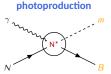
or beyond "vanilla" HMC: No-U-Turn sampler

Further challenges specific to our problem

(Besides the costly gradient)

Diverse data base, different production mechanisms:





partially inconsistent data, very different quantity & quality

- \rightarrow weights in χ^2 to account for limited # of data points
 - (so far: adjusted as needed to achieve a good description of all data)
- Identify pathological solutions: good χ^2 but "unatural" amplitudes (sharp rises/drops, wiggles)
 - \rightarrow penalties?
- Systematic uncertainties:. model uncertainties as, e.g, # of resonance states
 - → Bayesian evidence for model w/ vs. w/o a certain state
 - → full HMC run for model w/o state?
- Practical challenge: hand-coded HMC in Fortran 90

