

Containers and their
predecessors
Pablo Llopis - CERN IT

Why Containers?

Why Containers?
Virtualization

❑ Resource isolation (compute, memory, I/O)

❑ Environment isolation (OS, libraries, packages)

Why Virtualization? Isolation.

Consequences and benefits of
Isolation

❑ Higher resource utilization: Several unrelated services can share
the same physical underlying host.

❑ Flexibility: Services are decoupled from the underlying physical
layout.

❑ Scale: Easier and faster to instantiate new services, as they are now
100% software and less hardware-dependant.

❑ Economy: Higher utilization results in more usage per €.

❑ Virtual machines date back to the 60s, mostly pioneered by IBM.
Today, virtualization technologies have grown to become a very
relevant and active field of computing.

❑ Virtual machines traditionally emulate a full computer system.

A Brief History of Virtualization

Physical Computer

Hardware
Hypervisor/Virtual HW

Guest Kernel
Guest Userland

(With a special focus on x86)

❑ Full Virtualization: Unmodified Guest OS. Earliest VMs were doing
lots of emulation!

▪ Hypervisor has to emulate hardware devices in software.
▪ Traditionally a costly mode of operation due to emulation

overhead. (Or binary translation)

A Brief History of Virtualization (2)

Physical Computer

Hardware
Hypervisor/Virtual HW

Guest Kernel
Guest Userland

Guest OS

Hypervisor/Virtual HW

Hardware

Interrupt
Interrupt emulation

Emulated
Interrupt
response

❑ As virtualization made a big comeback in the 2000s, researchers
and companies invested heavily in virtualization optimizations
(mostly for x86).

▪ Hardware optimizations
▪ Software optimizations
▪ Popek and Goldberg virtualization requirements[1]: x86 was

NOT designed to be virtualization friendly!
❑ Optimizations evolved in an uncoordinated way

A Brief History of Virtualization (3)

[1] Popek, G. J.; Goldberg, R. P. (July 1974). "Formal requirements for virtualizable third generation architectures". Communications of the ACM.
17 (7): 412–421. doi:10.1145/361011.361073.

https://en.wikipedia.org/wiki/Digital_object_identifier

❑ Software optimizations were designed without the coming hardware
accelerations in mind and vice-versa, sometimes conflicting with each other.

A Brief History of Virtualization (4)

Hardware acceleration Software optimizations

Intel VT-x

AMD-V

Xen and the Art of Virtualization
(first “full” paravirtualization solution)

Paravirt-ops kernel extensions

2003

2006

2005

2006

A Brief History of Virtualization (5)
❑ On one hand, Hardware accelerated virtualization extension to the x86

ISA make virtualization efficient, mostly by eliminating much of the
software-induced overhead.

❑ On the other hand, Paravirtualization is a virtualization technique that
relies on the Guest OS being aware that it is being virtualized. Performing
certain privileged operations is made efficient by communicating with the
Host through a software interface.

▪ Almost completely removes the need for the host hypervisor to
perform costly hardware emulation.

❑ VMs can either boot in paravirtualized mode or in fully virtualized mode.

A Brief History of Virtualization (6)
❑ The choice between paravirtualized or fully virtualized is actually not

binary, it is a spectrum[2]. More info[3].

[2] https://wiki.xen.org/wiki/Virtualization_Spectrum
[3]
https://wiki.xen.org/wiki/Xen_Project_Software_Ov
erview#PVH_.28x86.29

https://wiki.xen.org/wiki/Virtualization_Spectrum
https://wiki.xen.org/wiki/Xen_Project_Software_Overview#PVH_.28x86.29
https://wiki.xen.org/wiki/Xen_Project_Software_Overview#PVH_.28x86.29

So what about Containers?
❑ More lightweight, Isolation happens at the host kernel level.
❑ Less overhead, since every VM runs its own kernel, especially memory.
❑ Containers can not take advantage of hardware-level isolation without a

hypervisor. Isolation relies on software-defined Linux namespaces.
▪ Inherently less secure than hardware-assisted VMs.
▪ Sitting on top of the host kernel means bare-metal performance.

Physical Computer

Hardware
Hypervisor/Virtual HW

Guest Kernel
Guest Userland

Physical Computer

Hardware
Host kernel

Container Userland

3

0

-1

3

0

HW protection
rings

How do Containers achieve Isolation
without a Hypervisor?

❑ Linux namespaces!
❑ Container processes are spawned and put in namespaces to achieve

isolation.
❑ Linux namespaces (for now, time and syslog may come soon):

▪ Mount
▪ UTS (hostname)
▪ Inter Process Communication
▪ PID
▪ Network
▪ User
▪ Cgroup

How do Containers achieve Isolation
without a Hypervisor?

Physical Computer

Hardware
Host kernel

Container Userland

Physical Computer

Hardware
Host kernel

Container Userland

syscall

❑ Syscalls go directly to the host kernel, processes in containers work in the
same way as native ones. No overhead involved! They just run in the
context of one namespace or another.

Container runtimes

Container runtimes
❑ Standards: OCI (Open Container Initiative)
❑ OCI develops specifications that ensure vendor-neutrality.

▪ Container Runtime specification (OCI runtime-spec)
▪ Container Image specification (OCI image-spec)

❑ Major vendors contribute and/or implement these standards.

Container runtimes
❑ Docker engine

▪ Containerd
● runC

Container use cases
“It works on my computer”

https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_works_on_my_machine/

https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_works_on_my_machine/

Docker architecture
❑ Privileged daemon
❑ Client talks to the daemon to perform operations
❑ Spawns containers using most of the namespaces. Isolation.

https://docs.docker.com/engine/docker-overview/#docker-architecture

https://docs.docker.com/engine/docker-overview/#docker-architecture

For HPC?

Host users?

Host network?

MPI?

❑ You will probably want to run the MPI application as the same user who is
launching the workload in the cluster

❑ Container will want to connect to other worker nodes.
❑ Cluster-specific MPI environment?
❑ Privileged daemon considered bad for security, especially in multi-tenant

environments.

Singularity architecture
❑ Designed with HPC mind. Completely oriented towards being run in a

typical HPC cluster environment.
❑ No daemon, unprivileged
❑ By default only isolates the filesystem, by design! Trades-off isolation for

simplicity and integration.
▪ “Mobility of Compute, Reproducibility, HPC support, and Security.” Singularity docs.

❑ User outside the container will be the same user inside the container!
❑ Connecting to other processes over sockets, IB, or even IPC just works.

You can almost consider a singularity container as a statically compiled
binary… but that wraps all OS dependencies, runs in an isolated filesystem
namespace, and is contained in a single portable executable format.

https://sylabs.io/guides/3.4/user-guide/security.html

Worker node

orted

MPI
proc

MPI
proc

Worker node

orted

MPI
proc

MPI
proc

mpirun -np 2 ./app arg1 arg2

Worker node

orted

Cont Cont

Worker node

orted

Cont Cont

mpirun -np 2 singularity run ./app.img arg1 arg2

Execution model

Is the same isolation-usability trade-off
possible in other Container runtimes?
❑ Yes. Sort of.
❑ It’s just more faff.

▪ Need to explicitly drop namespace creation
▪ Not designed to keep the same user context inside the container.

❑ Watch out! Having a privileged root daemon running “à la Docker” poses
the following immediate, non-trivially solvable issues:

▪ Security in multi-tenant environments. Privilege escalation risk.
▪ This model breaks the process hierarchy expected by batch systems

and MPI itself! Workloads are spawned by the daemon.

