Review \& Perspectives

Active Polarized Proton Target

M. Biroth for the A2-Collaboration

Institute of Nuclear Physics, Mainz, Germany

4SFP電
THE LOW-ENERGY FRONTIER
OF THE STANDARD MODEL

Protons have a complex structure from quarks, gluons and virtual pions
1.6 GeV electron accelerator Mainz Mikrotron

- Electron scattering (A1 Collaboration)
- Real photon scattering (A2 Collaboration)

1.6 GeV electron accelerator Mainz Mikrotron
- Electron scattering (A1 Collaboration)
- Real photon scattering (A2 Collaboration)

Real photons are ideal probes

- massless, uncharged
- interact electromagnetically

Protons have a complex structure from quarks, gluons and virtual pions
1.6 GeV electron accelerator Mainz Mikrotron

- Electron scattering (A1 Collaboration)
- Real photon scattering (A2 Collaboration)

Protons have a complex structure from quarks, gluons and virtual pions
1.6 GeV electron accelerator Mainz Mikrotron

- Electron scattering (A1 Collaboration)
- Real photon scattering (A2 Collaboration)

Possible experiments

- Unpolarized
- Polarized

Protons have a complex structure from quarks, gluons and virtual pions
1.6 GeV electron accelerator Mainz Mikrotron

- Electron scattering (A1 Collaboration)
- Real photon scattering (A2 Collaboration)

Possible experiments

- Unpolarized
- Polarized
- Double-polarized
- Spin states $|\downarrow\rangle,|\uparrow\rangle$ show (anti-)alignment in a magnetic field B
- Zeeman splitting ΔE leads to breakdown of the degeneracy

- Polarization P is the asymmetry of the occupied states N_{s}
- Thermal equilibrium population follows Boltzmann statistics

$$
\begin{gathered}
P=\frac{N_{\uparrow}-N_{\downarrow}}{N_{\uparrow}+N_{\downarrow}} \\
P_{\mathrm{TE}}=\tanh \frac{\Delta E}{2 k_{\mathrm{B}} T} \\
\text { (Boltzmann const. } k_{\mathrm{B}} \text {) }
\end{gathered}
$$

Solution: Dynamic Nuclear Polarization uses the high electron polarization to generate a high hydrogen polarization

- Embedding of unpaired electron spins with density n
- Electron and hydrogen spins are super-hyperfinely coupled

1. μ Wave irradiation ω_{m} excites transitions that induce coupled spin-flips

$$
\omega_{\mathrm{m}}^{ \pm}=\left(\gamma_{\mathrm{e}} \bar{\mp} \gamma_{\mathrm{H}}\right) B_{0}=2 \pi \times\left\{\begin{array}{l}
70.0 \mathrm{GHz} \\
70.2 \mathrm{GHz}
\end{array}\right.
$$

- Embedding of unpaired electron spins with density n
- Electron and hydrogen spins are super-hyperfinely coupled

1. μ Wave irradiation ω_{m} excites transitions that induce coupled spin-flips
$\omega_{\mathrm{m}}^{ \pm}=\left(\gamma_{\mathrm{e}} \bar{\mp} \gamma_{\mathrm{H}}\right) B_{0}=2 \pi \times\left\{\begin{array}{l}70.0 \mathrm{GHz} \\ 70.2 \mathrm{GHz}\end{array}\right.$
2. Electron spins relax during irradiation (dashed arrows)

- Embedding of unpaired electron spins with density n
- Electron and hydrogen spins are super-hyperfinely coupled

1. μ Wave irradiation ω_{m} excites transitions that induce coupled spin-flips
$\omega_{\mathrm{m}}^{ \pm}=\left(\gamma_{\mathrm{e}} \bar{\mp} \gamma_{\mathrm{H}}\right) B_{0}=2 \pi \times\left\{\begin{array}{l}70.0 \mathrm{GHz} \\ 70.2 \mathrm{GHz}\end{array}\right.$
2. Electron spins relax during irradiation (dashed arrows)

Lattice

3. Polarization decays by phonon emission or absorption with the nuclear spin-lattice relaxation time τ_{1} in the essential holding field B_{HF}

$$
\tau_{1} \propto \frac{1}{n} \frac{P_{\mathrm{TE}, \mathrm{e}}^{1 / 4}}{1-P_{\mathrm{TE}, \mathrm{e}}^{2}} B_{\mathrm{HF}}^{3 / 4}
$$

Gyromagnetic ratios of the electrons $\gamma_{\mathrm{e}}=\left(g_{\mathrm{e}} / 2\right) e_{0} / m_{\mathrm{e}}$ and hydrogen $\gamma_{\mathrm{H}}=\kappa_{\mathrm{p}} e_{0} / m_{\mathrm{p}}$, magnetic field $B_{0}=2.5 \mathrm{~T}$

Magnetic Fields for Transverse Target Polarization

The Mainz Frozen Spin Target provides 2 different fields:

High field $\boldsymbol{B}_{\mathbf{0}}$

- Superconducting solenoid, $\delta B_{0} / B_{0} \leq 10^{-4}$
- Polarization build-up and measurement

Holding field $\boldsymbol{B}_{\boldsymbol{H F}}$

- Internal superconducting coil
- Saddle coil for transverse polarization

$$
\vec{B}_{0}:=2.5 \mathrm{~T} \times \vec{e}_{z}
$$

$$
\vec{B}_{\mathrm{HF}}:=437.5 \mathrm{mT} \times \vec{e}_{x}
$$

Standard setup of the Mainz Frozen Spin Target

- Dilution cryostat with thermal insulation
- Internal super-conducting holding coil
- Spin-polarizable target material

Kinetic energy of recoil protons in Real Compton Scattering:

$$
T_{\mathrm{p}}=E_{\gamma 0}-E_{\gamma}=\frac{Q^{2}}{2 m_{p}}
$$

Standard setup of the Mainz Frozen Spin Target

- Dilution cryostat with thermal insulation
- Internal super-conducting holding coil
- Spin-polarizable target material

70 MeV threshold for recoil protons

Solution: Replacing the target material by an internal spin-polarizable scintillation detector

Spin-polarizable scintillating detector

- High degree of polarization / relaxation time
- High resolving power for energy / timing / angles

Degree of polarization

Detection capability

Minimum requirements for operation

- He-tightness under thermal cycling
- Minimum heat input / exchange
- Immunity to magnetic fields ~ 1 Tesla
- Tolerance to beam / μ Wave irradiation
- Acceptance of overall tiny dimensions

1. Active target head

- Polarizable scintillator stack: Providing polarized hydrogen, emitting light for charged tracks
- Light concentrating element: Distributing scintillation light into the beam / light guide tube

2. Sealed beam / light guide tube

- Beam guide: Transport of the photon beam in vacuum in the inner volume
- Light guide: Transport of the scintillation light between the surfaces inside the wall
- Inner / outer seal: Separation of mixing chamber and beam vacuum, multiple feedthroughs

3. Compensating detector board

- Optical detectors: Converting light to electric signals and distribute them to the amplifiers
- Electronical compensation: Measuring the temperature for detector gain control
- Mechanical compensation: Equalization of thermal contraction of the tube

4. Custom frontend electronics and software

Transparent base material with a high dilution factor

- Polystyrene $\mathrm{C}_{8} \mathrm{H}_{8}, d=7.7 \%$ (Butanol $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, d=13.5 \%$)

Standard scintillator components

- $1^{\text {st }}$ scintillator: PPO / 2,5-Diphenyloxazole ($\lambda_{\mathrm{em}}=360 \mathrm{~nm}$)
- $2^{\text {nd }}$ scintillator: Dimethyl-POPOP $\left(\lambda_{\mathrm{abs}}=360 \mathrm{~nm}, \lambda_{\mathrm{em}}=410 \mathrm{~nm}\right)$

Unpaired electron spins

- Doping with the paramagnetic free radical 4-Oxo-TEMPO
- Produced with 3 spin densities $n \in[1.5,2.2,3.0] \times 10^{19} \mathrm{~cm}^{-3}$

[^0]The electron radical density effects also the light output of the scintillator.

The radical deteriorates the quantum efficiency to 50% of a standard plastic scintillator

The electron radical density effects also the light output of the scintillator.

The radical deteriorates the quantum efficiency to 50% of a standard plastic scintillator or even lower, since wavelengths within the Stokes Shift does not excite the POPOP.

The electron radical density effects also the light output of the scintillator.

The WLS light concentrator consists of a hollow cylinder of wavelength-shifting material. The scintillation light is redistributed isotropically only if its wavelength matches the absorption spectrum.

The electron radical density effects also the light output of the scintillator.

Component	Wavelength of max.	
	absorption	emission
PPO/2,5-Diphenylloxazole	303 nm	358 nm
Dimethyl-POPOP	360 nm	411 nm
BC-482A (Saint-Gobain)	420 nm	494 nm

The WLS light concentrator consists of a hollow cylinder of wavelength-shifting material.
The scintillation light is redistributed isotropically only if its wavelength matches the absorption spectrum.

The benefit in light collection efficiency is $+25 \%$, already with standard plastic scintillator.

The increased outer diameter $26 \mathrm{~mm} \rightarrow 38 \mathrm{~mm}$ was problematic for mounting and cooling.

The light collection by a polished surface does only weak depend on the wavelength.
A linear interpolation between a straight track and traveling under $\varphi_{\text {tot }}=\sin ^{-1} n^{-1}$ was selected as boundary condition for the incident angle φ.

$$
\varphi=\varphi_{\mathrm{tot}}(1-\kappa)+\frac{\pi}{2} \kappa=\sin ^{-1} n^{-1}+\kappa \cos ^{-1} n^{-1}
$$

The surface parameterization was used for a computer-controlled manufacturing process.

See: M. Biroth, et al., Design of the Mainz Active Polarized Proton Target, Proc. Sci. (PSTP 2015) 005, Refractive index of PMMA n

Photograph of the target part installed in the mixing chamber:

Photograph of the target part installed in the mixing chamber:

Relaxation pod (PMMA)

Centering ring (SS)
 Indium sealing

Groove for
Cryostat flange (SS)

Soldering to the cryostat insert

Modification to the PMMA tube were necessary to enable dilution mode at 45 mK . Cooling-down took 5 days due to the low thermal conductivity of PMMA.

- Placing radiation shields in the beam path to block heat exchange $\dot{Q} \propto \varepsilon T^{4}$ (perfect mirror $\varepsilon=0$, black body $\varepsilon=1$).
- Setting thermal contacts by copper tape at the first radiation shield and by brass springs at the others.

Thermal radiation at temperature T follows the Stefan-Boltzmann law $\dot{Q}=\varepsilon A \sigma T^{4}$ with emission factor ε, area A, constant $\sigma=$ $56.7 \mathrm{nW} \mathrm{m} \mathrm{m}^{-2} \mathrm{~K}^{-4}$, thermal conductivity of PMMA $0.2 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, glass $1 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$, SS $10 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$, copper $400 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$

- Monte Carlo simulation of single photons
- Ray tracing trough the 1.5 m light guide tube

Material	Intensity I[L]	Attenuation λ / m	
	MC Sim. Measured	MC Sim. Measured	
Borosilicate	$36(1) \%$	$1.47(4)$	
PMMA	$37(1) \%$	$1.50(4)$	

Bad path

- Monte Carlo simulation of single photons
- Ray tracing trough the 1.5 m light guide tube

Material	Intensity I[L]		Attenuation λ / m	
	MC Sim.	Measured	MC Sim.	Measured
Borosilicate	$36(1) \%$	$8.4(2) \%$	$1.47(4)$	$0.607(3)$
PMMA	$37(1) \%$	-	$1.50(4)$	-

Bad path

The measurement of Borosilicate shows a drop in intensity by a factor of four because of imperfections in

- surface quality
- transparency

Scattering at the relaxation pod, the copper tape and at scratches from mounting lead to a further significant degradation of the energy resolution.

Mechanical compensation of the PMMA integral thermal contraction $\sim 1 \%$.

SiPM amplifiers: M. Biroth, et al., NIM A 787 (2015) 185-188

Constant pixel gain \boldsymbol{G} control

- Radial interpolated temperature T_{i}
- Individual operational voltage V_{i}
- Pixel capacitance $C_{\text {eff }}$
- Breakdown voltage $V_{B D}$

$$
G=C_{\mathrm{eff}}\left[T_{i}\right]\left(V_{i}-V_{\mathrm{BD}}\left[T_{i}\right]\right):=\text { const. }
$$

Individual pixel gain $\boldsymbol{G}_{\boldsymbol{i}}$ calibration

- For each run:
- Pixel gain G_{i}, pedestal charge Q_{i}^{0} by curve-fitting
- For each event k :
- Fired pixels $n_{k, i}$ with respect to the charge $Q_{k, i}$
- Energy sum E_{k} as total sum of fired pixels

$$
n_{k, i}=\left\lfloor\frac{Q_{k, i}-Q_{i}^{0}}{G_{i}}+\frac{1}{2}\right\rfloor \quad E_{k}=\sum_{i} n_{k, i}
$$

QDC spectrum of detector $i=0$

π^{0}-photoproduction events for which the recoil proton reached the veto detector:

APPT Detection Efficiency for Identified Protons

Definition of the proton detection efficiency ε_{p} :
$\varepsilon_{\mathrm{p}}=\frac{N_{E>0}}{N_{E=0}+N_{E>0}} \cong \varepsilon_{\infty}\left(1-\exp \left[-\ln 2 \frac{T_{\mathrm{p}}}{E_{\mathrm{th}}}\right]\right)$

Detector	Maximum efficiency ε_{∞}	Threshold energy $E_{t h}$
Veto	$0.39-0.59^{*}$	$70 \mathrm{MeV}^{*}$
Active target	$0.55(1)$	$3(1) \mathrm{MeV}$

Result confirmed by a missing mass analysis $\left\langle\varepsilon_{\mathrm{p}}\right\rangle_{\mathrm{MM}} \approx 0.54$
(*) Detection efficiency of the Veto was investigated in the PhD thesis of P.P. Martel

- Field-modulated signal is the derivative of the spectrum
- Spectrum is comparable to TEMPO-doped butanol
- Discontinuities are caused by the base material and the radical

ESR = Electron Spin Resonance, μ Wave frequency $\omega_{\mathrm{ESR}}=2 \pi \times 9.36303 \mathrm{GHz}$,

- Field-modulated signal is the derivative of the spectrum
- Spectrum is comparable to TEMPO-doped butanol
- Discontinuities are caused by the base material and the radical

- Spin density was obtained as the magnitude of the spectrum relative to a DPPH sample
$n=3.55(46) \times 10^{19} \mathrm{~cm}^{-3}$
Reference: $3.0 \times 10^{19} \mathrm{~cm}^{-3}$

ESR = Electron Spin Resonance, μ Wave frequency $\omega_{\mathrm{ESR}}=2 \pi \times 9.36303 \mathrm{GHz}$,
investigated radical density $\mathrm{n}=3.0 \times 10^{19} \mathrm{~cm}^{-3}$, TEMPO spectrum: S.T. Görtz, et al., NIM A526 (2004) 43-52

- Field-modulated signal is the derivative of the spectrum
- Spectrum is comparable to TEMPO-doped butanol
- Discontinuities are caused by the base material and the radical

- Gyromagnetic ratio of glasses is an anisotropic tensor Γ

- Tensor is diagonal in the principal axes $B_{j}=\omega_{\mathrm{ESR}} / \Gamma_{j j}$
- Field-modulated signal is the derivative of the spectrum
- Spectrum is comparable to TEMPO-doped butanol
- Discontinuities are caused by the base material and the radical

- Fringe field by hyperfine coupling to the spin-1 nitrogen
- Diagonal hyperfine tensor $\mathbb{B}_{j j}$ with strong zz-component
- DNP field $B_{0}=2.5 \mathrm{~T}$ results in a resonance $\omega_{\mathrm{e}} \sim 2 \pi \times 70 \mathrm{GHz}$
- spectrum is not simply scaled, but also narrowed

- Principal axes B_{j} transform proportional to the field B_{0}

$$
\omega_{j}=\frac{\omega_{\mathrm{ESR}}}{B_{j}} B_{0}
$$

- Fringe fields add up to B_{0}

$$
\delta \omega_{j} \cong \frac{\omega_{\mathrm{ESR}}}{B_{j}} \delta B_{j}
$$

- hyperfine tensor $\mathbb{B}_{j j}$
- super-hyperfine broadening
- Spin spectrum S_{e} determines the initial polarization growth $\partial P / \partial t$
- Overlapping contributions cancel by the differential solid effect

$$
\frac{\partial P}{\partial t} \propto P_{\mathrm{TE}, \mathrm{e}} \mathbb{P}_{\mathrm{m}}\left(S_{e}\left[\omega_{\mathrm{m}}+\gamma_{\mathrm{H}} B_{0}\right]-S_{e}\left[\omega_{\mathrm{m}}-\gamma_{\mathrm{H}} B_{0}\right]\right)
$$

- Spin spectrum S_{e} determines the initial polarization growth $\partial P / \partial t$
- Overlapping contributions cancel by the differential solid effect

$$
\frac{\partial P}{\partial t} \propto P_{\mathrm{TE}, \mathrm{e}} \mathbb{P}_{\mathrm{m}}\left(S_{e}\left[\omega_{\mathrm{m}}+\gamma_{\mathrm{H}} B_{0}\right]-S_{e}\left[\omega_{\mathrm{m}}-\gamma_{\mathrm{H}} B_{0}\right]\right)
$$

- Optimum polarization growth $\partial P / \partial t$ at $\omega_{\mathrm{m}}^{ \pm}$

- Spin spectrum S_{e} determines the initial polarization growth $\partial P / \partial t$
- Overlapping contributions cancel by the differential solid effect

$$
\frac{\partial P}{\partial t} \propto P_{\mathrm{TE}, \mathrm{e}} \mathbb{P}_{\mathrm{m}}\left(S_{e}\left[\omega_{\mathrm{m}}+\gamma_{\mathrm{H}} B_{0}\right]-S_{e}\left[\omega_{\mathrm{m}}-\gamma_{\mathrm{H}} B_{0}\right]\right)
$$

- Growth is proportional
- to the lattice thermal equilibrium polarization $P_{\text {TE,e }}$
- Spin spectrum S_{e} determines the initial polarization growth $\partial P / \partial t$
- Overlapping contributions cancel by the differential solid effect

$$
\frac{\partial P}{\partial t} \propto P_{\mathrm{TE}, \mathrm{e}} \mathbb{P}_{\mathrm{m}}\left(S_{e}\left[\omega_{\mathrm{m}}+\gamma_{\mathrm{H}} B_{0}\right]-S_{e}\left[\omega_{\mathrm{m}}-\gamma_{\mathrm{H}} B_{0}\right]\right)
$$

- Growth is proportional
- to the lattice thermal equilibrium polarization $P_{\text {TE, } \mathrm{e}}$
- initially to the μ Wave power \mathbb{P}_{m}
- Polarization build-up saturates under high μ Wave power
- Adaptive reduction optimizes the growth during DNP

- Cooling power is limited by the molar flux $\dot{n}_{3 \mathrm{He}}$ into the diluted phase
- Temperature changes typically by $1 / \sqrt{-\dot{n}_{3 \text { He }}(\Delta S / T)}=48 \mathrm{mK} / \sqrt{\mathrm{mW}}$

Molar flux of ${ }^{3} \mathrm{He} \dot{n}_{3 \mathrm{He}}=5.2 \mathrm{mmol} \mathrm{s}^{-1}$, entropy gradient ΔS for ${ }^{3} \mathrm{He}$ phase transition with $(\Delta S / T)=-84 \mathrm{~J} \mathrm{~K}{ }^{-2}$

- Stack optimizes heat exchange by increasing the surface
- 10 scintillator disks $\emptyset 20 \mathrm{~mm} \times 1 \mathrm{~mm}$
-9 PMMA rings $\emptyset 20 \mathrm{~mm} \times \emptyset 18 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
- Optical coupling to the light concentrator by epoxy
- Slitting opens inter-disk volume
- liquid helium circulation provides cooling during DNP
- Stack optimizes heat exchange by increasing the surface
- 10 scintillator disks $\emptyset 20 \mathrm{~mm} \times 1 \mathrm{~mm}$
-9 PMMA rings $\emptyset 20 \mathrm{~mm} \times \emptyset 18 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
- Optical coupling to the light concentrator by epoxy
- Slitting opens inter-disk volume
- liquid helium circulation provides cooling during DNP
- excitation and pick-up coil for NMR measurements
- Stack optimizes heat exchange by increasing the surface
- 10 scintillator disks $\emptyset 20 \mathrm{~mm} \times 1 \mathrm{~mm}$
-9 PMMA rings $\emptyset 20 \mathrm{~mm} \times \emptyset 18 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
- Optical coupling to the light concentrator by epoxy
- Slitting opens inter-disk volume
- liquid helium circulation provides cooling during DNP
- excitation and pick-up coil for NMR measurements
- Continuous wave NMR measurement
- excitation $\omega_{\mathrm{m}} \sim \gamma_{\mathrm{H}} B_{0}$ around the Larmor frequency

- Stack optimizes heat exchange by increasing the surface
- 10 scintillator disks $\emptyset 20 \mathrm{~mm} \times 1 \mathrm{~mm}$
- 9 PMMA rings $\emptyset 20 \mathrm{~mm} \times \emptyset 18 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
- Optical coupling to the light concentrator by epoxy
- Slitting opens inter-disk volume
- liquid helium circulation provides cooling during DNP
- excitation and pick-up coil for NMR measurements
- Continuous wave NMR measurement
- excitation $\omega_{\mathrm{m}} \sim \gamma_{\mathrm{H}} B_{0}$ around the Larmor frequency
- pick-up of the Gaussian energy dissipation ΔE

$$
A:=\int d \omega_{\mathrm{m}} \Delta E \propto-P
$$

An absolute measurement requires a thermal equilibrium calibration:

1. Temperature settles at $T_{\mathrm{TE}} \sim 1 \mathrm{~K}$ after removal of ${ }^{3} \mathrm{He}$
2. Polarization decays exponentially with $\tau_{1, \mathrm{TE}} \sim 46 \mathrm{~min}$ to:

$$
P_{\mathrm{TE}}=\tanh \frac{\hbar \gamma_{\mathrm{H}} B_{0}}{2 k_{\mathrm{B}} T_{\mathrm{TE}}}=0.25 \%
$$

3. Integral relaxes to its thermal equilibrium value A_{TE}

$$
\frac{P}{P_{\mathrm{TE}}} \cong \frac{A}{A_{\mathrm{TE}}}=1-\exp \left[-\frac{t}{\tau_{1, \mathrm{TE}}}\right]
$$

- Non-doped materials are also enclosed by the NMR coil
- Non-polarizable hydrogen constitutes 44% of the NMR signal
- Resonance frequency shift of -160 ppm enables separation

Double-peak structure in the NMR signal

Double-Gaussian curve-fit yields:

$$
A_{\mathrm{TE}}=-50 \mathrm{AU}<\begin{aligned}
& A_{\mathrm{TE}}^{\mathrm{pol}}=-28 \mathrm{AU} \\
& A_{\mathrm{TE}}^{\mathrm{non}}=-22 \mathrm{AU}
\end{aligned}
$$

Blue peak does not polarize under DNP

The actual polarization is calculated as:

$$
P=\frac{P_{\mathrm{TE}}}{A_{\mathrm{TE}}^{\mathrm{pol}}}\left(A-A_{\mathrm{TE}}^{\mathrm{non}}\right)
$$

Maximum polarization and spinlattice relaxation time are low compared to TEMPO-doped Butanol:

Property	Active Target		Butanol target
	Positive	Negative	
Temperature	$>45 \mathrm{mK}$		28 mK
Max. Polarization	46.2%	-49.2%	$\|P\|>80 \%$
Relaxation time	78.5 h	75.4 h	$>1200 \mathrm{~h}$

Approaches to optimize the polarization:

1. Reducing the spin density $\left(\mathrm{n}<1.5 \times 10^{19} \mathrm{~cm}^{-3}\right)$
2. Reducing the temperature to $T<30 \mathrm{mK}$ predicts relaxation times of $\tau_{1}>1000 \mathrm{~h}$
3. Doubling the high field $B_{0}=5 \mathrm{~T}$ corresponds to halving the temperature during DNP

Next Generation Active Target and Polarizable Scintillator

Semi-active Target Concept: A cage of segmented standard plastic scintillators surrounds a Teflon container with doped Butanol inside.

- Fiber readout minimizes the intensity attenuation
- Enables carbon subtraction using an carbon foam
- Doped pellets can be H- or D-Butanol

Semi-active Target Concept: A cage of segmented standard plastic scintillators surrounds a Teflon container with doped Butanol inside.

- Fiber readout minimizes the intensity attenuation
- Enables carbon subtraction using an carbon foam
- Doped pellets can be H- or D-Butanol
- Segmentation provides ϕ-resolution. Efficiency gaps are avoided by dovetailing of the scintillator bars.

- Alternating coupling of the bars could provide θ-resolution by next-neighbor crosstalk.

The next-generation polarizable scintillator could be developed

- by doping in cooperation with the Mainz PRISMA+ Laboratory for Scintillation and Fluorescence Detectors
- by irradiation at ELSA in cooperation with the Bonn Polarized Target Group

First Active Target Concept

Flange (SS) Outer seal (PMMA)

Inner seal (PMMA) Active Head

Semi-active Target Concept

Flange and tube (SS)

Scintillating head with fiber readout

Butanol container (PTFE)

Upcoming work of Andre Klotzbücher

Semi-active Target Concept

Advanced design of the Active Polarized Proton Target enables

- Temperatures down to $\mathrm{T} \sim 45 \mathrm{mK}$
- Helium tightness under thermal cycling
- Single-photon energy resolution

Degree of polarization

Detection capability

- Target spin polarization $|P| \sim 50 \%$
- Spin-lattice relaxation time $\tau_{1} \sim 75 \mathrm{~h}$
- Proton detection efficiency $\varepsilon_{\infty} \sim 55 \%$
- Threshold energy $E_{\text {th }} \sim 3 \mathrm{MeV}$

Advanced design of the Active Polarized Proton Target enables

- Temperatures down to $\mathrm{T} \sim 45 \mathrm{mK}$
- Helium tightness under thermal cycling
- Single-photon energy resolution

Detection capability

- Target spin polarization $|P| \sim 50 \%$
- Spin-lattice relaxation time $\tau_{1} \sim 75 \mathrm{~h}$
- Proton detection efficiency $\varepsilon_{\infty} \sim 55 \%$
- Threshold energy $E_{\text {th }} \sim 3 \mathrm{MeV}$

Thank you for your attention!

Appendix

No unpaired electron spins were found in the supporting materials. The supporting structure is not polarizable by DNP.

Polarized electrons $E_{\mathrm{e} 0}=450 \mathrm{MeV}$ on an amorphous FeCo radiator

- Incoherent Bremsstrahlung with Bethe-Heidler cross-section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E_{\gamma 0}}=\frac{A}{\chi_{0} N_{A}} \frac{1}{E_{\gamma 0}}\left(\frac{4}{3}(1-x)+x^{2}\right) \quad \text { with } x=\frac{E_{\gamma 0}}{E_{\mathrm{e} 0}}
$$

- Transfer of longitudinal electron polarization $P_{\mathrm{e}} \gtrsim 75 \%$ to the circular photon polarization P_{γ}

The spin orientations modulate a dependence on the azimuthal photon angle ϕ_{γ} on the cross-sections $\sigma_{2 x}$ and σ_{3}.
$\vec{\gamma} \int_{L}^{R} \quad \Sigma_{2 x}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}} \quad \frac{\mathrm{d} \sigma_{2 x}}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \Omega}\left(1+P_{\mathrm{N}} P_{\gamma} \sin \phi_{\gamma} \Sigma_{2 x}\right)$

$\vec{\gamma} \sim^{\|} \Sigma_{3}=\frac{\sigma_{\|}-\sigma_{\perp}}{\sigma_{\|}+\sigma_{\perp}} \quad \frac{\mathrm{d} \sigma_{3}}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \Omega}\left(1+P_{\gamma} \cos 2 \phi_{\gamma} \Sigma_{3}\right)$
$\Sigma_{2 x}$ best sensitivity to $\gamma_{\text {E1E1 }}$

$$
\gamma_{\mathrm{E} 1 \mathrm{M} 2}=-\gamma_{\mathrm{E} 1 \mathrm{E} 1}-\frac{1}{2} \gamma_{0}-\frac{1}{2} \gamma_{\mathrm{\pi}}
$$

Data: P.P. Martel, et al., Phys.
Rev. Lett. 114 (2015) 112501
$\Sigma_{2 z}$ best sensitivity to $\gamma_{\mathrm{M} 1 \mathrm{M} 1}$

$$
\gamma_{\mathrm{M} 1 \mathrm{E} 2}=-\gamma_{\mathrm{M} 1 \mathrm{M} 1}-\frac{1}{2} \gamma_{0}+\frac{1}{2} \gamma_{\pi}
$$

Data: D. Paudyal, et al., Phys.
Rev. C 102 (2020) 035205
Σ_{3} best sensitivity to $\gamma_{\mathrm{M} 1 \mathrm{M} 1}$
New data: E. Mornacchi, et al., under internal Rev. (2021)
$\mathrm{E}_{\gamma}=273-303 \mathrm{MeV}-$ Fix $\gamma_{E 1 E 1}$

$\mathrm{E}_{\gamma}=285-305 \mathrm{MeV}-$ Fix $\gamma_{E 1 E 1}$

$\mathrm{E}_{\gamma}=287-307 \mathrm{MeV}-$ Fix $\gamma_{E 1 E 1}$

$\mathrm{E}_{\gamma}=273-303 \mathrm{MeV}-$ Fix $\gamma_{M 1 M 1}$

$\mathrm{E}_{\gamma}=285-305 \mathrm{MeV}-$ Fix $\gamma_{M 1 M 1}$

$\mathrm{E}_{\gamma}=287-307 \mathrm{MeV}-$ Fix $\gamma_{M 1 M 1}$

The π^{0}-photoproduction count rate asymmetry scales with \mathcal{F}. Additionally, an intrinsic transverse target asymmetry \mathcal{T} contributes.

$$
\frac{N_{ \pm}^{\mathrm{R}}-N_{ \pm}^{\mathrm{L}}}{N_{ \pm}^{\mathrm{R}}+N_{ \pm}^{\mathrm{L}}}= \pm \frac{P_{\mathrm{p}} P_{\gamma} \mathcal{F} \sin \phi_{\gamma}}{1 \pm P_{\mathrm{p}} \mathcal{T} \cos \phi_{\gamma}}
$$

Analysis of the 2016, June data by P.P. Martel

Tinne Calculation and Coincidence with the Tagger

TDC spectrum of detector $i=0$

Tagger Coincidence Peak

- For each run: detector specific time reference τ_{i}^{0} by curve-fitting
- For each event: target time t_{k} as the minimum time-to-reference

$$
t_{k}=\tau_{k, m}-\tau_{m}^{0}:\left|\tau_{k, m}-\tau_{m}^{0}\right| \leq\left|\tau_{k, i}-\tau_{i}^{0}\right| \forall i \in[0,14]
$$

- Coincidence with tagged photons is overlapped by a uniform distribution

Tagger Coincidence Spectrum

Accidental photons are the main background contribution

Prompt-Random subtraction

- Prompt events P in a $\pm \Delta t_{P} / 2$ environment around the coincidence peak
- Random events R far off from the coincidence peak with the total width Δt_{R}
- True estimate N of coincident events

$$
N=P-\left(\frac{\Delta t_{P}}{\Delta t_{R}}\right) R
$$

Threading two large contributions requires angular resolution

- Nuclear background by scattering off ${ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$, or heavier nuclei inside the target
- Photon misidentification of one neutral pion decay photon if the other is not detected

Angular resolution was not achievable due to the 1.5 m long light guide tube
(In-)coherent π^{0} events (I) do not include any charged recoil particles. Recoil protons with $E=0$ are not detected (II).

Energy	Case	Contributions	Peak mass	Branching	Average Proton detection efficiency:
$E=0$	I	(in-)coherent	921 MeV	$\kappa_{\mathrm{I}}=0.363$	II
	II	not detected	935 MeV	$\kappa_{\text {II }}=0.295$	
$E>0$	III	detected	-	$\kappa_{\text {III }}=0.342$	$\left\langle\varepsilon_{\mathrm{p}}\right\rangle_{\text {MM }}=\frac{\kappa_{\text {III }}}{\kappa_{\text {III }}+\kappa_{\text {III }}}=0.54$

(In-)coherent processes do not include any charged recoil particles.

If the target fired, only free and quasifree processes are identified. The count rates follow a sine-square distribution.

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{0} \propto \sin ^{2} \theta_{\pi}^{*}
$$

D. Drechsel, et al., Medium effects in coherent pion photo- and electroproduction on ${ }^{4} \mathrm{He}$ and ${ }^{12} \mathrm{C}$,
Nucl. Phys. A 660 (1999) 423-438
Real Compton scattering is a two-body reaction and has a well defined kinematic.

$$
\cos \theta_{\gamma, \mathrm{p}}=\left(1-\frac{m_{p}}{E_{\gamma}}\right) / \sqrt{1+\frac{2 m_{p}}{E_{\gamma 0}-E_{\gamma}}}
$$

Kinematical cuts on the opening angle require angular resolution.

Real Compton scattering is a two-body reaction and has a well defined kinematic.

$$
\cos \theta_{\gamma}=1-m_{p}\left(\frac{1}{E_{\gamma}}-\frac{1}{E_{\gamma 0}}\right)
$$

The detection of the recoil proton is essential for the delimitation of background processes with a kinematical overlap. Critical are quasi-
 free processes, whereby the proton has the initial Fermi momentum p_{F}, that is isotropically oriented. The
 kinetic energy T_{p} from breakup is reduced by the difference in binding energy.

$$
T_{\mathrm{p}}=E_{\gamma 0}-E_{\gamma} \quad T_{\mathrm{p}}^{12 \mathrm{C}}=T_{\mathrm{p}}-\left(m_{\mathrm{p}}+\sqrt{m_{11_{\mathrm{B}}}^{2}+p_{12 \mathrm{C}}^{2}}-m_{12 \mathrm{C}}\right) \cong T_{\mathrm{p}}-16 \mathrm{MeV}
$$

Veto Energy vs Kinetic Energy

APPT Energy vs Kinetic Energy

$$
T_{\mathrm{p}}=E_{\gamma 0}-E_{\gamma} \quad T_{\mathrm{p}}^{12} \mathrm{C}=T_{\mathrm{p}}
$$

Real Compton scattering is a two-body reaction and has a well defined kinematic.

$$
\cos \theta_{\gamma}=1-m_{p}\left(\frac{1}{E_{\gamma}}-\frac{1}{E_{\gamma 0}}\right)
$$

The
of the
essential for the
processes with a kinematical overlap. Critical are
whereby the
proton has the
initial Fermi
momentum p_{F},
that is isotropically
oriented. The
kinetic energy T_{p} from breakup is reduced
by the difference in

The electron radical density effects also the light output of the scintillator.

The radical deteriorates the quantum efficiency to 50% of a standard plastic scintillator or even lower, since wavelengths within the Stokes Shift does not excite the POPOP.

HV/Temp controller "ctrl-appt.online.a2.kph"

Appendix = Angular Resolution

If N photons are unitary distributed over 15 detectors, then $P_{M, N}$ is the probability distribution for M fired detectors.
$P_{M, N}=\sum_{m=0}^{M}(-1)^{m}\binom{15}{M}\binom{M}{m}\left(\frac{M-m}{15}\right)^{N}$
$\langle M\rangle_{N}=15\left(1-(1-1 / 15)^{N}\right)$ is the most probable number of involved detectors.

The measured target energy with respect to the detector multiplicity showed higher intensities distributed over less detectors than expected statistically.

If N
15 distribution for M fired detectors.

$\langle M\rangle_{N}=15\left(1-(1-1 / 15)^{N}\right)$ is the most probable number of involved detectors.

Even considering crosstalk $X_{N, n}$ with the pixel-to-pixel crosstalk probability q does not reproduce the result.

$$
X_{N, n}=\binom{n}{N}(1-q)^{N+1} q^{n-N}
$$

Firing pixels: $\quad n=\frac{N+q}{1-q} \cong \frac{N}{1-q}$

The intensity distribution $\mathrm{d} I / \mathrm{d} x$ of a charged track inside the scintillator stack can be factorized in a geometrical fill factor f, the energy loss in a solid scintillator $\mathrm{d} E / \mathrm{d} x$, and the light transport properties Ψ with respect to the azimuthal angle ϕ.

$$
\frac{\mathrm{d} I}{\mathrm{~d} x} \propto-f \frac{\mathrm{~d} E}{\mathrm{~d} x} \Psi
$$

Caused by the finite stack height H and the disk radius R the maximum path length x_{0} is limited with respect to the polar angle θ and the penetration depth z_{0}.

$$
x_{0}=\frac{R}{\sin \theta} \times\left\{\begin{array}{cll}
\left(H-z_{0}\right) \tan \theta & \mid 0 \leq \theta \leq \theta_{\rightarrow} & \theta_{\rightarrow}=\tan ^{-1} R /\left(H-z_{0}\right) \\
1 & \mid \theta_{\rightarrow} \leq \theta \leq \theta_{\leftarrow} & \\
-z_{0} \tan \theta & \mid \theta_{\leftarrow} \leq \theta \leq \pi & \theta_{\leftarrow}=\pi-\tan ^{-1} R / z_{0}
\end{array}\right.
$$

Scintillator disks of height h are separated by gaps g. The fill-factor f gives the effective length of a track $\left(x_{0}, \theta\right)$ through the target volume in contrast to a solid scintillator.
Definition: $\quad f_{\infty}=\frac{h}{h+g} \quad \xi=\frac{x_{0} \cos \theta}{h+g} \quad n=\left\lceil|\xi|-f_{\infty} / 2\right\rceil$

Fill factor with sharp edges:

$$
f=\left\{\begin{array}{cl}
1 & \left|0<|\xi| \leq f_{\infty} / 2\right. \\
(2 n-1) f_{\infty} / 2|\xi| & \left|f_{\infty} / 2<|\xi| \leq n-f_{\infty} / 2\right. \\
1-n\left(1-f_{\infty}\right) /|\xi| & \left|n-f_{\infty} / 2<|\xi| \leq n+f_{\infty} / 2\right.
\end{array}\right.
$$

Fill factor with Gaussian shaped edges:

$$
f_{\mathrm{B}}=f_{\infty}+\left(1-f_{\infty}\right) j_{0}[2 \pi \xi] \stackrel{h \sim g}{\approx} f * G_{\sigma=h}
$$

For long paths in forward direction the fill factor converges: $f \rightarrow f_{\infty}$

Spherical Bessel function $j_{n}[x]=(-x)^{n}(1 / x \mathrm{~d} / \mathrm{d} x)^{n} \sin x / x$

- All disks are equally likely, since $P_{z} \propto \exp -9 z / 7 \chi_{0}$ with $\chi_{0}=400 \mathrm{~mm}$

Solid scintillator $f_{\infty} x_{0}$

Bessel approximation
$f_{B} x_{0}$

- High sensitivity under $\theta \sim 90^{\circ}$ on the scintillator disk of incidence is assumed to vanish under multiple scattering

$$
\Delta \theta \approx \frac{z_{\mathrm{p}} \psi}{2 T_{\mathrm{p}}} \sqrt{\frac{\Delta x}{\chi_{0}}}\left(1+\alpha \ln \frac{\Delta x}{\chi_{0}}\right)
$$

Approximation: c $p \beta \sim 2 T$, Values for calculation: $\psi=13.6 \mathrm{MeV} \mathrm{m}^{-1}, \alpha=0.038$

Bethe formula describes mean energy loss by inelastic collisions with the shell electrons for heavy particles in thick absorbers.

$$
\left\langle\frac{\mathrm{d} T}{\mathrm{~d} x}\right\rangle=-\frac{\mathrm{d} \epsilon}{\mathrm{~d} x} \frac{1}{\beta^{2}} \cdot\left(\frac{1}{2} \ln \left[\kappa^{2} \frac{\Delta T_{\max }}{2 m_{\mathrm{e}}} \gamma^{2} \beta^{2}\right]-\beta^{2}-C\right)
$$

Assuming low kinetic energy $\beta^{2} \approx 2 T$ / m_{p} leads to an explicit, homogenous differential equation of the first order.

$$
\left\langle\frac{\mathrm{d} T}{\mathrm{~d} x}\right\rangle_{\beta \ll 1} \approx-\frac{\mathrm{d} \epsilon}{\mathrm{~d} x} \cdot \ln \left[\kappa \frac{2 T}{m_{\mathrm{p}}}\right] \cdot \frac{m_{\mathrm{p}}}{2 T}
$$

Solving this equation yields the mean kinetic energy $\langle T\rangle$ with respect to the path length x.

$$
\langle T\rangle=\frac{m_{\mathrm{p}}}{2 \kappa} \cdot \sqrt{\mathrm{li}^{-1}\left[2 \kappa^{2} \frac{\mathrm{~d} \epsilon}{\mathrm{~d} x} \frac{\langle d\rangle-x}{m_{\mathrm{p}}}\right]}
$$

Maximum energy transfer per collision
$\Delta T_{\max }=m_{\mathrm{p}} \gamma^{2} \beta^{2} /\left(\left(m_{\mathrm{e}}^{2}+m_{\mathrm{p}}^{2}\right) /\left(2 m_{\mathrm{e}} m_{\mathrm{p}}\right)+\gamma\right)$

The mean range $\langle d\rangle$ is accomplished after deposition of the full initial kinetic energy T_{i}.

$$
\langle d\rangle=\frac{1}{2 \kappa^{2}} \frac{m_{\mathrm{p}}}{\frac{\mathrm{~d} \epsilon}{\mathrm{~d} x}} \cdot \operatorname{li}\left[\left(\kappa \frac{2 T_{\mathrm{i}}}{m_{\mathrm{p}}}\right)^{2}\right]
$$

Calculated $<\mathrm{d}>$ at $\vartheta=0 \mathrm{~K}$
Data at $\vartheta=0 \mathrm{~K} \vdash-\backsim$

Break-off energy of inelastic scattering on shell electrons

$$
\left\langle T_{0}\right\rangle=\frac{m_{\mathrm{p}}}{2 \kappa} \cdot \sqrt{\mathrm{li}^{-1}[0]}
$$

Maximum energy deposition along the Bragg peak at $x \sim\langle d\rangle$

$$
\frac{\mathrm{d} E}{\mathrm{~d} x}=\left\{\begin{array}{cl}
\frac{\mathrm{d}}{\mathrm{~d} x}\langle T\rangle & \mid x \leq\langle d\rangle \\
0 & \mid x>\langle d\rangle
\end{array} \quad \Delta E=\left\{\begin{array}{cc}
T_{\mathrm{i}}-\langle T\rangle & \mid x \leq\langle d\rangle \\
T_{\mathrm{i}} & \mid x>\langle d\rangle
\end{array}\right.\right.
$$

The light output of the scintillator depends on two properties:

- Surface quality

Following the Fresnel equations, the fraction of reflected light ρ with respect to the refractive index n of the scintillator depends on the angle of incidence α.

$$
\rho=\frac{1}{2}\left(\left(\frac{1-\xi}{1+\xi}\right)^{2}+\left(\frac{1-n^{2} \xi}{1+n^{2} \xi}\right)^{2}\right) \quad \xi=\sqrt{\frac{n^{-2}-\sin ^{2} \alpha}{1-\sin ^{2} \alpha}}
$$

The intensity contribution $I_{\text {ref }}$ by reflective losses follows an exponential law with respect to the number of reflections k.

$$
I_{\text {ref }} \propto \rho^{k} \equiv \mathrm{e}^{-\frac{x}{\lambda_{\text {ref }}}} \quad \lambda_{\text {ref }}=-h \tan \alpha / \ln \rho
$$

- Purity of the base material

Molecules can become excited by absorbing the scintillation light, that is undetectable. The intensity contribution $I_{\text {abs }}$ by internal absorption follows an exponential law with the attenuation length $\lambda_{\text {abs }}$.

$$
I_{\mathrm{abs}} \propto \mathrm{e}^{-\frac{x}{\lambda_{\mathrm{abs}}}}
$$

The radius of the scintillator disks $R=10 \mathrm{~mm}$ is much larger than their thickness of $\mathrm{h}=1 \mathrm{~mm}$. Away from the edge, the light output can be described by an exponential law $I=\exp -l_{\phi} / \lambda$ with the light path l_{ϕ} to the edge and the combined attenuation length $\lambda^{-1}=\lambda_{\text {ref }}^{-1}+\lambda_{\text {abs }}^{-1}$.

$$
l_{\phi}=\sqrt{R^{2}-x_{0}^{2} \sin ^{2} \theta \sin ^{2} \phi}-x_{0} \sin \theta \cos \phi \cong R-x_{0} \sin \theta \cos \phi
$$

The energy deposition of protons can be approximated by a continuous energy loss profile, followed by the Bragg peak at zero kinetic energy.

Continuous loss

$$
\frac{d E}{d x}=\text { const. }
$$

Bragg peak

 $\frac{d E}{d x} \propto \mathrm{D}\left[x-x_{0} \sin \theta\right]$$$
\begin{array}{cccc}
\Psi_{\theta}=\exp \left[-\hat{\delta}_{\theta}\right] \frac{\exp \left[\delta_{\theta} \cos \phi\right]-1}{\delta_{\theta} \cos \phi} & & \text { Intensity profile } & \Psi=\exp \left[-\hat{\delta}_{\theta}\right] \exp \left[\delta_{\theta} \cos \phi\right] \\
\delta_{\theta}=\frac{x_{0}}{\lambda} \sin \theta & \hat{\delta}_{\theta}=\frac{R}{\lambda} & \text { Log-dynamic range } & \delta=2 \delta_{\theta} \\
\sigma_{\theta}=1 / \sqrt{\delta_{\theta}} & \check{\sigma}_{\theta}=\sqrt{\lambda / R} & \text { Gaussian width } & \sigma=\sqrt{2 / \delta}=1 / \sqrt{\delta_{\theta}}
\end{array}
$$

Assumption: The light transport in the tube is lossy because of surface defects. Therefore, only straight tracks survive. Gaussian filtering of the intensity map is able to conserve the finest structure $\breve{\sigma}_{\theta}=\sqrt{\lambda / R}$, that is identical for tracks and Bragg peaks.

Contribution area Maximum search window Binomial filter $\mathrm{N}=7$ Density estimation $\sigma=\sigma_{7}$

- The maximum of the distribution should be related to the azimuthal angle ϕ.
- The dynamic range of forward/backward tracks should be related to the polar angle $\delta_{\theta} \propto \tan \theta$.

The correlation between the dynamic range and the missing proton angle from π^{0} photoproduction were determined.

Polar Angle Reconstruction

Correlation:

$$
\tan \theta / \delta=0.54(5)
$$

Corresponding attenuation:

$$
\lambda=3.9(5) \mathrm{mm}
$$

Shrinking to a fixed correlation did not remove the ${ }^{12} \mathrm{C}$ background.

The angular mixing in the beam/light guide tube destroys the azimuthal angular information.

- The maximum of the intensity distribution shows no correlation with ϕ.
- Selecting the first fired detector shows no correlation with ϕ.

APPT Phi vs Detector Position

APPT Phi vs Detector Position from Timing

The properties of light transport are derived from a simple model.
Δz is the step z-increment per traveled arc with respect to the effective radius R and the tangential injection angle β :

$$
\Delta z=2 \pi R \tan \beta
$$

$\phi^{*} \in(-\infty, \infty)$ is the extended detection angle after outrunning the full tube length $L_{\text {tube }}$:

$$
\phi^{*}=2 \pi \frac{L}{\Delta z} \quad \Delta \beta= \pm 1^{\circ} \rightarrow \Delta \phi^{*}= \pm 130^{\circ}
$$

Δt is the time resolution to distinguish between photons with different detection angles:

$$
\Delta t=\frac{L}{c_{0} / n} \sqrt{1+\left(\frac{R}{L}\right)^{2} \Delta \phi^{* 2}} \quad \Delta \phi^{*}= \pm 24^{\circ} \rightarrow \Delta t= \pm 38 \mathrm{fs}
$$

$$
\text { Effective tube radius } R_{\text {tube }}=\left(R_{\text {out }}+R_{\mathrm{in}}\right) / 2=11.5 \mathrm{~mm} \text {, tube length } L_{\text {tube }}=1.5 \mathrm{~m} \text {, refractive index of PMMA } n=1.49
$$

The measured intensity I_{n} is reduced by reflective losses and the initial intensity can be approximated by the most-probable intensity. Therefor the k-th moment of the Binomial distribution $\left\langle I_{n}^{k}\right\rangle_{\mathrm{MP}}$ can be calculated by:

$$
\left\langle I_{n}^{k}\right\rangle_{\mathrm{MP}}=\sum_{I=I_{n}}^{\infty} I^{k}\binom{I}{I_{n}} p_{\text {tube }}^{I_{n}}\left(1-p_{\text {tube }}\right)^{I-I_{n}}
$$

The most-probable intensity $\left\langle I_{n}\right\rangle_{\mathrm{MP}}>0$ is obtained from the $1^{\text {st }}$ moment:
$\left\langle I_{n}\right\rangle_{\mathrm{MP}}:=\frac{\left\langle I_{n}^{1}\right\rangle_{\mathrm{MP}}}{\left\langle I_{n}^{0}\right\rangle_{\mathrm{MP}}}=\frac{1-p_{\text {tube }}}{p_{\text {tube }}}+\frac{I_{n}}{p_{\text {tube }}} \quad \leftrightarrow \quad p_{\text {tube }}=\frac{I_{n}+1}{\left\langle I_{n}\right\rangle_{\mathrm{MP}}+1}$
The error of initial and measured intensity are directly correlated and calculated by help of the $2^{\text {nd }}$ moment:
$\Delta I_{n}=p_{\text {tube }} \Delta I_{n, \mathrm{MP}}=p_{\text {tube }} \sqrt{\frac{\left\langle I_{n}^{2}\right\rangle_{\mathrm{MP}}}{\left\langle I_{n}^{0}\right\rangle_{\mathrm{MP}}}-\left(\frac{\left\langle I_{n}^{1}\right\rangle_{\mathrm{MP}}}{\left\langle I_{n}^{0}\right\rangle_{\mathrm{MP}}}\right)^{2}}=\sqrt{1-p_{\text {tube }}} \sqrt{I_{n}+1}$
For a very lossy ($p_{\text {tube }} \ll 1$) light guide one obtains the same result as from Poisson distribution and the incremented intensity $\left(I_{n}+1\right)$ is proportional to the most-probable intensity.

$$
\lim _{p_{\text {tube } \rightarrow 0}}\left\langle I_{n}\right\rangle_{\mathrm{MP}}=\frac{I_{n}+1}{p_{\text {tube }}} \quad \lim _{p_{\text {tube } \rightarrow 0}} \Delta I_{n}=\sqrt{I_{n}+1}
$$

The point-source was placed under the angle of detector 0 .

The intensity-weighted path lengths follow a Weibull distribution.

No angular resolution can be achieved with the light guide tube.

Appendix = SiPM Spectrum and Cryogenic Properties

Depending on the placement of the optical detectors, the operational condition change dramatically. Only one single type was matching the requirements:

- Photomultiplier tubes: sensitive to magnetic fields, He diffusion
- Avalanche photodiodes: low internal gain $10^{2}-10^{3} e_{0} / \gamma$
- Super-conducting nanowires: no sensitivity in the visible range
- Silicon photomultipliers (SiPM): study in cryogenic characteristics needed

The development of the differential transimpedance SiPM amplifiers with pseudo-floating shielding enabled the required 2.5 m connection cables between SiPM and amplifier:

- The differential readout increases the signal-to-noise ratio by a factor $\sqrt{2}$.
- The fully-differential topology provides excellent common-mode noise suppression.

The number of fired pixels n of a SiPM with respect to the number of incident photons i is increased by the (optical) crosstalk.

The combinatorics of the fired pixels

$$
i=n \quad i=n-1 \quad i=n-2
$$ composition is calculated by the Binomial coefficient. The probability of a specific composition follows a Binomial distribution $B_{i, n}$ with the crosstalk probability q.

$$
B_{i, n}=\binom{n}{i}(1-q)^{i} q^{n-i}
$$

$\gamma \gamma \gamma$

Dark count events are always triggered by a single thermally activated pixel. The spectrum follows for $i=1$:

$$
D_{n}=\mathcal{N} B_{1, n}=n(1-q)^{2} q^{n-1}
$$

The fluctuation of a coherent light source in emitting i photons follows a Poisson distribution $P_{i}=\mathrm{e}^{-\lambda} \lambda^{i} / i$! with the mean number of photons λ. The probability of an event with n fired pixels is given by the probability Ω_{n}.

$$
\Omega_{n}=\mathcal{N} \sum_{i=1}^{n} P_{i} B_{i, n}=\frac{(1-q) q^{n}}{\mathrm{e}^{\lambda}-1}\left(\mathcal{L}_{n}\left[-\frac{1-q}{q} \lambda\right]-1\right)
$$

The spectrum S_{n} is obtained by considering the charge distribution of the pedestal distribution G_{0} with the noise σ_{0} and the n-pixel peaks G_{n}.

$$
S_{n}=\mathrm{e}^{-\lambda} G_{0}+\left(1-\mathrm{e}^{-\lambda}\right) \sum_{n} \Omega_{n} G_{n}
$$

The mean charge of an n-pixel event appears as the n-fold of the Gaussian distributed single-pixel gain g_{SP}. The variation of the single-pixel gain σ_{SP} leads to a broadening of the n-pixel distribution by the factor \sqrt{n}.

$$
\begin{aligned}
& G_{n} \propto \exp -\frac{1}{2} \frac{\left(Q-n g_{\mathrm{SP}}\right)^{2}}{\sigma_{0}^{2}+n \sigma_{\mathrm{SP}}^{2}} g_{\mathrm{SP}}=\left\langle g_{j}\right\rangle \\
& \sigma_{\mathrm{SP}}=\sqrt{\left\langle g_{j}^{2}\right\rangle-\left\langle g_{j}\right\rangle^{2}}
\end{aligned}
$$

Laguerre polynomials $\mathcal{L}_{n}=\sum_{i=0}^{n}\binom{n}{k}(-x)^{k} / k$!
Number of incident photons $\lambda=\eta \lambda_{\text {initial }}$ is reduced by the Photon detection efficiency (PDE) η

Charge spectra at single-photon intensity

Optical cross and band-band tunneling

Optimum peak resolution

Photo-detection efficiency

Poisson and Binomial distribution can be approximated by Gaussian distributions for large intensities $\lambda \rightarrow \infty$ and many fired pixels $n \rightarrow \infty$ respectively:

$$
P_{i, \lambda \rightarrow \infty} \propto \exp -\frac{1}{2}\left(\frac{i-\lambda}{\sqrt{\lambda}}\right)^{2} \quad B_{i, n \rightarrow \infty} \propto \exp -\frac{1}{2}\left(\frac{i-(1-q) n}{\sqrt{q(1-q) n}}\right)^{2}
$$

The probability distribution can be calculated as a continuous integral. It has a Gaussian form with the central intensity μ and the standard deviation σ :

$$
\begin{aligned}
P_{n} & \cong \mathcal{N} \int_{0}^{n} \mathrm{~d} i P_{i, \lambda \rightarrow \infty} B_{i, n \rightarrow \infty} \cong \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2} \\
\mu & =\frac{\lambda}{1-q} \quad \sigma
\end{aligned} \begin{aligned}
& \frac{\mu+n q}{1-q} \\
& \substack{n \sim \mu} \\
& \frac{1+q}{1-q} \mu
\end{aligned}
$$

Appendix = Polarization Relaxation, Measurement, Build-up

The lattice \mathcal{H}_{L} can be treated as one dimensional oscillator with creation a_{j}^{\dagger} and annihilation a_{j} operators of optical phonon modes $\hbar \omega_{\mathrm{ph}, j}$.

$$
\mathcal{H}_{\mathrm{L}}=\sum_{j} \hbar \omega_{\mathrm{ph}, j}\left(a_{j}^{\dagger} a_{j}+\frac{1}{2}\right)
$$

The spin-lattice coupling $\mathcal{H}_{\text {SLC }}$ with the complex coupling constants $\Omega^{ \pm}$enables spin flips by phonon absorption and emission.

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{SLC}} \propto \sum_{j}\left(\Omega^{-} \sigma_{\mathrm{e}}^{+} a_{j}+\Omega^{+} \sigma_{\mathrm{e}}^{-} a_{j}^{\dagger}\right) \\
& \mathcal{H}_{\mathrm{SLC}}|n\rangle_{\mathrm{ph}}|\uparrow\rangle_{\mathrm{e}}=|n+1\rangle_{\mathrm{ph}}|\downarrow\rangle_{\mathrm{e}} \\
& \mathcal{H}_{\mathrm{SLC}}|n\rangle_{\mathrm{ph}}|\downarrow\rangle_{\mathrm{e}}=|n-1\rangle_{\mathrm{ph}}|\uparrow\rangle_{\mathrm{e}}
\end{aligned}
$$

The statistic nature of the process leads to a relaxation of the electron polarization P_{e} to the thermal equilibrium polarization $P_{\mathrm{TE}, \mathrm{e}}$ with the electron spin-lattice relaxation time $\tau_{1, \mathrm{e}}$.

$$
\frac{\partial}{\partial t} P_{\mathrm{e}}=-\frac{1}{\tau_{1, \mathrm{e}}}\left(P_{\mathrm{e}}-P_{\mathrm{TE}, \mathrm{e}}\right) \quad \tau_{1, \mathrm{e}} \propto \frac{P_{\mathrm{TE}, \mathrm{e}}}{\omega_{\mathrm{e}}^{5}}
$$

Within the diffusion boundary \vec{r} with $n=4$, the nuclear resonance frequency $\omega_{I}^{\prime} \neq \omega_{\mathrm{I}}$ is still affected by the dipolar coupling to the electron spin.

$$
r:=|\vec{r}| \propto\left(\frac{3 \sin ^{2} \Theta \cos ^{2} \Theta}{4 \mathcal{D}}\right)^{1 / n}
$$

The mutual coupling between nuclear spins inside and beyond the diffusion boundary is reduced. Therefore, the nuclear spin-lattice relaxation time $\tau_{1, \mathrm{I}}$ depends on $\tau_{1, \mathrm{e}}$ to the power $1 / n$ with $n \approx 4$.

Direct nuclear spin-lattice relaxation induces a coupled electron-nuclear spin flip under absorption or emission of a phonon. Indirect relaxation takes place by dipolar coupling of electron and nuclear spins.

$$
\tau_{1, \mathrm{I}} \propto \frac{\omega_{\mathrm{I}}^{2}}{1-P_{\mathrm{TE}, \mathrm{e}}^{2}} \tau_{1, \mathrm{e}}^{1 / n} \propto \frac{P_{\mathrm{TE}, \mathrm{e}}^{1 / n}}{1-P_{\mathrm{TE}, \mathrm{e}}^{2}} \frac{\omega_{\mathrm{I}}^{2}}{\omega_{\mathrm{e}}^{5 / n}}
$$

$$
n=5\left(2-\frac{\ln \tau_{1,0}-\ln \tau_{1, \mathrm{HF}}}{\ln B_{0}-\ln B_{\mathrm{HF}}}\right)^{-1}=4.2871(79)
$$

A spin with polarization vector \vec{P} in a magnetic field \vec{B} undergoes precession with the Larmor frequency $\vec{\omega}$ following the Bloch equations.

$$
\frac{\partial}{\partial t} \vec{P}=-\vec{\omega} \times \vec{P}
$$

The (micro-)canonical ensemble requires a vanishing transverse component \vec{P}_{\perp} to reach an equilibrium state.

$$
\lim _{t \rightarrow \infty} \stackrel{\rightharpoonup}{P}_{\perp} \equiv \vec{o} \quad \lim _{t \rightarrow \infty} P_{z} \equiv P_{\mathrm{TE}}=\tanh \frac{\hbar \omega_{0}}{2 k_{\mathrm{B}} T}
$$

Mutual dipolar coupling enables flipflop transitions $\mathcal{H}_{\mathrm{FF}}$, that lead to homogeneous broadening $\Delta \omega_{\mathrm{FF}}$ of the ω_{0}. In the time domain the perpendicular polarization decays with the transverse spin-spin relaxation time τ_{2}.

$$
\begin{array}{rlr}
\mathcal{H}_{\mathrm{FF}} & \propto \sum_{j, k} \delta_{j, k}\left(\sigma_{j}^{+} \sigma_{k}^{-}+\sigma_{j}^{-} \sigma_{k}^{+}\right) & \tau_{2}=\frac{2}{\Delta \omega_{\mathrm{FF}}} \\
& \mathcal{H}_{\mathrm{FF}}|\downarrow\rangle|\uparrow\rangle=|\uparrow\rangle|\downarrow\rangle \\
\mathcal{H}_{\mathrm{FF}}|\uparrow\rangle|\downarrow\rangle=|\downarrow\rangle|\uparrow\rangle & \frac{\partial}{\partial t} \stackrel{\rightharpoonup}{P}_{\perp}=-\frac{1}{\tau_{2}} \stackrel{\rightharpoonup}{P}_{\perp}
\end{array}
$$

The spins are exited by a high-frequency field ω_{m} around the hydrogen resonance $\omega_{0}=\gamma_{\mathrm{I}} B_{0}$ with magnitude $2 \omega_{1}$. The effective field $\vec{\omega}^{\mathrm{R}}$ in the rotating frame is constant in time.

$$
\vec{\omega}_{1}=2 \omega_{1} \cos \omega_{\mathrm{m}} t \vec{e}_{x} \quad \circlearrowright \omega_{\mathrm{m}} t \quad \vec{\omega}^{\mathrm{R}} \cong\left(\begin{array}{c}
\omega_{1} \\
0 \\
\omega_{0}-\omega_{\mathrm{m}}
\end{array}\right)
$$

The excitation adds additional terms to the equation of motion for the polarization P^{R} in the rotating frame.

$$
\frac{\partial}{\partial t} \vec{P}^{\mathrm{R}}=\left(\begin{array}{cccc}
-1 / \tau_{2} & \left(\omega_{0}-\omega_{\mathrm{m}}\right) & 0 & 0 \\
-\left(\omega_{0}-\omega_{\mathrm{m}}\right) & -1 / \tau_{2} & \omega_{1} & 0 \\
0 & -\omega_{1} & -1 / \tau_{1} & 1 / \tau_{1}
\end{array}\right)\left(\begin{array}{c}
\vec{P}^{\mathrm{R}} \\
\\
P_{\mathrm{TE}}
\end{array}\right):=\vec{o}
$$

The static solution yields the complex perpendicular polarization \bar{P}_{\perp} that is proportional to complex magnetization \bar{M}_{\perp} with the number of spins N and the gyromagnetic ratio γ.

$$
\vec{P}^{\mathrm{R}}=\frac{P_{\mathrm{TE}}}{1+\tau_{1} \tau_{2} \omega_{1}^{2}+\tau_{2}^{2}\left(\omega_{0}-\omega_{\mathrm{m}}\right)^{2}}\left(\begin{array}{c}
\tau_{2}^{2} \omega_{1}\left(\omega_{0}-\omega_{\mathrm{m}}\right) \\
\tau_{2} \omega_{1} \\
1+\tau_{2}^{2}\left(\omega_{0}-\omega_{\mathrm{m}}\right)^{2}
\end{array}\right) \quad \begin{aligned}
& \bar{P}_{\perp}=\left(P_{x}^{\mathrm{R}}+j P_{y}^{\mathrm{R}}\right) \exp j \omega_{\mathrm{m}} t \\
& \bar{M}_{\perp}=N \gamma \frac{\hbar}{2} \bar{P}_{\perp}
\end{aligned}
$$

The induced spin precession adds the Lorentzian energy distribution $\Delta E_{\leftrightarrows}$ per cycle to the deflected wave.

For the a non-saturated ESR $\omega_{1} \ll$ $1 / \sqrt{\tau_{1} \tau_{2}}$, the width Γ would equal the natural line width. In NMR, homogenous broadening leads to a Gaussian form.

The frequency integral A is directly proportional to the number of spins N in the sample and to their polarization P.

The NMR coil is perpendicularly oriented to the polarization coil. The spins are exited by a high-frequency field ω_{m} around the hydrogen resonance $\omega_{0}=\gamma_{\mathrm{I}} B_{0}$ with magnitude $2 \omega_{1}$.

$$
\Gamma=\sqrt{1+\tau_{1} \tau_{2} \omega_{1}^{2}} \frac{2}{\tau_{2}}
$$

τ_{1} : spin-lattice relaxation time τ_{2} : spin-spin relaxation time

$$
A=-2 \pi \Omega \hbar \omega_{1} \times N P \quad \text { with } \quad \Omega=\frac{\pi \omega_{1}}{\sqrt{1+\tau_{1} \tau_{2} \omega_{1}^{2}}}
$$

The solid effect is the $1^{\text {st }}$ order mechanism in DNP.

11111
 A hydrogen spin sample is doped with a paramagnetic free radical.

.
A microwave field induces a coupled e-H spin flip by super-hyperfine interaction.

19111 ๑1111

Polarization spreads out by mutual $\mathrm{H}-\mathrm{H}$ interaction.

The electron spin flips back by spin-lattice relaxation.

If the nuclear gyromagnetic ratio is in the order of the ESR line, the polarization transfer by the solid effect is suppressed.

- A hydrogen spin sample is doped with a IIII $\downarrow \downarrow$ paramagnetic free radical.

-an1111

Polarization is transferred to the nucleon off-resonance by a triple spin flip.

Polarization spreads out by mutual $\mathrm{H}-\mathrm{H}$ interaction.

$$
\frac{g_{\mathrm{e}}-2}{2}=\frac{\alpha_{\mathrm{em}}}{2 \pi}+\cdots=1.160 \times 10^{-3}
$$

The g-factor of a free electron g_{e} is calculatable by the QED. If free electron spins are embedded in a single-crystal, they show isotropic alignment under an applied magnetic field.

Amorphous Polystyrene is a glass, since the position of the Phenyl group is randomly distributed.

$$
\frac{g_{j j-2}}{2}=\frac{\hbar \omega_{\mathrm{m}}}{2 \mu_{\mathrm{B}} B_{j}}-1=\left(\begin{array}{lll}
4.4 & & \\
& 2.9 & \\
& & 0.5
\end{array}\right) 10^{-3}
$$

It follows, resonance condition is degenerated. The resulting g-tensor $g_{j j}$ is anisotropic and can be diagonalized in the principal axes B_{j}.

The radical 4-Oxo-TEMPO offers an unpaired electron spin \vec{r}_{e} at the nitroxide group, that is hyperfine-coupled to the spin1 nitrogen \vec{r}_{I} in the distance $\vec{r}=\vec{r}_{\mathrm{I}}-\vec{r}_{\mathrm{e}}$.

The hyperfine Hamiltonian $\mathcal{H}_{\mathrm{HF}}$ can be described as an dipolar interaction using the symmetric magnetic field tensor \mathbb{B}.

$$
\mathcal{H}_{\mathrm{HF}}=-\vec{\sigma}_{\mathrm{e}} \hbar \mathbb{B} \gamma_{\mathrm{I}} \vec{\sigma}_{\mathrm{I}} \approx-m_{\mathrm{I}} \sigma_{\mathrm{e}, z} \hbar \mathbb{B}_{z z} \gamma_{\mathrm{I}}
$$

Its strong $z z$-component leads to characteristic discontinuities in the z-axis with the quantum numbers $m_{I} \in[-1,0,+1]$ to the ${ }^{14} \mathrm{~N}$ Eigenstates $\left|m_{\mathrm{I}}\right\rangle$.

```
Gyromagnetic ratio tensor }\mp@subsup{\Gamma}{j}{}=\mp@subsup{g}{jj}{}\mp@subsup{\mu}{\textrm{B}}{}/\hbar\mathrm{ ,
Bohr magneton }\mp@subsup{\mu}{\textrm{B}}{}=\mp@subsup{e}{0}{}\hbar/2\mp@subsup{m}{\textrm{e}}{}\mathrm{ ,
Excitation frequency }\mp@subsup{\omega}{\textrm{ESR}}{}=\mp@subsup{\Gamma}{j}{}\mp@subsup{B}{j}{}=2\pi\times9.36303\textrm{GHz
```

- Groth $\partial P / \partial t$ is initially proportional to the μ Wave power \mathbb{P}_{m}
- Overlapping contributions cancel by the differential solid effect

$$
\partial P / \partial t \propto \mathbb{P}_{\mathrm{m}} P_{\mathrm{TE}, \mathrm{e}}\left(S_{e}\left[\omega_{\mathrm{m}}+\omega_{\mathrm{H}}\right]-S_{e}\left[\omega_{\mathrm{m}}-\omega_{\mathrm{H}}\right]\right)
$$

The maximum achievable polarization P_{∞} depends on the asymmetry of the overlapping spectrum contributions, reduced by the factor ξ.

$$
P_{\infty}=P_{\mathrm{TE}, \mathrm{e}} \frac{S_{e}\left[\omega_{\mathrm{m}}+\omega_{\mathrm{H}}\right]-S_{e}\left[\omega_{\mathrm{m}}-\omega_{\mathrm{H}}\right]}{S_{e}\left[\omega_{\mathrm{m}}+\omega_{\mathrm{H}}\right]+S_{e}\left[\omega_{\mathrm{m}}-\omega_{\mathrm{H}}\right]+\xi}
$$

The cryostat has the cooling power $\dot{Q}_{\mathrm{c}}=\alpha T^{2}, \alpha=-\dot{n}_{3 \mathrm{He}}\left(\frac{\Delta S}{T}\right)=0.44 \mu \mathrm{~W} \mathrm{mK}^{-2}$. The temperature T_{m} is expected to depend on the square root of the $\mu \mathrm{Wave}$ power \mathbb{P}_{m}. The measured temperature $\widetilde{T}_{\mathrm{m}}$ shows a dependence of the power $1 / n$ with $n=3.4$ due to a bolometric voltage drop over the probe.

$$
T_{\mathrm{m}}=\sqrt{T_{0}^{2}+\mathbb{P}_{\mathrm{m}} / \alpha} \quad \tilde{T}_{\mathrm{m}}=\left(T_{0}^{n}+\mathbb{P}_{\mathrm{m}} / \tilde{\alpha}\right)^{1 / n}
$$

Microwave power
Temperature fits

Power-off temperature $T_{0}=60 \mathrm{mK}$, conversion factor $\tilde{\alpha}=61.7 \mathrm{~mW} \mathrm{~K}^{n}$

Appendix = Energy Expansion of the Hamiltonian

The $0^{\text {th }}$ order Hamiltonian describes the scattering of a wave with the electromagnetic 4-potenial $A^{\mu}=\left(A_{0}, \vec{A}\right)$ off a particle with charge e_{0} and mass m, resulting in the covariant momentum $\vec{\pi}$:

$$
\mathscr{H}_{\mathrm{eff}}^{(0)}=e_{0} A_{0}+\frac{1}{2 m} \vec{\pi}^{2} \quad \vec{\pi}=\vec{p}-e_{0} \vec{A}
$$

The measured cross-section is given by the Thomson crosssection, only depending on the scattering angle θ :

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Thomson }}=\frac{1}{2}\left(\frac{e_{0}^{2}}{m}\right)^{2}\left(1+\cos ^{2} \theta\right)
$$

The $1^{\text {th }}$ order Hamiltonian describes the scattering off a particle with anomalous magnetic moment κ and spin $\vec{\sigma}$. Therein, $\vec{E}=-\vec{\nabla} A_{0}-\dot{\vec{A}}$ is the electrical and $\vec{H}=\vec{\nabla} \times \vec{A}$ the magnetic field.

$$
\mathscr{S}_{\mathrm{eff}}^{(1)}=-\frac{e_{0}(1+\kappa)}{2 m} \vec{\sigma} \cdot \vec{H}-\frac{e_{0}(1+2 \kappa)}{8 m^{2}} \vec{\sigma} \cdot(\vec{E} \times \vec{\pi}-\vec{\pi} \times \vec{E})
$$

The corresponding Powell cross-section is the Born contribution.

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Born }}= & \frac{1}{2}\left(\frac{e_{0}^{2}}{m}\right)^{2}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta=\right.\text { Klein-Nishina cross-section } \\
& +\kappa \frac{\omega \omega^{\prime}}{m^{2}} 2(1-\cos \theta)^{2}+\kappa^{2} \frac{\omega \omega^{\prime}}{m^{2}}\left\{4(1-\cos \theta)+\frac{1}{2}(1-\cos \theta)^{2}\right\} \\
& \left.+\kappa^{3} \frac{\omega \omega^{\prime}}{m^{2}}\left\{2(1-\cos \theta)+(1-\cos \theta)^{2}\right\}+\kappa^{4} \frac{\omega \omega^{\prime}}{m^{2}}\left\{1+\frac{1}{2}(1-\cos \theta)^{2}\right\}\right)
\end{aligned}
$$

The $2^{\text {th }}$ order Hamiltonian describes the response of the electric and magnetic density of the nucleon to static fields by the scalar polarizabilities, resulting in an electric $\vec{\varepsilon}=4 \pi \alpha_{\mathrm{E} 1} \vec{E}$ and magnetic $\vec{\mu}=4 \pi \beta_{\mathrm{M} 1} \vec{H}$ dipole moment.

$$
\mathscr{H}_{\mathrm{eff}}^{(2)}=-4 \pi\left(\frac{1}{2} \alpha_{\mathrm{E} 1} \vec{E}^{2}+\frac{1}{2} \beta_{\mathrm{M} 1} \vec{H}^{2}\right)
$$

The polarized differential cross-section can be given in the Low Energy Expansion:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{LEX}}=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Born}}-\omega \omega^{\prime}\left(\frac{\omega^{\prime}}{\omega}\right)^{2} \frac{e_{0}^{2}}{m}\left(\frac{\alpha_{\mathrm{E} 1}+\beta_{\mathrm{M} 1}}{2}(1+\cos \theta)^{2}+\frac{\alpha_{\mathrm{E} 1}-\beta_{\mathrm{M} 1}}{2}(1-\cos \theta)^{2}\right)
$$

The $3^{\text {th }}$ order Hamiltonian depends on the dynamics of the nucleon spin $\vec{\sigma}$ interacting with the fields \vec{E} and \vec{H} of the scattering photon.

$$
\mathscr{S}_{\mathrm{eff}}^{(3)}=-4 \pi\left(\frac{1}{2} \gamma_{\mathrm{E} 1 \mathrm{E} 1} \vec{\sigma} \cdot(\vec{E} \times \dot{\vec{E}}) \quad+\frac{1}{2} \gamma_{\mathrm{M} 1 \mathrm{M} 1} \vec{\sigma} \cdot(\vec{H} \times \dot{\vec{H}})\right.
$$

$$
\left.-\frac{1}{2} \gamma_{\mathrm{M} 1 E 2} \sigma_{i} H_{j}\left(\nabla_{i} E_{j}+\nabla_{j} E_{i}\right)+\frac{1}{2} \gamma_{\mathrm{E} 1 \mathrm{M} 2} \sigma_{i} E_{j}\left(\nabla_{i} H_{j}+\nabla_{j} H_{i}\right)\right)
$$

The spin polarizabilities are proportional to the direction and magnitude of the excited spin precession.

Multipole expansion

$$
\text { El-photon } \quad \text { Ml-photon }
$$

Change in parity

$$
P_{\mathrm{f}}=P_{\mathrm{i}}(-1)^{l} \quad P_{\mathrm{f}}=P_{\mathrm{i}}(-1)^{l+1}
$$

Change in angular momentum

$$
\left|j_{\mathrm{i}}-j_{\mathrm{f}}\right| \leq l \leq j_{\mathrm{i}}+j_{\mathrm{f}}
$$

Transition probability

$$
W_{\mathrm{fi}}=\frac{1}{\tau} \propto E_{\gamma}^{2 l+1}
$$

Center-of-mass photon energy:

$$
\omega_{\mathrm{CM}}=m_{\mathrm{p}} \gamma_{\mathrm{CM}} \beta_{\mathrm{CM}}=m_{\mathrm{p}} \frac{E_{\gamma 0}}{\sqrt{S}}
$$

$$
E_{\gamma 0}=300 \mathrm{MeV} \rightarrow \omega_{\mathrm{CM}}=234 \mathrm{MeV}
$$

Center-of-mass energy:
Center-of-mass velocity:

$$
s=m_{\mathrm{p}}\left(m_{\mathrm{p}}+2 E_{\gamma 0}\right) \quad \beta_{\mathrm{CM}}=\frac{E_{\gamma 0}}{m_{\mathrm{p}}+E_{\gamma 0}}
$$

H.W. Grießhammer, et al., Eur. Phys. J. A 54 (2018) 37

The forward and backward γ_{0}, γ_{π} spin polarizabilities shrink the parameter space, since they are linear combinations of $\gamma_{\mathrm{E} 1 \mathrm{E} 1}, \gamma_{\mathrm{M} 1 \mathrm{M} 1}, \gamma_{\mathrm{E} 1 \mathrm{M} 2}, \gamma_{\mathrm{M} 1 \mathrm{E} 2}$.

Forward spin polarizability (J. Ahrens 2001, H. Dutz 2003)

$$
\gamma_{0}=-\gamma_{\mathrm{E} 1 \mathrm{E} 1}-\gamma_{\mathrm{M} 1 \mathrm{M} 1}-\gamma_{\mathrm{E} 1 \mathrm{M} 2}-\gamma_{\mathrm{M} 1 \mathrm{E} 2}=-\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \mathrm{d} \omega \frac{\sigma_{3 / 2}-\sigma_{1 / 2}}{\omega^{3}} \quad \text { (Gerasimov-Drell- } \quad \text { Hearn sum rule) }
$$

Backward spin polarizability (M. Camen 2002, dispersion analysis of Compton $\theta_{\gamma}^{\mathrm{CM}}=135^{\circ}$)

$$
\gamma_{\pi}=\gamma_{\pi}^{\pi \mathrm{P}}+\gamma_{\pi}^{\mathrm{disp}} \quad \gamma_{\pi}^{\mathrm{disp}}=-\gamma_{\mathrm{E} 1 \mathrm{E} 1}+\gamma_{\mathrm{M} 1 \mathrm{M} 1}-\gamma_{\mathrm{E} 1 \mathrm{M} 2}+\gamma_{\mathrm{M} 1 \mathrm{E} 2} \quad \text { (dispersive contribution) }
$$

	Prediction		Experiment
	HDPV	BXPT	
γ_{0}	-0.8	-1.0	$-1.01 \pm 0.08 \pm 0.10$
$\gamma_{\pi}^{\text {disp }}$	9.4	7.2	8.0 ± 1.8

All values are in units of $10^{-4} \mathrm{fm}^{4}$
$\gamma_{\pi}=-38.7 \times 10^{-4} \mathrm{fm}^{4}$ without subtraction of the pion-pole $\gamma_{\pi}^{\pi \mathrm{P}}=-46.7 \times 10^{-4} \mathrm{fm}^{4}$

For larger angles and energies $\omega \geq 50 \mathrm{MeV}$, a pole in the Mandelstam t-channel at the neutral pion mass m_{π} becomes dominant. This leads to the the pion-pole contribution to the Compton scattering cross-section.

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right)_{\pi \mathrm{P}} & =\frac{2 B(B+E)}{m_{\pi}^{2}} \frac{\omega \omega^{\prime}}{m^{2}}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}(1-\cos \theta) \\
B & =\frac{m_{\pi}}{16 \pi} g_{\pi \mathrm{NN}} F_{\pi \gamma \gamma} \frac{t}{m_{\pi}^{2}-t} \\
E & =\frac{e_{0}^{2}}{m} \frac{m_{\pi}}{2}\left(\kappa^{2}+2 \kappa+(1+\kappa)(1-\cos \theta)\right)
\end{aligned}
$$

Appendix - T-matrix and Polarizabilities

The (double-)polarized T-matrix can be decomposed in eight independent functions $W_{i j}$. Six of these are relevant below the pion threshold.
The photon polarization is expressed by the Stokes vector $\vec{\xi}$ and the nucleon polarization by the four-vector S^{μ}.
$|T|^{2}=W_{00}+\xi_{3} W_{03}+K_{\mu} S^{\mu}\left(\xi_{1} W_{11}+\xi_{2} W_{12}\right)+Q_{\mu} S^{\mu}\left(\xi_{1} W_{21}+\xi_{2} W_{22}\right)+\cdots$
with the four-momenta $Q=-\left(p^{\gamma 0}-p^{\gamma}\right) / 2$ and $K=\left(p^{\gamma 0}+p^{\gamma}\right) / 2$
Circular polarization: $|T|_{\text {circ }}^{2} / W_{00}=1+\xi_{2} \frac{K_{\mu} S^{\mu} W_{12}+Q_{\mu} S^{\mu} W_{22}}{W_{00}}$

Linear polarization: $|T|_{\text {lin }}^{2} / W_{00}=1+\xi_{1} \frac{K_{\mu} S^{\mu} W_{11}+Q_{\mu} S^{\mu} W_{21}}{W_{00}}+\xi_{3} \frac{W_{03}}{W_{00}}$

The eight functions $W_{i j}$ can be related to six structure functions A_{i} fulfilling each a unsubtracted dispersion relation.

Stokes vector $\vec{\xi}$: linear polarization $\xi_{3}= \pm 1$ (para. / perp.), or $\xi_{1}= \pm 1\left(\pm 45^{\circ}\right)$, circular polarization $\xi_{2}= \pm 1$ (right / left handed) xz-scattering plane: $Q^{\mu}=-\frac{1}{2}\left(E_{\gamma 0}-E_{\gamma}-E_{\gamma} \sin \theta_{\gamma} \quad 0 \quad E_{\gamma 0}-E_{\gamma} \cos \theta_{\gamma}\right)^{T}$ and $K^{\mu}=\frac{1}{2}\left(E_{\gamma 0}+E_{\gamma} \quad E_{\gamma} \sin \theta_{\gamma} \quad 0 \quad E_{\gamma 0}+E_{\gamma} \cos \theta_{\gamma}\right)^{T}$

The six independent functions can be determined by the (double-)polarized Compton asymmetries, whereby $\left(\varepsilon_{\|} \quad \varepsilon_{\perp}\right)=\left(E_{\gamma} / E_{\gamma 0}\right)\left(\cos \theta_{\gamma} \sin \theta_{\gamma}\right)$ was used.

Linear / circular beam ($i=1,2$), transverse target:

$$
\vec{\xi}= \pm \vec{e}_{i}, S^{\mu}= \pm \vec{e}_{x} \quad \Sigma_{i x}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}=-\frac{E_{\gamma 0}}{2 W_{00}} \varepsilon_{\perp}\left(W_{1 i}+W_{2 i}\right)
$$

Linear / circular beam ($i=1,2$), longitudinal target:

$$
\begin{aligned}
& \vec{\xi}= \pm \vec{e}_{i}, S^{\mu}= \pm \vec{e}_{z} \quad \Sigma_{i z}=\frac{\sigma_{\rightarrow}-\sigma_{\leftarrow}}{\sigma_{\rightarrow}+\sigma_{\leftarrow}}=-\frac{E_{\gamma 0}}{2 W_{00}} \varepsilon_{\| l}\left(W_{1 i}+W_{2 i}\right)-\frac{E_{\gamma 0}}{2 W_{00}}\left(W_{1 i}-W_{2 i}\right) \\
& \frac{1}{W_{00}}\binom{W_{1 i}}{W_{2 i}}=-\frac{1}{E_{\gamma 0}}\left(\begin{array}{rr}
\left(1-\varepsilon_{\|}\right) / \varepsilon_{\perp} & 1 \\
\left(1+\varepsilon_{\|}\right) / \varepsilon_{\perp} & -1
\end{array}\right)\binom{\sum_{i x}}{\Sigma_{i z}}
\end{aligned}
$$

Linear beam, unpolarized target:
$\vec{\xi}= \pm \vec{e}_{3}, S^{\mu}=0 \quad \Sigma_{3}=\frac{\sigma_{\|}-\sigma_{\perp}}{\sigma_{\|}+\sigma_{\perp}}=\frac{W_{03}}{W_{00}}$

Splitting $A=\operatorname{Re} A[v]+i \operatorname{Im} A[v]$ in its real an imaginary part leads to the dispersion relations.

$$
A[v]=\overbrace{\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime}-v}}^{=\operatorname{Re} A[v]}+i \overbrace{\left(-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Re} A\left[v^{\prime}\right]}{v^{\prime}-v}\right)}^{=\operatorname{Im} A[v]}
$$

The dispersion integrals can be expanded between the poles $\pm v_{\pi}$, exemplary:

$$
\operatorname{Re} A[v]=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{-v_{\pi}} \mathrm{d} v^{\prime} \frac{\operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime}-v}+\overbrace{\frac{1}{\pi} \mathcal{P} \int_{-v_{\pi}}^{v_{\pi}} \mathrm{d} v^{\prime} \frac{\operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime}-v}}^{=0}+\frac{1}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime}-v}
$$

In case of crossing symmetry $A[v] \equiv A^{*}[-v]$, the integral is positive in v.

$$
\operatorname{Re} A[v]=\frac{1}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime}+v}+\frac{1}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime}-v}=\frac{2}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{v^{\prime} \operatorname{Im} A\left[v^{\prime}\right]}{v^{\prime 2}-v^{2}}
$$

The same appears for the corresponding dispersion relation.

$$
\operatorname{Im} A[v]=-\frac{2 v}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Re} A\left[v^{\prime}\right]}{v^{\prime 2}-v^{2}}
$$

The Compton T-matrix consists of six structure functions A_{i}, each fulfills a unsubtracted dispersion relation at fixed- t with the nucleon pole contribution of the Born terms A_{i}^{B}. A subtraction at $v=0$ leads to convergence for all A_{i}.

$$
\operatorname{Re} A_{i}=A_{i}^{\mathrm{B}}+\frac{2}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{v^{\prime} \operatorname{Im}_{s} A_{i}}{v^{\prime 2}-v^{2}}=A_{i}^{\mathrm{B}}+\left(A_{i}-A_{i}^{\mathrm{B}}\right)_{v=0}+\frac{2 v^{2}}{\pi} \mathcal{P} \int_{v_{\pi}}^{\infty} \mathrm{d} v^{\prime} \frac{\operatorname{Im}_{s} A_{i}}{v^{\prime}\left(v^{\prime 2}-v^{2}\right)}
$$

The constants a_{i} are the projections of the subtraction to zero-momentum transfer $t \rightarrow 0$:

$$
\left(A_{i}-A_{i}^{\mathrm{B}}\right)_{v=0}=\overbrace{\left(A_{i}-A_{i}^{\mathrm{B}}\right)_{v=0, t=0}^{\mathrm{B}}}^{\stackrel{\text { def }}{a}}+\cdots
$$

The model dependence of extracting the (spin-)polarizabilities vanishes for $t \rightarrow 0$ since they are expressed as linear combinations of a_{i}.

$$
\begin{aligned}
\alpha_{\mathrm{E} 1} & =-\left(a_{1}+a_{3}+a_{6}\right) / 4 \pi \\
\gamma_{\mathrm{E} 1 \mathrm{E} 1} & =\left(a_{2}-a_{4}+2 a_{5}+a_{6}\right) / 8 \pi m_{\mathrm{N}} \\
\gamma_{\mathrm{E} 1 \mathrm{M} 2} & =\left(a_{2}-a_{4}-a_{6}\right) / 8 \pi m_{\mathrm{N}}
\end{aligned}
$$

$$
\beta_{\mathrm{M} 1}=\left(a_{1}-a_{3}-a_{6}\right) / 4 \pi
$$

$$
\gamma_{\mathrm{M} 1 \mathrm{M} 1}=-\left(a_{2}+a_{4}+2 a_{5}-a_{6}\right) / 8 \pi m_{\mathrm{N}}
$$

$$
\gamma_{\mathrm{M} 1 \mathrm{E} 2}=-\left(a_{2}+a_{4}+a_{6}\right) / 8 \pi m_{\mathrm{N}}
$$

Appendix = Partial Wave Analysis

An incoming plane wave ψ scatters off an potential V.

$$
\left(-\frac{\hbar^{2}}{2 \mu}\left(\vec{\nabla}^{2}+k^{2}\right)+V\right)\left(\psi+\psi^{\prime}\right)=0
$$

The incoming wave is decomposed in partial waves with angular momentum l. Assuming the nucleon potential $V \equiv V[|\vec{r}|]$ as spherically symmetric, the asymptotic final state is a spherical wave ψ^{\prime} with the scattering amplitude F.

$$
\psi=\mathrm{e}^{\mathrm{i} k r}=\sum_{l=0}^{\infty}(2 l+1) \mathrm{i}^{l} j_{l}\left[k r^{\prime}\right] P_{l}[\cos \Theta] \quad \psi^{\prime}=\frac{F\left[k, k^{\prime}, \Theta\right]}{r^{\prime}} \mathrm{e}^{\mathrm{i} k r}
$$

Spherical Bessel $j_{l}[x]=(-x)^{l}\left(1 / x \partial_{x}\right)^{l} \sin x / x$, Legendre polynomial $P_{l}^{m}[x]=1 / 2^{l} l!\left(-\sqrt{1-x^{2}}\right)^{m} \partial_{x}^{l+m}\left(x^{2}-1\right)^{l}$ Spherical harmonics $Y_{l}^{m}[\Theta, \varphi] \propto \mathrm{e}^{\mathrm{i} m \varphi} P_{l}^{m}[\cos \Theta]$

Each outgoing partial wave is modified by scattering due to the partial wave amplitude f_{l} with the S-matrix element $S_{l}=\mathrm{e}^{2 \mathrm{i}} \delta_{l}$ and the scattering phase δ_{l}.

$$
F\left[k, k^{\prime}, \Theta\right]=\sum_{l=0}^{\infty}(2 l+1) f_{l}\left[k, k^{\prime}\right] \mathcal{L}_{l}[\cos \Theta] \quad f_{l}\left[k, k^{\prime}\right]=\frac{1}{k} \frac{S_{l}-1}{2 \mathrm{i}}=\frac{1}{k} \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \delta_{l}
$$

Virtual state

For δ_{0} one obtains neutral scattering off a virtual state.

$$
\delta_{0}=-\tan ^{-1} \lambda k^{\prime}
$$

S_{0} shows a pole on the negative imaginary axis for a wave number $k^{\prime}=\mathrm{i} / \lambda$ equal to one over the scattering length λ.

$$
S_{0}=-\frac{k^{\prime}+\mathrm{i} / \lambda}{k^{\prime}-\mathrm{i} / \lambda}
$$

Example: Coherent scattering.

The differential cross-section $\mathrm{d} \sigma / \mathrm{d} \Omega$ is sensitive to interferences between partial waves.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}[k, \Theta]=\left|F\left[k, k^{\prime}, \Theta\right]\right|^{2}
$$

The total cross-section σ is obtained by integration over the solid angle $\mathrm{d} \Omega$ and simplifies due to the orthogonality $\int \mathrm{d} \Omega P_{l} P_{l \prime} \equiv 4 \pi \delta_{l l^{\prime}} /(2 l+1)$ of the Legendre polynomials. Interferences do not occur since coherence of partial waves is lost.

$$
\sigma\left[k, k^{\prime}\right]=4 \pi \sum_{l=0}^{\infty}(2 l+1)\left|f_{l}\left[k, k^{\prime}\right]\right|^{2}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l}
$$

The imaginary part of the forward scattering amplitude is related to the total crosssection by the optical theorem and implies particle conservation.

$$
\frac{k}{4 \pi} \sigma\left[k, k^{\prime}\right]=\operatorname{Im} F\left[k, k^{\prime}, 0\right]=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l}
$$

[^0]: D. Von Maluski, R.R. Miskimen, et al. Polarizable Scintillator for Nuclear Targets. Technical report, Triangle Universities Nuclear Laboratory (TUNL), 2009

