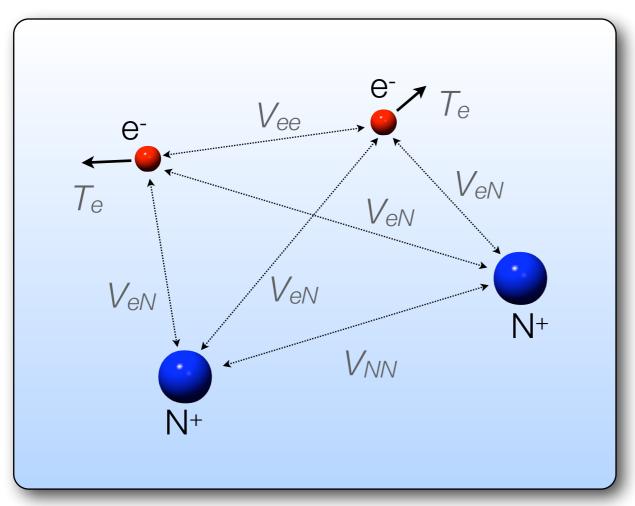
Introduction to Coupled Cluster Theory

Frank Neese

MPI für Kohlenforschung Kaiser-Wilhelm Platz 1 Mülheim an der Ruhr

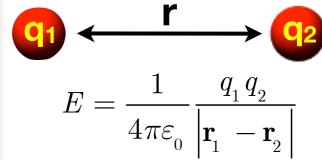
The Molecular Schrödinger Equation



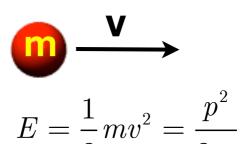
$$E = T_{\scriptscriptstyle e} + T_{\scriptscriptstyle N} + V_{\scriptscriptstyle eN} + V_{\scriptscriptstyle NN} + V_{\scriptscriptstyle ee}$$

Only 2 Laws

1. Coulomb Law



2. Kinetic Energy



The Molecular Hamiltonian

The Hamiltonian in first quantization:

$$\widehat{H} = \underbrace{\frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{|\mathbf{R}_A - \mathbf{R}_B|}}_{V_{NN}} + \underbrace{\frac{1}{2} \sum_{i,A} \nabla_i^2 - \sum_{i,A} \frac{Z_A}{|\mathbf{R}_A - \mathbf{r}_i|}}_{\widehat{T}_e} + \underbrace{\frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}}_{\widehat{V}_{eN}}$$

Introduce a complete one-particle basis {p} and write the second-quantization version:

$$\widehat{H} = V_{NN} + \underbrace{\sum_{pq} \underbrace{\langle p | \widehat{h} | q \rangle}_{=h_{pq}} E_p^q + \frac{1}{2} \sum_{pqrs} (pq|rs) \{ E_r^s E_p^q - \delta_{rq} E_p^s \}}_{\widehat{g}}$$

 $E_p^q = q_{\alpha}^+ p_{\alpha} + q_{\beta}^+ p_{\beta}$ Replacement operator (generator of unitary group)

$$h_{pq} = \int p(\mathbf{x})\hat{h}(\mathbf{x})q(\mathbf{x})d\mathbf{x}$$
 1-electron Integrals $\mathbf{x}_i = (\mathbf{r}_i, \sigma_i)$ $g_{pqrs} = (pq|rs) = \int \int \frac{p(\mathbf{x}_1)q(\mathbf{x}_1)r(\mathbf{x}_2)s(\mathbf{x}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}d\mathbf{x}_1d\mathbf{x}_2$ 2-electron Integrals

Ansatz: The Hartree-Fock Method

The **Hartree-Fock** (HF) method is obtain by using the Variational principle with an Ansatz ffor a non-interacting N-particle wavefunction ("independent particle model")

 Ψ = simple product of one-electron functions.

Satisfy the Pauli principle → "Slater determinant"

$$\Psi_{HF}(\mathbf{x}_{1}, \dots \mathbf{x}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\mathbf{x}_{1}) & \psi_{1}(\mathbf{x}_{2}) & \cdots & \psi_{1}(\mathbf{x}_{N}) \\ \psi_{2}(\mathbf{x}_{1}) & \psi_{2}(\mathbf{x}_{2}) & \cdots & \psi_{2}(\mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{N}(\mathbf{x}_{1}) & \psi_{N}(\mathbf{x}_{2}) & \cdots & \psi_{N}(\mathbf{x}_{N}) \end{vmatrix}$$

"Auxiliary" one-electron functions = "orbitals". They are the objects to be varied.

Variation under orthonormality constraint → Hartree-Fock equations

$$\psi_i = occupied spin orbitals (i = 1...N)$$

$$\psi_a = unoccpied \ spin \ orbitals \ (a = N + 1..\infty)$$

Hartree-Fock Equations

$$\underbrace{\left\{ \underbrace{\hat{h}}_{one-electron} + \sum_{j} \underbrace{(jj| \circledast \circledast)}_{Coulomb} - \underbrace{(j \circledast | j \circledast)}_{Exchange} \right\}}_{Fock-Operator \hat{F}} \psi_{i}(\mathbf{x}) = \varepsilon_{i} \psi_{i}(\mathbf{x})$$

$$F_{pq} = \langle p | \hat{F} | q \rangle = h_{pq} + \sum_{j} \underbrace{(jj|pq)}_{Coulomb} - \underbrace{(jp|jq)}_{Exchange}$$

Convention: i,j,k,l = occupied orbitals (in reference determinant)

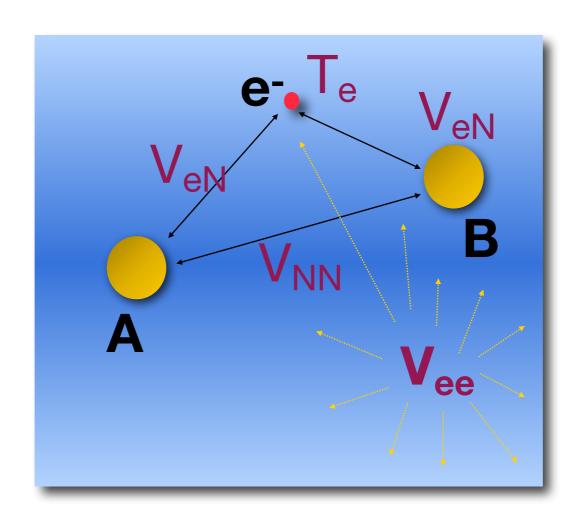
a,b,c,d = unoccupied orbitals (in reference determinant)

p,q,r,s= general orbitals

SCF-condition: $F_{ai} = 0$

Tedious, but standard methodology

Interpretation of the Hartree-Fock Model



Each electron moves in the field created by the nuclei and the average field created by the other electrons ("mean field model") - this also called the "Hartree-Fock sea" or "Fermi vacuum"

How Good is Hartree-Fock Theory?

Consider a Hartree-Fock calculation on the Neon atom (10 electrons)

```
Exact HF Energy : -128.547 Eh
Exact Experimental Energy : -129.056 Eh
```

(NOTE: exact experimental energy= sum of the ten ionization potentials)

Good News: HF recovers 99.6% of the exact energy (after subtraction of relativistic effects ~99.8%)

Bad News: The conversion factors work against us!

0.2% = 319 kcal/mol error! In chemistry one aims at 1 kcal/mol accuracy.

→ Accurate quantum chemsitry is the struggle for the last 0.2%

Correlation Energy: $E_C = E_{exact} - E_{HF}$ (< 0)

Beyond Hartree-Fock: The Exact Solution

Introduce a multideterminantal Ansatz and use the variational principle.

Let us assume that we have a complete set of N-electron expansion functions {Φ} available. Then the exact wavefunction can be written as:

$$\Psi(\mathbf{x}_{_{1}},...,\mathbf{x}_{_{N}})=\sum_{I}C_{_{I}}\Phi_{_{I}}(\mathbf{x}_{_{1}},...,\mathbf{x}_{_{N}})$$

Variational Principle

$$E[\mathbf{C}] = \frac{\left\langle \Psi \mid H \mid \Psi \right\rangle}{\left\langle \Psi \mid \Psi \right\rangle} = \frac{\sum_{IJ} C_I C_J \left\langle \Phi_I \mid H \mid \Phi_J \right\rangle}{\sum_{IJ} C_I C_J \left\langle \Phi_I \mid \Phi_J \right\rangle} \qquad \qquad \frac{\partial E}{\partial C_K} = 0 \qquad \text{(for all K)}$$

$$\begin{aligned} \mathbf{HC} &= E\mathbf{SC} \\ H_{IJ} &= \left\langle \Phi_I \mid H \mid \Phi_J \right\rangle \\ S_{IJ} &= \left\langle \Phi_I \mid \Phi_J \right\rangle \end{aligned}$$

DONE!

The lowest Eigenvalue is the exact solution

What are the Expansion Functions?

Replace, 1,2,...N spin-orbitals at the time in the HF determinant (Full-Cl Expansion):

$$\Psi = C_0 \Phi_{HF} + \sum_{ia} C_a^i \Phi_i^a + \left(\frac{1}{2!}\right)^2 \sum_{ijab} C_{ab}^{ij} \Phi_{ij}^{ab} + \left(\frac{1}{3!}\right)^2 \sum_{ijkabc} C_{abc}^{ijk} \Phi_{ijk}^{abc} + \dots + \left(n - fold \ exc.\right)$$
Singles
Doubles
Triples

Excited Determinants:

$$\begin{split} & \Phi_{HF} = \left| \psi_{1} ... \psi_{i} ... \psi_{j} ... \psi_{k} ... \psi_{N} \right| \\ & \Phi_{i}^{a} = \left| \psi_{1} ... \psi_{a} ... \psi_{j} ... \psi_{k} ... \psi_{N} \right| \\ & \Phi_{ij}^{ab} = \left| \psi_{1} ... \psi_{a} ... \psi_{b} ... \psi_{k} ... \psi_{N} \right| \\ & \Phi_{ijk}^{abc} = \left| \psi_{1} ... \psi_{a} ... \psi_{b} ... \psi_{c} ... \psi_{N} \right| \end{split}$$

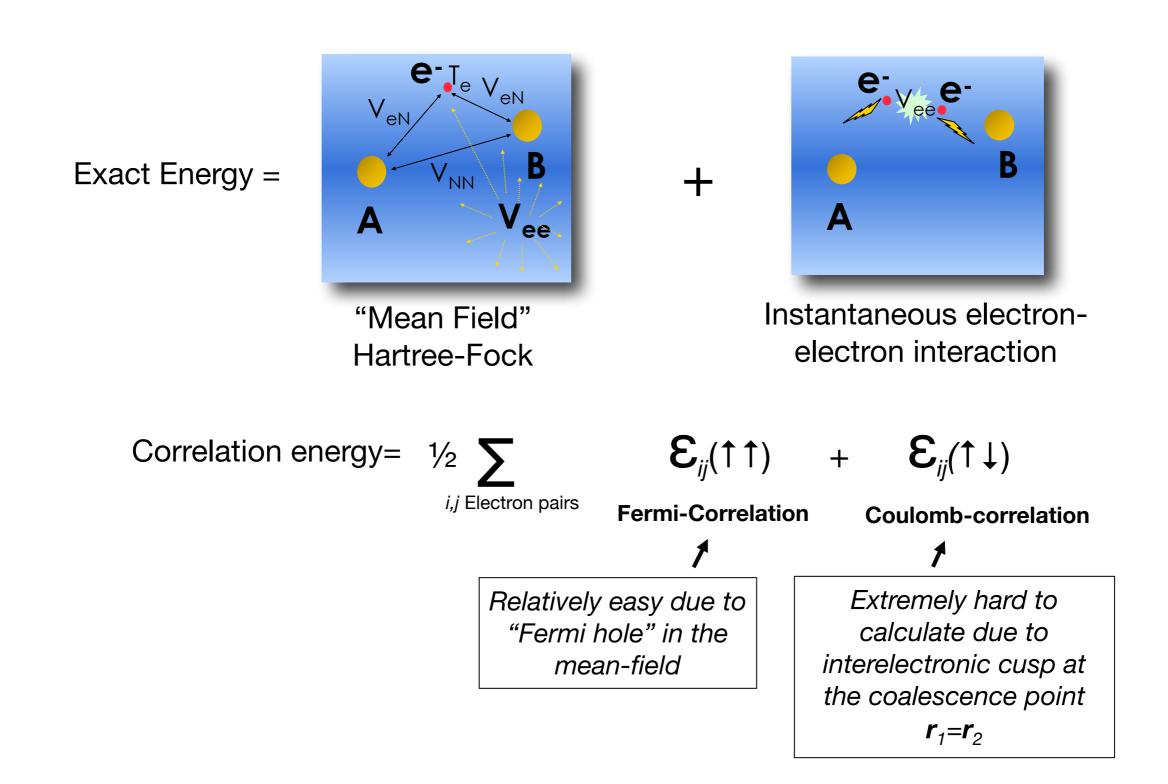
orthonormal: **S**=**1**.

Note:if any two upper or any two lower indices are equal the determinant is zero! (Pauli principle!)

Permutation Symmetry:

$$\Phi^{ab}_{ij} = -\Phi^{ba}_{ij} = -\Phi^{ab}_{ji} = \Phi^{ba}_{ji}$$
 $C^{ij}_{ab} = -C^{ij}_{ba} = -C^{ji}_{ab} = C^{ji}_{ba}$

Components of the Exact Energy



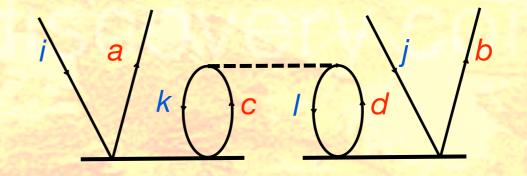
Orbital Energy

c —

b ———

a -

 $k \longrightarrow j$ $j \longrightarrow j$ $j \longrightarrow j$



$$rac{1}{2}P_{ij}P_{ab}\sum_{m{klcd}}\left\langle m{kl}\mid\mid m{cd}
ight
angle t_{ac}^{ik}t_{db}^{lj}$$

$$\left|\Psi\right\rangle = \left|\Psi_{0}\right\rangle + \sum_{\textit{ia}} C_{\textit{a}}^{\textit{i}} \left|\Psi_{\textit{i}}^{\textit{a}}\right\rangle + \frac{1}{4} \sum_{\textit{ijab}} C_{\textit{ab}}^{\textit{ij}} \left|\Psi_{\textit{ij}}^{\textit{ab}}\right\rangle + \frac{1}{36} \sum_{\textit{ijkabc}} C_{\textit{abc}}^{\textit{ijk}} \left|\Psi_{\textit{ijk}}^{\textit{abc}}\right\rangle + \dots$$

Size of the Full-CI Matrix

Let us determine how many terms we have in the expansion if we assume N occupied and V=M-N (M=size of the basis) virtual HF orbitals at our disposal. For excitation level n:

Number of ways to choose n out of N electrons to be excited: $\begin{bmatrix} N \\ n \end{bmatrix}$

Number of ways to choose n out of V acceptor orbitals (virtual): $\begin{bmatrix} V \\ n \end{bmatrix}$

Combine the two and sum over all excitation levels *n* up to *N*:

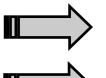
$$N_{\det}(FCI) = \sum_{n=1}^{N} \binom{N}{n} \binom{V}{n} = \sum_{n=1}^{N} \frac{N!}{n!(N-n)!} \frac{(M-N)!}{n!(M-N-n)!} = \binom{M}{N}$$

Using Stirling's formula: $k! \approx k^{k+\frac{1}{2}} \sqrt{2\pi + 1} \exp(-k)$

$$\left(\begin{array}{c} M \\ N \end{array} \right) \approx \sqrt{\frac{M}{\left(2\pi+1\right)N(M-N)}} \left(\frac{M-N}{N} \right)^{N} \left(\frac{M}{M-N} \right)^{M}$$

Full CI: An Example

n	Number of Determinants	Example: N=10, M=50
1	400	
2	35100	
3	1185600	
4	19191900	
5	16581806	
6	806059800	
7	2237227200	
8	3460710825	
9	2734388800	
10	847660528	
Σ	10272278170 ~ 1010	



The size of the full CI matrix is HUGE even for moderately sized systems!

About 10¹⁰ IS DOABLE today. Beyond that there are approximation (e.g. **Project C2**)

Accurate Solutions

THE JOURNAL OF CHEMICAL PHYSICS 125, 144108 (2006)

W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions

Amir Karton, Elena Rabinovich, and Jan M. L. Martin^{a)}
Department of Organic Chemistry, Weizmann Institute of Science, IL-76100 Rehovot, Israel

Branko Ruscic

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 7 July 2006; accepted 10 August 2006; published online 12 October 2006)

insurmountably higher than that of the earlier W3 theory, while performance is markedly superior. Our W4 atomization energies for a number of key species are in excellent agreement (better than 0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol) with the latest experimental data obtained from Active Thermochemical Tables. Lower-cost variants are proposed: ... meaning the (non-relativistic) Schrödinger equation is solved to an accuracy of 0.0001

... meaning the (non-relativistic) Schrödinger equation is solved to an accuracy of 0.0001 Eh which is ~99.9999% or ~1 part in 106!

... For **really** small systems (1-6 *electrons*), we can today reach "crazy accuracy", e.g. Nakatsuji calculated the H₂- ground state energy to be **-0.597 139 063 123 405 074 834 134 096 025 974 142 a.u.** (36 significant digits!)

Decomposition of the Exact Correlation Energy

Start from the Schrödinger equation

$$\hat{H}_{BO}\Psi = E\Psi$$

Insert the full CI expansion

$$\hat{H}_{BO}(\Phi_{HF} + \sum_{ia} C_a^i \Phi_i^a + (\frac{1}{2!})^2 \sum_{ijab} C_{ab}^{ij} \Phi_{ij}^{ab} + \ldots) = E(C_0 \Phi_{HF} + \sum_{ia} C_a^i \Phi_i^a + (\frac{1}{2!})^2 \sum_{ijab} C_{ab}^{ij} \Phi_{ij}^{ab} + \ldots)$$

Multiply with the HF function from the left:

$$\underbrace{\left\langle \Phi_{\mathit{HF}} \mid \hat{H}_{\mathit{BO}} \mid \Phi_{\mathit{HF}} \right\rangle}_{E_{\mathit{HF}}} + \sum_{ia} C_{i}^{a} \underbrace{\left\langle \Phi_{\mathit{HF}} \mid \hat{H}_{\mathit{BO}} \mid \Phi_{i}^{a} \right\rangle}_{F_{ia}} + \frac{1}{4} \sum_{ijab} C_{ij}^{ab} \underbrace{\left\langle \Phi_{\mathit{HF}} \mid \hat{H}_{\mathit{BO}} \mid \Phi_{ij}^{ab} \right\rangle}_{\left\langle ij \mid \mid ab \right\rangle}$$

$$=E\left(\underbrace{\left\langle \Phi_{\mathit{HF}} \mid \Phi_{\mathit{HF}} \right\rangle}_{1} + \sum_{ia} C_{i}^{a} \left\langle \Phi_{\mathit{HF}} \mid \Phi_{i}^{a} \right\rangle + \frac{1}{4} \sum_{ijab} C_{ij}^{ab} \left\langle \Phi_{\mathit{HF}} \mid \Phi_{ij}^{ab} \right\rangle \right)$$

Thus:

$$\frac{1}{4} \sum_{ijab} C_{ab}^{ij} \left\langle ij \mid\mid ab \right\rangle = \frac{1}{2} \sum_{ij} \varepsilon_{ij} = E_{corr}$$

(Nesbet's theorem)

If we know the precise values of the double excitation coefficients we know the **EXACT** correlation energy! It is a sum of **PAIR CORRELATION ENERGIES**

Truncated Wavefunction Approximation

We have so far used two key ingredients

- 1. The Variational Principle
- 2. The Expansion of the many particle wavefunction starting from HF

We saw that the double excitation are particularly important.

Try a truncated wavefunction together with the variational principle

$$\Psi_{CID} = \Psi_{HF} + \frac{1}{4} \sum_{ijab} C_{ab}^{ij} \Phi_{ij}^{ab}$$

Let us use a model system (minimal basis H₂) to study this approximation

Point of Departure: Minmal Basis H₂

For a single minimal basis H₂ molecule the CID matrix is:

$$\mathbf{H} = \begin{pmatrix} 0 & V \\ V & \Delta \end{pmatrix} \qquad \qquad \Delta = \left\langle \Psi_{D} \mid \hat{H} \mid \Psi_{D} \right\rangle - \left\langle \Psi_{HF} \mid \hat{H} \mid \Psi_{HF} \right\rangle \qquad \qquad \mathbf{\sigma}$$

$$V = \left\langle \Psi_{0} \mid \hat{H} \mid \Psi_{D} \right\rangle \qquad \qquad \mathbf{\sigma}$$

With the lowest eigenvalue:

$$E_{\scriptscriptstyle 0} = \frac{_1}{^2} \Big(\Delta - \sqrt{\Delta^2 + 4V^2} \Big)$$

Ground state of the minimal basis H₂ system

→ Great, this is Full-CI. Now try 2 non-interacting H2's and we should get twice this

However, for N noninteracting H₂ molecules CID gives:

$$E_{0} = \frac{1}{2} \left(\Delta - \sqrt{\Delta^{2} + 4NV^{2}} \right)$$

Which is NOT size consistent \rightarrow Go to N=2 and study what is missing from CID.

Obviously, one step beyond CID is to include higher excitations. In the minimal basis 2x H₂ model system this would be a "simultaneous pair excitation" in which both H₂'s are put in their excited state.

$$\sigma_A^* \longrightarrow \sigma_B^* \qquad \sigma_A^* \longrightarrow \sigma_B^$$

Matrix-elements:

$$\left\langle D_{A} \middle| \hat{H} \middle| D_{A} \right\rangle = \left\langle D_{B} \middle| \hat{H} \middle| D_{B} \right\rangle = \left\langle 0 \middle| \hat{H} \middle| 0 \right\rangle + \Delta$$
 Dia
$$\left\langle Q \middle| \hat{H} \middle| Q \right\rangle = \left\langle 0 \middle| \hat{H} \middle| 0 \right\rangle + 2\Delta$$
 Dia
$$\left\langle 0 \middle| \hat{H} \middle| D_{A} \right\rangle = \left\langle 0 \middle| \hat{H} \middle| D_{B} \right\rangle = \left\langle \sigma \sigma \middle| \sigma^{*} \sigma^{*} \right\rangle = V$$
 Dou
$$\left\langle 0 \middle| \hat{H} \middle| Q \right\rangle = 0$$
 Quality
$$\left\langle D_{A} \middle| \hat{H} \middle| Q \right\rangle = \left\langle D_{B} \middle| \hat{H} \middle| Q \right\rangle = V$$
 Quality
$$\left\langle D_{A} \middle| \hat{H} \middle| Q \right\rangle = \left\langle D_{B} \middle| \hat{H} \middle| Q \right\rangle = V$$
 Quality
$$\left\langle D_{A} \middle| \hat{H} \middle| Q \right\rangle = \left\langle D_{B} \middle| \hat{H} \middle| Q \right\rangle = V$$
 Quality
$$\left\langle D_{A} \middle| \hat{H} \middle| Q \right\rangle = \left\langle D_{B} \middle| \hat{H} \middle| Q \right\rangle = V$$

Diagonal doubles

Diagonal quadruple

Doubles/ground state

Quadruple/ground state

Quadruple/doubles = Doubles/ground state!

In order to solve the problem we form again the symmetry adapted linear combination of the two doubles: $|D\rangle = \frac{1}{\sqrt{2}} \left(|D_A\rangle + |D_B\rangle \right)$

The variational principle leads us then to the CI matrix (the configurations are in the order |0>, |D>, |Q>):

$$\mathbf{H} = \begin{bmatrix} 0 & \sqrt{2}V & 0\\ \sqrt{2}V & \Delta & \sqrt{2}V\\ 0 & \sqrt{2}V & 2\Delta \end{bmatrix}$$

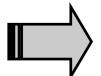
The lowest root is (without proof):

$$E_0 = \Delta - \sqrt{\Delta^2 + 4V^2}$$

This is twice the energy of a single H₂. Thus, the inclusion of the quadruple excitation restores the size consistency!

Furthermore:

$$C_{Q} = \frac{\sqrt{2}V}{\underbrace{E - 2\Delta}_{C_{D}/2C_{0}}} C_{D} = \frac{1}{2C_{0}} C_{D}^{2}$$



For noninteracting subsystems, the coefficients of the quadruples are exactly products of doubles coefficients!

Conclusions and Generalizations

We had 3 key results in studying the 2xH₂ problem:

- 1. Inclusion of the simultaneous pair excitation exactly restores the size consistency.
- 2. The product of the simultaneous pair excitation was exactly proportional to the square of the coefficients of the double excitations (as predicted less rigorously but more generally by perturbation theory).
- 3. The matrix elements of the quadruple excitation with the doubles was equal to the matrix elements of the doubles with the ground state. Both sets of determinants differ by a double substitution from each other.

Now we want to generalize these findings and restart from the full-CI equations which are written in intermediate normalization (we neglect odd excitations at the moment):

$$|\Psi\rangle = |\Psi_{HF}\rangle + |\Psi_{D}\rangle + |\Psi_{Q}\rangle + \dots$$

Approximation 1: Statistically Uncorrelated Excitations

CI-Equations:
$$\langle \Psi_{X} | \hat{H} | \Psi_{HF} + \Psi_{D} + \Psi_{Q} + ... \rangle = E \langle \Psi_{X} | \Psi_{HF} + \Psi_{D} + \Psi_{Q} + ... \rangle$$

$$\langle \Psi_{X} | \hat{H} | \Psi_{HF} \rangle + \langle \Psi_{X} | \hat{H} | \Psi_{D} \rangle + \langle \Psi_{X} | \hat{H} | \Psi_{Q} \rangle + EC_{X}$$

Approximate the quadruples as a product of doubles ("disconnected quadruples"):

Approximation 1:
$$|\Psi_{Q}\rangle \cong \frac{1}{2} \sum_{X,Y} C_{X} C_{Y} \underbrace{\hat{E}_{X} \hat{E}_{Y} |\Psi_{0}\rangle}_{|\Psi_{X+Y}\rangle}$$
 $|\Psi_{D}\rangle = \sum_{X} C_{X} \underbrace{\hat{E}_{X} |\Psi_{HF}\rangle}_{|\Psi_{X}\rangle}$ compound label X=(ii.8)

compound label X=(ij,ab)

Approximation 2: $\langle \Psi_{x} | \hat{H} | \Psi_{y+z} \rangle \cong \delta_{xy} \langle \Psi_{x} | \hat{H} | \Psi_{y+z} \rangle + \delta_{yz} \langle \Psi_{x} | \hat{H} | \Psi_{y+y} \rangle$

Fully disjointed excitations: $\rightarrow \delta_{_{XY}} \langle \Psi_{_0} | \hat{H} | \Psi_{_Z} \rangle + \delta_{_{XZ}} \langle \Psi_{_0} | \hat{H} | \Psi_{_Y} \rangle$

Problem: If X+Z or Y+Z share common labels, the excitation is not possible (Exclusion principle violating terms)

Approximate Full-CI Equations

$$\begin{split} \left\langle \Psi_{\boldsymbol{X}} \mid \hat{H} \mid \Psi_{\boldsymbol{Q}} \right\rangle &\cong \tfrac{1}{2} \sum_{\boldsymbol{Y},\boldsymbol{Z}} C_{\boldsymbol{Y}} C_{\boldsymbol{Z}} \left\{ \delta_{\boldsymbol{X}\boldsymbol{Y}} \left\langle \Psi_{\boldsymbol{0}} \mid \hat{H} \mid \Psi_{\boldsymbol{Z}} \right\rangle + \delta_{\boldsymbol{X}\boldsymbol{Z}} \left\langle \Psi_{\boldsymbol{0}} \mid \hat{H} \mid \Psi_{\boldsymbol{Y}} \right\rangle \right\} \\ &= C_{\boldsymbol{X}} \sum_{\boldsymbol{Y}} C_{\boldsymbol{Y}} \left\langle \Psi_{\boldsymbol{X}} \mid \hat{H} \mid \Psi_{\boldsymbol{X}+\boldsymbol{Y}} \right\rangle \\ &= C_{\boldsymbol{X}} \sum_{\boldsymbol{Y}} C_{\boldsymbol{Y}} \left\langle \Psi_{\boldsymbol{0}} \mid \hat{H} \mid \Psi_{\boldsymbol{Y}} \right\rangle - C_{\boldsymbol{X}} \sum_{\boldsymbol{Y} \subset \boldsymbol{X}} C_{\boldsymbol{Y}} \left\langle \Psi_{\boldsymbol{0}} \mid \hat{H} \mid \Psi_{\boldsymbol{Y}} \right\rangle \\ &= C_{\boldsymbol{X}} (E_{corr} - \Delta_{\boldsymbol{X}}^{(EPV)}) \end{split}$$

Beautiful simplification of the full-CI equation:

$$\begin{split} \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{HF} \right\rangle + \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{D} \right\rangle + \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{Q} \right\rangle &= C_{X} (E_{HF} + E_{corr}) \\ \approx \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{HF} \right\rangle + \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{D} \right\rangle + C_{X} (E_{corr} - \Delta_{X}^{(EPV)}) &= C_{X} (E_{HF} + E_{corr}) \\ &= \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{HF} \right\rangle + \left\langle \Psi_{X} \mid \hat{H} \mid \Psi_{D} \right\rangle = C_{X} (E_{HF} + \Delta_{X}^{(EPV)}) \end{split}$$

(Coupled-Electron Pair Approximation, CEPA): CI problem with a shifted diagonal

Drop the Crude Approximations

$$X = (ijab)$$

$$Y = (klcd)$$

$$Z = (mnef)$$

$$X = (ia)$$

$$Y = (kc)$$

$$A = (ijab)$$

$$A = (klcd)$$

$$A = (kl$$

But it is more elegant to write that in terms of the C-operators, giving:

$$\langle \Psi_{X} | \hat{H} | \Psi_{Q} \rangle \cong \langle \Psi_{ij}^{ab} | \hat{H} | \frac{1}{2} \hat{C}_{2} \hat{C}_{2} \Psi_{0} \rangle$$

$$\langle \Psi_{X} | \hat{H} | \Psi_{T} \rangle \cong \langle \Psi_{i}^{a} | \hat{H} | \hat{C}_{1} \hat{C}_{2} \Psi_{0} \rangle$$

Thus, the "Quadratic CI Singles + Doubles" (QCISD) equations for the energy and the determination of the coefficients:

$$\begin{split} E_{\scriptscriptstyle QCISD} &= \left\langle \Psi_{\scriptscriptstyle HF} \mid \hat{H}_{\scriptscriptstyle N} \mid \Psi \right\rangle = E_{\scriptscriptstyle HF} + \sum_{ia} F_{\scriptscriptstyle ia} C_a^i + \frac{1}{4} \sum_{ijab} \left\langle ij \mid\mid ab \right\rangle C_{ab}^{ij} \\ E_{\scriptscriptstyle corr} C_a^i &= \left\langle \Psi_i^a \mid \hat{H}_{\scriptscriptstyle N} (1 + \hat{C}_1^{} + \hat{C}_2^{} + \hat{C}_1^{} \hat{C}_2^{}) \mid \Psi_{\scriptscriptstyle HF}^{} \right\rangle \\ E_{\scriptscriptstyle corr} C_{ab}^{ij} &= \left\langle \Psi_i^a \mid \hat{H}_{\scriptscriptstyle N} (1 + \hat{C}_1^{} + \hat{C}_2^{} + \frac{1}{2} \hat{C}_2^{} \hat{C}_2^{}) \mid \Psi_{\scriptscriptstyle HF}^{} \right\rangle \end{split}$$

From QCISD to the full Coupled Cluster Hierarchy

Coupled Cluster Theory Incorporates excitation products from the beginning:

$$|\Psi_{CC}\rangle = exp(T)|\Psi_{0}\rangle = exp\left(\underbrace{T_{1} + T_{2} + T_{3} + \cdots}_{T}\right)|\Psi_{0}\rangle$$
$$= \left(1 + T + \frac{1}{2}T^{2} + \frac{1}{3!}T^{3} + \cdots\right)|\Psi_{0}\rangle$$

In the limit where either all C-operators or all T-operators are included in the treatment, the CI and CC wavefunctions are identical and CC is a more complicated way of parameterizing the full-CI wavefunction. For truncation of the C-operator series or the T-operator series the CC expansion is more complicated but much more accurate.

$$T_1 = \sum_{ia} t_a^i a^+ i$$

$$T_2 = \frac{1}{4} \sum_{ijab} t_{ab}^{ij} a^+ b^+ ji$$

$$T_3 = \frac{1}{36} \sum_{ijab} t_{abc}^{ijk} a^+ b^+ c^+ kji$$

We have purposely renamed the CI coefficients **c** to cluster amplitudes **t** and the C-operators to T-operators to a) follow the conventions used in the literature and b) emphasize that the two types of quantities are not quite the same.

CI theory: **CI coefficients c** of the single, double, triple,... excitations

CC theory: "cluster amplitudes" t for the single, double, triple,... excitation operators.

Coupled Cluster versus Cl

$$|\Psi_{FCI}\rangle = (1+C)|\Psi_0\rangle = exp(T)|\Psi_0\rangle$$

Connection of CI and CC

Model

$$C_1 = T_1$$

$$C_2 = \frac{1}{2}T_1^2 + T_2$$

$$C_3 = \frac{1}{6}T_1^3 + T_1T_2 + T_3$$

$$C_4 = \frac{1}{24}T_1^4 + \frac{1}{2}T_2^2 + \frac{1}{2}T_1^2T_2 + T_1T_3 + T_4$$

Effort

Darameters

Widaci	Parameters	Ellort
CCD : T ₂	$O(N^4)$	O(N ⁶)
$CCSD : T_1 + T_2$	$O(N^4)$	O(N ⁶)
$CCSD(T) : T_1 + T_2 + (T_3)$	$O(N^6)$	$O(N^7)$
$CCSDT : T_1 + T_2 + T_3$	$O(N^6)$	$O(N^8)$
CCSDTQ: $T_1+T_2+T_3+T_4$	$O(N^8)$	$O(N^{10})$

CC is size consistent at any truncation level!
CI is not

Convergence of the CC Hierarchy vs Cl

Deviation from full-CI (CO molecule, cc-pVDZ basis, frozen core) in mE_h for CI and CC models with various excitation levels:

	CI	CC
SD	30.804	12.120
SDT	21.718	1.011a
SDTQ	1.775	0.061
SDTQP	0.559	0.008
SDTQPH	0.035	0.002

a: 1.47 mE_h for CCSD(T)

For a given excitation level, the CC models are at least one order of magnitude more accurate than CI models (which becomes even more significant for larger molecules)!

Energy and Amplitude Determination

Variational principle:

$$E = \frac{\langle \Psi | \widehat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi_0 | (e^T)^+ \widehat{H} e^T | \Psi_0 \rangle}{\langle \Psi_0 | (e^T)^+ e^T \Psi_0 \rangle}$$

Hopeless idea – the expansion does not terminate and the resulting equations are just to complex to be soluble.

Projection:

$$\widehat{H}|\Psi\rangle = E|\Psi\rangle$$

$$= \widehat{H}e^{T}|\Psi_{0}\rangle = Ee^{T}|\Psi_{0}\rangle$$

$$\langle \Psi_0 | \widehat{H} e^T | \Psi_0 \rangle = E$$
 Energy equation $\langle \Psi_X | \widehat{H} e^T | \Psi_0 \rangle \equiv \sigma_X = 0$ Amplitude equations

$$\langle \Psi_X | \widehat{H} e^T | \Psi_0 \rangle \equiv \sigma_X = 0$$
 Amplitude equations

Linked Form of Coupled Cluster Equations

Baker-Campbell-Haussdorff Expansion:

$$e^{-T}\widehat{H}e^{T} = \widehat{H} + [\widehat{H}, T] + \frac{1}{2!}[[\widehat{H}, T], T] + \frac{1}{3!}[[[\widehat{H}, T], T], T] + \frac{1}{4!}[[[[\widehat{H}, T], T], T], T]$$

Since both H and T are expressed in second quantization, the terms are of the form:

$$[q^+ps^+r, b^+ja^+i] = 0$$

Unless, there is at least one coincidence among p,q,r,s and i,j,a,b

This leads to rewriting

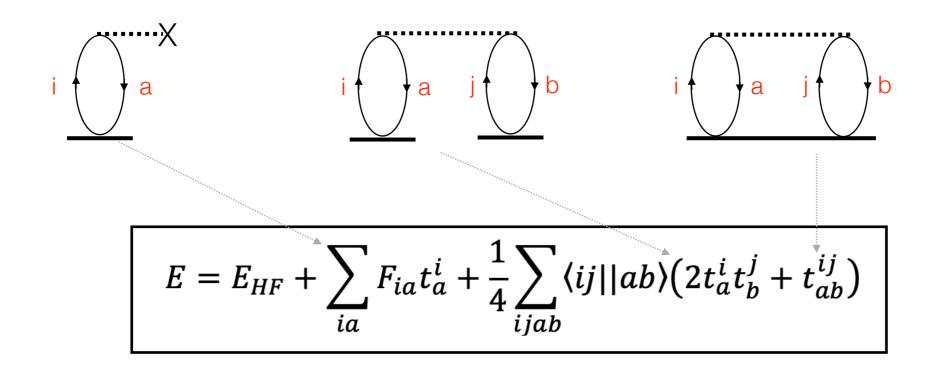
$$\left[\widehat{H},T\right] = \left(\widehat{H},T\right)_{C} + \left(\widehat{H},T\right)_{D} - \underbrace{\left(T,\widehat{H}\right)_{C}}_{=0} - \left(T,\widehat{H}\right)_{D} = \left(\widehat{H},T\right)_{C}$$
 "Connected expansion"
$$\widehat{H}T = \left(\widehat{H},T\right)_{C} + \left(\widehat{H},T\right)_{D}$$

Graphical Evaluation of Energy Expression

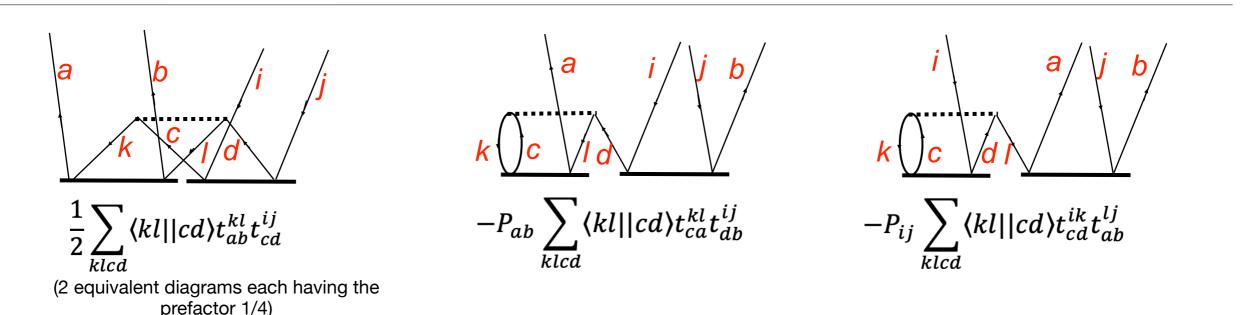
The connected expansion allows one to use powerful graphical techniques for matrix element evaluation

$$\langle \Psi_0 | e^{-T} \widehat{H} e^T | \Psi_0 \rangle = \langle \Psi_0 | (\widehat{H} e^T)_C | \Psi_0 \rangle = E$$

$$\langle \Psi_{\mathbf{X}} | e^{-T} \widehat{H} e^{T} | \Psi_{0} \rangle = \langle \Psi_{\mathbf{X}} | (\widehat{H} e^{T})_{C} | \Psi_{0} \rangle = 0$$



Graphical Evaluation of the Amplitude Equations



CCD Equations:

$$\begin{split} &\Delta_{ab}^{ij}\mathbf{t}_{ab}^{ij} = \langle ij||ab\rangle + u_{ab}^{ij} + v_{ab}^{ij} \\ &u_{ab}^{ij} = \frac{1}{2}\sum_{cd}\langle ab||cd\rangle t_{cd}^{ij} + \frac{1}{2}\sum_{kl}\langle ij||kl\rangle t_{ab}^{kl} - P_{ij}P_{ab}\sum_{kc}\langle kb||ic\rangle t_{ac}^{kj} \\ &v_{ab}^{ij} = P_{ij}P_{ab}\sum_{klcd}\langle kl||cd\rangle t_{ac}^{ik}t_{db}^{lj} + \frac{1}{2}\sum_{klcd}\langle kl||cd\rangle t_{ab}^{kl}t_{cd}^{ij} - P_{ij}\sum_{klcd}\langle kl||cd\rangle t_{cd}^{ik}t_{ab}^{lj} - P_{ab}\sum_{klcd}\langle kl||cd\rangle t_{ca}^{kl}t_{db}^{ij} \end{split}$$

- → Up to CCSD(T), maybe CCSDT, doable by hand,
- Higher-order CC equations derived and implemented by Automatic Code Generation (Project A2)

Practical Implementation

For example:
$$\sigma_{ab}^{ij} \leftarrow \sum_{kc} \langle kb | | ic \rangle t_{ac}^{kj}$$

Write as matrices:
$$\langle kb||ic\rangle = \langle kb|ic\rangle - \langle kb|ci\rangle = (ki|bc) - (kc|bi)$$

$$= \left(\boldsymbol{J}^{ki} \right)_{bc} - \left(\boldsymbol{K}^{ki} \right)_{cb}$$

$$t_{ac}^{kj} = \left(\boldsymbol{t}^{kj} \right)_{ac}$$

Sigma-vector contribution:

$$\sigma_{ab}^{ij} \leftarrow \langle kb | | ic \rangle t_{ac}^{kj} = \left\{ \left(\boldsymbol{J}^{ki} \right)_{bc} - \left(\boldsymbol{K}^{ki} \right)_{cb} \right\} \left(\boldsymbol{t}^{kj} \right)_{ac}$$
$$= \left[\boldsymbol{t}^{kj} \left(\boldsymbol{J}^{ki+} - \boldsymbol{K}^{ki} \right) \right]_{ab}$$

- Efficient storage using internal indices as "slow" indices
- Efficient contraction as matrix multiplications using BLAS level 3 operations
- Automatic code generation for supercomputers pursued in project A2

Coupled Cluster Summary

- 1. Coupled cluster models are the **most sophisticated** electron correlation models available which among those based on expansions in determinants.
- 2. Coupled cluster theory is a **nonlinear model** which approximates higher excitations as products of lower excitations through an **exponential parameterization**.
- 3. Coupled cluster theory is perfectly size consistent and unitarily invariant but not variational.
- 4. The CCSD model is perhaps the best model based on single and double excitations at the same asymptotic cost as CISD. QCISD is easier and very close in accuracy.
- 5. High accuracy models ("chemical accuracy" ~ 1 kcal/mol) require the inclusion of connected triple excitations. The CCSD(T) model is an excellent tradeoff between accuracy and computational effort and is *de facto* the standard for high accuracy work.

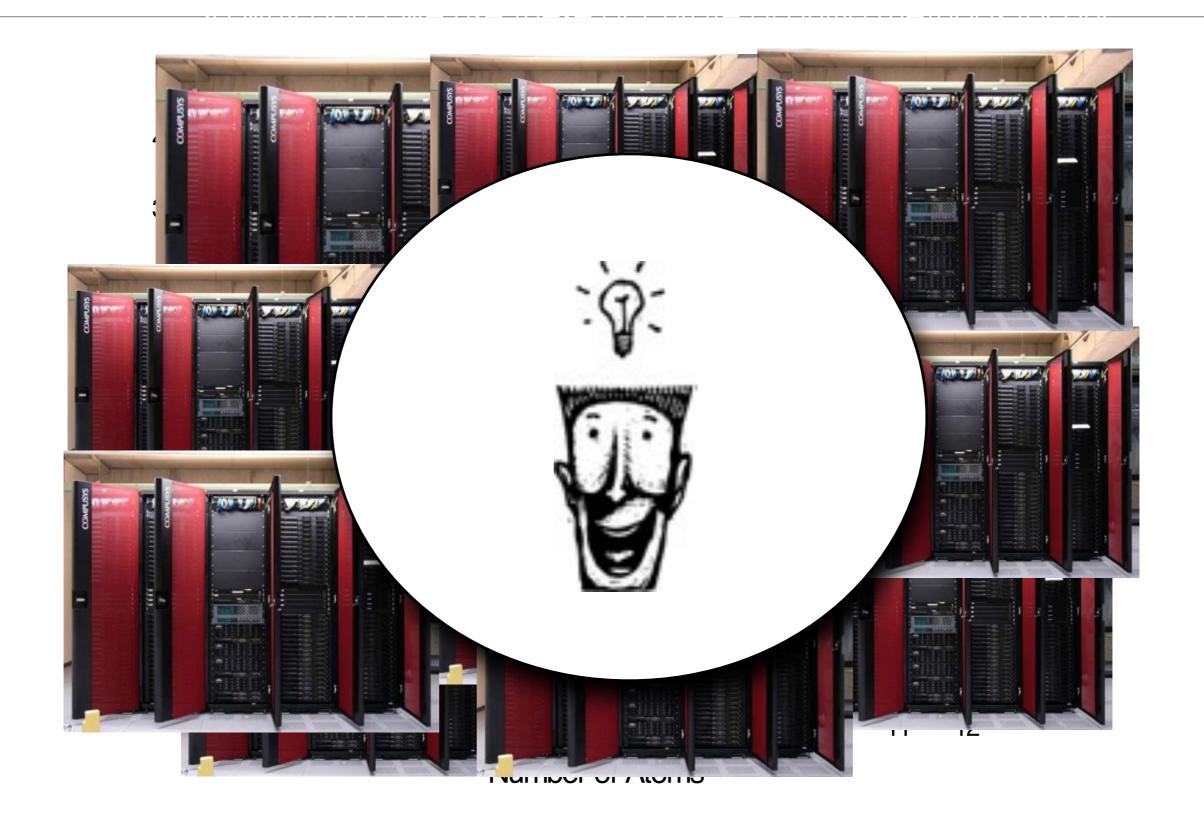
Moving on from there

Coupled Cluster Lagrangian:
$$\mathcal{L} = \langle \Psi_0 | \left(1 + \widehat{\Lambda} \right) e^{-T} \widehat{H} e^T | \Psi_0 \rangle + \sum_{ia} F_a^i z_a^i$$

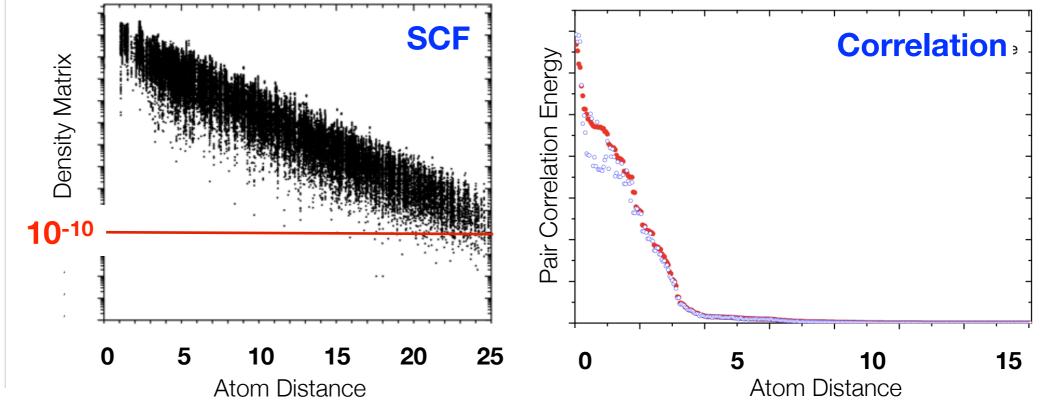
$$\widehat{\Lambda} = \widehat{\Lambda}_1 + \widehat{\Lambda}_2 + \dots = \sum_{ia} \lambda_a^i i^+ a + \frac{1}{4} \sum_{ijab} \lambda_{ab}^{ij} i^+ j^+ ab + \dots$$
 Molecular structures
$$\frac{\partial \mathcal{L}}{\partial \mathbf{R}} = 0$$
 Vibrations, Reactions
$$H_{KL} = \frac{\partial^2 \mathcal{L}}{\partial R_K \partial R_L}$$
 Molecular properties
$$\frac{\partial \mathcal{L}}{\partial \kappa} = \sum_{pq} D_{pq} \langle p | \widehat{h}^{(\kappa)} | q \rangle$$
 Excited States
$$|\Psi_I \rangle = \left(\widehat{R}_1 + \widehat{R}_2 + \dots \right) |\Psi_{CC} \rangle$$

All approachable with the exact same formalism and techniques

Problem with Coupled Cluster Methods



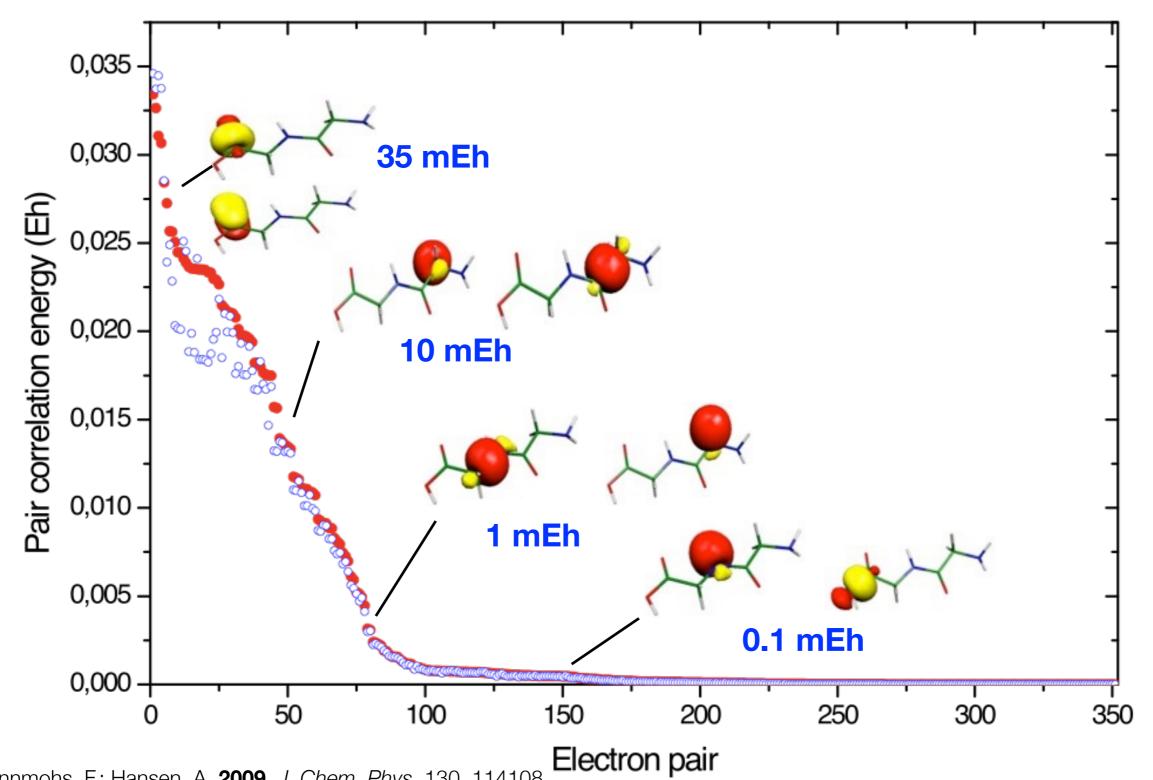
Saving Time in Electronic Structure Calculations



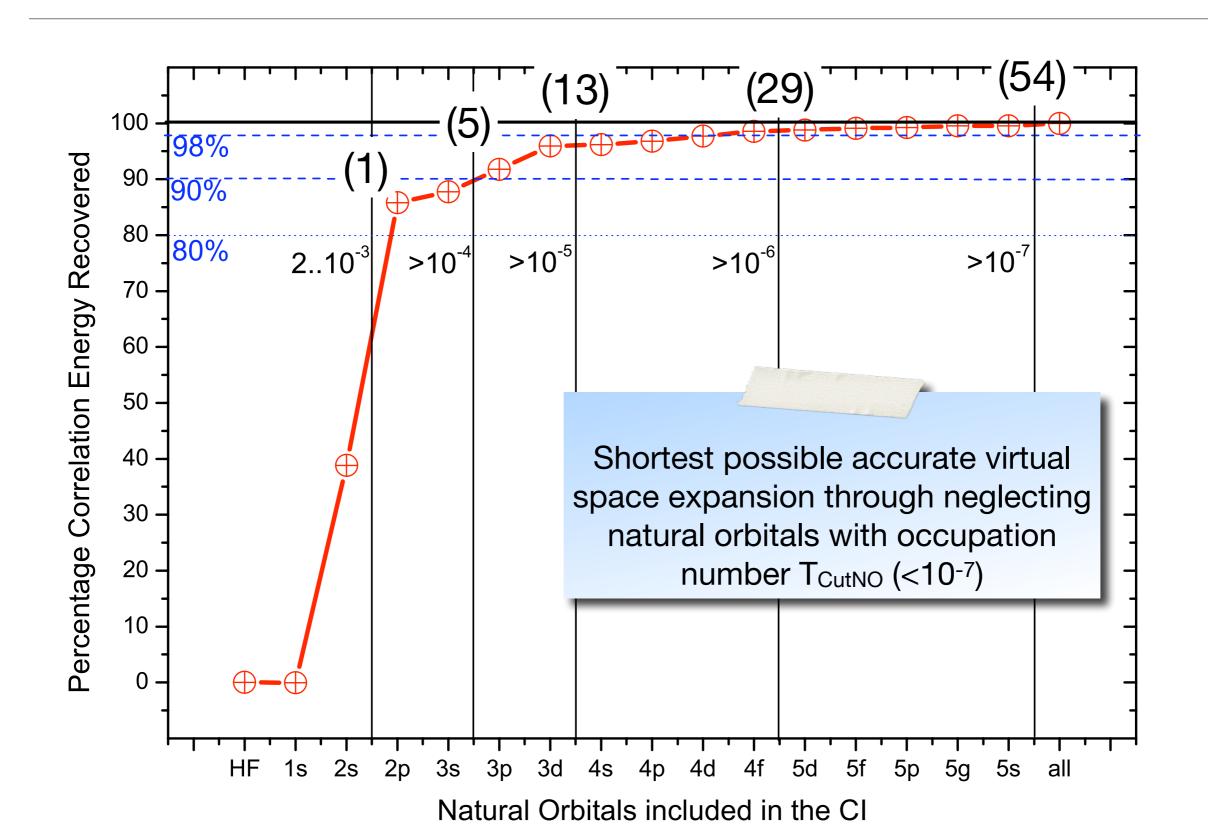
Compress Data!

$$M = egin{pmatrix} \mathbf{M}' = \mathbf{U}^\dagger \mathbf{M} \mathbf{U} \ \Rightarrow \ \mathbf{O} \ \end{pmatrix}$$

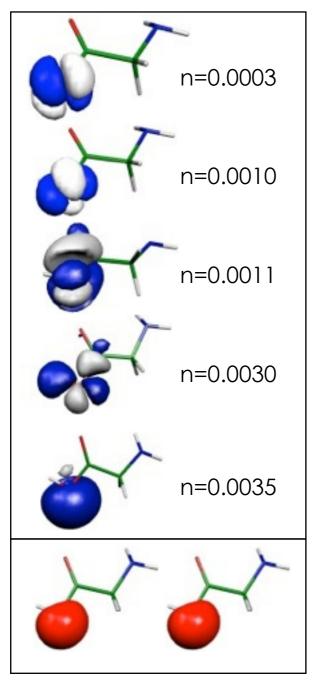
Approximation 1: Locality of Pair Correlation Energies



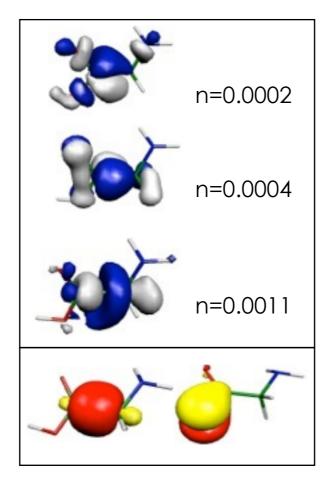
The Natural Expansion of He

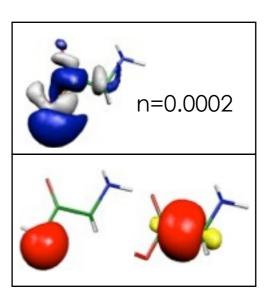


Pair Natural Orbitals (PNOs)



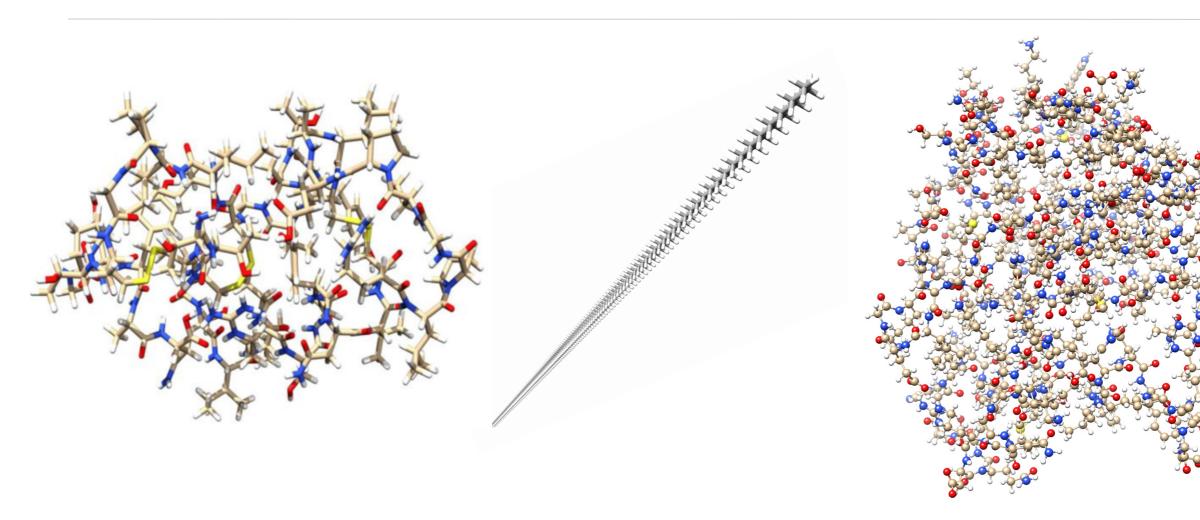
- Small number of significant PNOs per electron pair
- Vanishing (0-5) PNOs for weak pairs
- Located in the same region of space as the internal pair but as delocalized as necessary
- Orthonormal within one pair, non-orthogonal between pairs





FN; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009, 130, 114108

Huge Calculations with linear DLPNO-CCSD(T)



Crambin/def2-TZVP
644 atoms
12705 Basis functions
10 d/4 cores

C₃₅₀H₇₀₂/def2-TZVP 1052 atoms 15062 Basis functions 18h/4 cores Integrase/cc-pVDZ 2380 atoms 22621 Basis functions 62h/64 cores

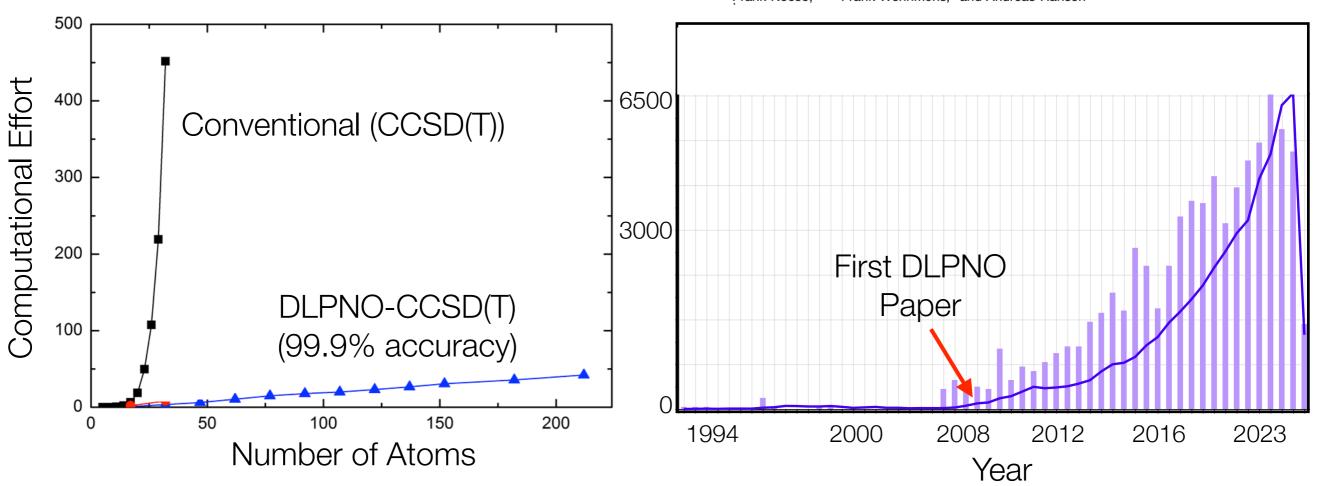
(CIM-DLPNO-CCSD(T)) Y. Guo, FN, 2017

Impact of DLPNO-CCSD(T)

THE JOURNAL OF CHEMICAL PHYSICS 130, 114108 (2009)

Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

Frank Neese, 1,2,a) Frank Wennmohs, and Andreas Hansen



Neese, F.; Hansen, A.; Liakos, D. G. JCP 2009, 131.

Riplinger, C.; Neese, F. JCP 2013, 138.

Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. JCP 2013, 139.

Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. JCP 2016, 144

Zitationen: "Pair Natural Orbital"