Stabilized Voltage Divider

HV-Versorgung für GEMs bei hohen Raten

10.02.2025 Jakob Krauß

- 1997 von F. Sauli 1997 entwickelt
- Mikrostrukturierte Verstärkungsstufe
 - 50 μm dicke Polyimidfolie
 - Beidseitige Kupferbeschichtung
- Gasverstärkung in Löchern
- Potentialdifferenz von ~400 V

[Sauli, 2015, DOI: 10.1016/j.nima.2015.07.060]

[P. Hauer]

- 1997 von F. Sauli 1997 entwickelt
- Mikrostrukturierte Verstärkungsstufe
 - 50 μm dicke Polyimidfolie
 - Beidseitige Kupferbeschichtung
- Gasverstärkung in Löchern
- Potentialdifferenz von ~400 V

[Sauli, 2015, DOI: 10.1016/j.nima.2015.07.060]

- Gasgefüllte Detektoren
 - Einfallendes Teilchen ionisiert Gas
 - Elektronen driften im E-Feld
- GEMs sind Multiplikativ
 - Verstärkungsfaktor von 10⁴
 - Ermöglichen Elektronische Auslese
- Wichtiger Komponente von Experimenten
 - ALICE TPC
 - Tracking Detektor bei AMBER

Passive Voltage Divider:

• Genutzt bei AMBER

[Altunbas et al., 2003, DOI: 10.1016/S0168-9002(02)00910-5]

- Widerstandskette definiert Potentiale im Detektor
- Bias-Widerstand begrenzt Kurzschlussstrom

Passive Voltage Divider:

- Hohen Raten f
 ühren zu vielen Ladungstr
 ägern
- Induziert Ströme auf Elektroden
- Verschiebung gegenüber den nominalen Potentialen
- ⇒ Verschlechterte Performance

Passive Voltage Divider:

- Bestrahlung mit Mini-X
 - Heizspannung ist proportional zum Ionisationsstrom
 - Kupferfolie zur zusätzlichen Abschwächung
- Hoher Ausgangswiderstand erschwert direkte Spannungsmessung

5

PVD - Spannungsabfall: Ströme \rightarrow Simulation \rightarrow Spannungen

Statistical uncertainties are smaller than markers ~10nA.

Not corrected for T/p effects

6

J. Krauß – Stabilized Voltage Divider

Anforderungen an die HV-Versorgung: -HV~

- Hohe Raten
 - Niedrige Impedanz des Bias-Widerstand
- Kurzschluss eines GEM Segments
 - Hohe Impedanz des Bias-Widerstand
 - Niedrige Impedanz der <u>Widerstandskette</u>
- Entladungen
 - Müssen vermieden werden
 - HV-Versorgung muss
 vorhersehbar reagieren

Alternativen zur Widerstandskette:

Alternativen zum Bias-Widerstand:

Bias-Widerstand

Impedanz von $10 M\Omega$

Kurzschlussstrom von ~40µA

Current-Limiter

Im Normalfall Impedanz von ~100k Ω

Kurzschlussstrom ~20µA

Current-Limiter:

Current-Limiter:

J. Krauß – Stabilized Voltage Divider

11

Current-Limiter:

Keine Ladungen auf der GEM: $U_{G} = U_{S} \Rightarrow$ Leitend

Negative Ladungen auf der GEM: $U_{G} > U_{S} \Rightarrow$ Leitend

Kurzschluss der GEM oder positive Ladungen auf der GEM: $U_G < U_S \Rightarrow$ Sperrend

R = 100 k
$$\Omega \rightarrow$$
 I_{Max}= 20 μA

SVD - Spannungsabfall:

Simulation des SVDs ist schwierig Dafür ist eine direkte Spannungsmessung möglich

Großteil der Ionen landet auf GEM3T Sperrt wenn $\rm U_{Th}$ erreicht wird

PVD vs. SVD - Gasverstärkung:

Der SVD ermöglicht deutlich höhere Raten! Wie steht es um das Verhalten bei Entladungen?

Primäre Entladungen

- Entladung der GEM-Kapazität ~5nF
 - Sichtbar, hörbar und messbar
 - Bei Überschreitung einer kritischen Ladung in einem Loch
 - \circ Q_{crit} = (4.7 ± 0.6) × 10⁶ e⁻

[Gasik et al., 2017, DOI: 10.1016/j.nima.2017.07.042]

- Discharge setup
 - Ar:CO₂ 90:10
 - Einfache 10x10 cm² GEM
 - $\circ \quad ^{226} \text{Ra als } \alpha \text{-Strahler}$
 - Bragg-Peak auf Höhe der GEM

Sekundäre Entladungen

- Zwischen GEMs und Auslese
 - Bei starken Feldern E_{Ind}
 - Verzögerung von ~10µs
 - In dieser Zeit fließt bereits ein Strom von O(mA)

[Deisting et al., 2019, DOI:10.1016/j.nima.2019.05.057]

Messung von Entladungen

Mit welcher Wahrscheinlichkeit propagiert eine Entladung zur Auslese?

- Auslese liegt auf 0V
 - -32dB Attenuator
 - \circ 1M Ω Oszilloskop
 - Simpel

Messung von Entladungen

Was passiert im Detektor?

- Drift & GEM auf einigen kV
 - minimale Last durch

Source-Follower

- Kompensierter Spannungsteiler
- Muss Kalibriert werden

Schutzschaltung

18

Zusammenfassung

- Der SVD ist eine neue HV-Versorgung für GEMs
- Stabiler Gain bei hohen Raten
 - Messung von Spannung & Gain unter Last
- Kein erhöhtes Risiko durch Entladungen
 - Qualitative und Quantitative Analyse

Zusammenfassung

- Der SVD ist eine neue HV-Versorgung für GEMs
- Stabiler Gain bei hohen Raten
 - Messung von Spannung & Gain unter Last
- Kein erhöhtes Risiko durch Entladungen
 - Qualitative und Quantitative Analyse

Ausblick

- Test mit tripple-GEM
 - Unsegmentiert mit Radon
 - Segmentierte im Hadronen Beam

Vielen Dank für die Aufmerksamkeit!

Backup

-

Test Detector

J. Krauß – Stabilized Voltage Divider

5

- 1997 von F. Sauli 1997 entwickelt
- Mikrostrukturierte Verstärkungsstufe
 - 50 μm dicke Polyimidfolie
 - Beidseitige Kupferbeschichtung
- Gasverstärkung in Löchern
- Potentialdifferenz von ~400 V

[Sauli, 2015, DOI: 10.1016/j.nima.2015.07.060]

Destructive Effect of Discharges

[Merlin, RD51-Miniweek 2018]

• GEMs survive primaries given a large enough bias resistor

• Secondaries are very dangerous for the sensitive readout

J. Krauß – Stabilized Voltage Divider

Segmented GEMs:

A Discharge Resilient AVD

23

A Discharge Resilient Current-Limiter

Discharges – Difference in Recharging

Supplied by separate channel of the HV-supply, $E_{Ind} = 6.2 \text{kV/cm}$

Bias-Resistor

Current-Limiter

J. Krauß – Stabilized Voltage Divider

Way more discharges in my thesis!

[Lautner et al., 2019, DOI: 10.1088/1748-0221/14/08/P08024]

Bias-Resistor on Bot and Precursor Estimation

Supplied by separate HV-channels Has some output impedance Surprisingly large current Reduces secondary discharges by reducing E_{Ind}

Discharges with a Current-Limiter on Bottom-side:

- Somehow the MOSFET survives that
 Still, a bad Idea
- Effect appears at lower E-Fields than normal secondaries without Current-Limiter on Bot

Destructive Effect of Discharges: GEM

Destructive Effect of Discharges: Cathode

Merlin, RD51-Miniweek 2018:

PVD – Currents:

Irradiation Setup:

Voltage Divider Compensation

Spectra:

