

TOWARDS HIGH PRECISION MEASUREMENTS OF HIGGS BOSON PROPERTIES IN THE DI-TAU DECAY WITH THE ATLAS DETECTOR

DISSERTATIONSKOLLOQUIUM

Lena Herrmann

02.12.2024

"Exploring the Invisibly Small in a Quest to Understand the Universe"

adapted from arxiv.1411.4085

"Exploring the Invisible Small in a Quest to Understand the Universe"

- \rightarrow Description of Fundamental Particles
 - + Particle Interactions

"Exploring the Invisible Small in a Quest to Understand the Universe"

- \rightarrow Description of Fundamental Particles
 - + Particle Interactions

"Exploring the Invisible Small in a Quest to Understand the Universe"

- \rightarrow Description of Fundamental Particles
 - + Particle Interactions

"Exploring the Invisible Small in a Quest to Understand the Universe"

- \rightarrow Description of Fundamental Particles
 - + Particle Interactions

"Exploring the Invisible Small in a Quest to Understand the Universe"

- \rightarrow Description of Fundamental Particles
 - + Particle Interactions

"Exploring the Invisible Small in a Quest to Understand the Universe"

Standard Model (SM):

- \rightarrow Description of
 - + Fundamental Particles
 - + Particle Interactions

Experimental Methodology:

→ Collide protons near the speed of light

"Exploring the Invisible Small in a Quest to Understand the Universe"

Standard Model (SM):

- \rightarrow Description of
 - + Fundamental Particles
 - + Particle Interactions

Experimental Methodology:

→ Collide protons near the speed of light

robust & successful theory

<u>Weltmaschine</u>

"Exploring the Invisible Small in a Quest to Understand the Universe"

Standard Model (SM):

- \rightarrow Description of
 - + Fundamental Particles
 - + Particle Interactions

Experimental Methodology:

→ Collide protons near the speed of light

robust & successful theory

UT: <u>Beyond the Standard Model Physics</u> required to answer open questions

- The Standard Model stands or falls with the Higgs
- The exploration of its properties is a priority in the research program

- The Standard Model stands or falls with the Higgs
- The exploration of its properties is a priority in the research program

- The Standard Model stands or falls with the Higgs
- The exploration of its properties is a priority in the research program

- The Standard Model stands or falls with the Higgs
- The exploration of its properties is a priority in the research program

 $\simeq 125 \, \text{GeV}$

Н

Higgs

- The Standard Model stands or falls with the Higgs
- The exploration of its properties is a priority in the research program

 \rightarrow Two **GENERAL PURPOSE** experiments \rightarrow Higgs measurements and reciprocal cross-checks

- The Standard Model stands or falls with the Higgs _
- The exploration of its properties is a priority in the research program

 \rightarrow Two **GENERAL PURPOSE** experiments \rightarrow **Higgs measurements** and reciprocal **cross-checks**

н

- The Standard Model stands or falls with the Higgs —
- The exploration of its properties is a priority in the research program

 \rightarrow Two **GENERAL PURPOSE** experiments \rightarrow **Higgs measurements** and reciprocal **cross-checks**

н

Higgs

Nature 607, 52-59 (2022)

COUPLINGS MEASUREMENTS

Nature 607, 52-59 (2022)

Ambitious program measuring all accessible combinations

Relevant factors: cross-section, branching ratio, background contamination, selection efficiency Statistics & analysis strategies essential

COUPLINGS MEASUREMENTS

Ambitious program measuring all accessible combinations

Relevant factors: cross-section, branching ratio, background contamination, selection efficiency Statistics & analysis strategies essential

$H\to\tau\tau$

	$ au_{had} au_{had}$
Object Counting	# $e/\mu = 0$, # $\tau_{had} = 2$
Charge product	opposite charge
p _T cut	$\tau_{had}: p_T > 40,30 \text{ GeV}$
ID	τ_{had} : RNN medium
E ^{miss} T	$E_T^{miss} > 20 \text{ GeV}$
b-veto	# b-jets = 0

Emphasizes expected physics signaturesReduces complex background

	$ au_{had} au_{had}$
Object Counting	# $e/\mu = 0$, # $\tau_{had} = 2$
Charge product	opposite charge
p _T cut	$\tau_{had}: p_T > 40,30 \text{ GeV}$
ID	τ_{had} : RNN medium
E ^{miss} T	$E_T^{miss} > 20 \text{ GeV}$
b-veto	# b-jets = 0

---> Emphasizes expected physics signatures---> Reduces complex background

	$ au_{had} au_{had}$
Object Counting	# $e/\mu=0$, # $\tau_{had}=2$
Charge product	opposite charge
p _T cut	$\tau_{had}: p_T > 40,30 \text{ GeV}$
ID	τ_{had} : RNN medium
E ^{miss}	$E_T^{miss} > 20 \text{ GeV}$
b-veto	# b-jets = 0

---> Emphasizes expected physics signatures---> Reduces complex background

	$\tau_{had} \tau_{had}$
Object Counting	# e/ μ = 0, # τ_{had} = 2
Charge product	opposite charge
p _T cut	$\tau_{had}: p_T > 40,30 \text{ GeV}$
ID	τ_{had} : RNN medium
E ^{miss} T	$E_T^{miss} > 20 \text{ GeV}$
b-veto	# b-jets = 0

Emphasizes expected physics signatures
Reduces complex background

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ATLAS-CONF-2022-032

34

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ATLAS-CONF-2022-032

T

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ATLAS-CONF-2022-032

Tracks

36

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ATLAS-CONF-2022-032

FCa

37

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ATLAS-CONF-2022-032

HCal

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ME

ATLAS-CONF-2022-032

39

$H \rightarrow \tau \tau$

Run: 350144 Event: 1545345207 2018-05-13 02:47:13 CEST

ATLAS-CONF-2022-032

40

STXS: SIMPLIFIED TEMPLATE CROSS-SECTION

Phase-space regions split by true production modes/kinematics

- $\rightarrow~$ reduction of theoretical uncertainties
- \rightarrow emphasize prospective regions for BSM (high p_T^H / m_{ii})
- → facilitate combination of regions

q

q

Н

W/Z

W/Z

PROCESSES

PROCESSES

What is the contribution of fakes?

Fake Background ...

- ... is suppressed in genuine au selection
- ... depends on kinematic variables
- ... estimation in SR biases measurement

FAKE TEMPLATE BUILDING

AIM: 18 parameters of interest

τ_{lep}τ_{had} τ_eτ_μ

 $\tau_{had}\tau_{had}$

FAKE TEMPLATE BUILDING

AIM: 18 parameters of interest

 \rightarrow categorize events to match the phase-space

FAKE TEMPLATE BUILDING

FAKE TEMPLATE COMBINATION

→ Individual fake templates affected by large statistical uncertainties

INCLUSIVE REPLACEMENT

 \rightarrow Replace template by combined version scaled to original yield

INCLUSIVE REPLACEMENT

 \rightarrow Replace template by combined version scaled to original yield

INCLUSIVE REPLACEMENT

 \rightarrow Replace template by combined version scaled to original yield

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial \rightarrow investigate parameter dependencies

$$\mathcal{L}\left(\vec{n}, \vec{a} | \vec{\theta}, \vec{k}\right) = \prod_{i \in \text{bins}} \text{Pois}\left(n_i | \mu \times S_i(\vec{\theta}) + B_i(\vec{k}, \vec{\theta})\right) \times \prod_{j \in \text{sys}} c_j\left(a_j | \theta_j\right)$$

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial \rightarrow investigate parameter dependencies

$$\mathcal{L}\left(\vec{n}, \vec{a} | \vec{\theta}, \vec{k}\right) = \prod_{i \in \text{bins}} \text{Pois}\left(n_i | \mu \times S_i(\vec{\theta}) + B_i(\vec{k}, \vec{\theta})\right) \times \prod_{j \in \text{sys}} c_j\left(a_j | \theta_j\right)$$

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- μ signal strength
- $-\vec{a}$ auxiliary measurements

adapted from arxiv 2407.16320

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- Likelihood fit → find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

SIGNAL REGION

- Likelihood fit → find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

SIGNAL REGION

02.12.24

- Likelihood fit → find parameter set that optimizes modeling of data
- Validation of model crucial → investigate parameter dependencies

- \rightarrow Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- \rightarrow **Share** of uncertainty group to total uncertainty

POI	mjj_350700_ptH_0_200	
MCStat	0.376	-
SigTheory	0.191	-
JETMET	0.147	m
TopTheory	0.086	an
Lepton	0.086	an
Tau	0.079	•
Fake	0.06	-
ZttTheory	0.042	
BTag	0.031	-
Lumi	0.017	-

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- \rightarrow Share of uncertainty group to total uncertainty

VB

VH

ggF

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- \rightarrow **Share** of uncertainty group to total uncertainty

$$\label{eq:magnetic} \begin{split} \text{impact} &= \sqrt{(\Delta \mu)^2 - (\Delta \mu')^2} \\ \text{Uncertainty ...} & & \text{on Parameter} & & \text{of Interest} \\ \end{split}$$

→ Dominant Contribution:

Statistical uncertainty on MC Sample

POI	mjj_350700_ptH_0_200	
MCStat	0.376	-
SigTheory	0.191	-
JETMET	0.147	-
TopTheory	0.086	-
Lepton	0.086	
Tau	0.079	
Fake	0.06	
ZttTheory		
BTag		
Lumi		

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- \rightarrow Share of uncertainty group to total uncertainty

$$\label{eq:mpact} \begin{split} \text{impact} &= \sqrt{(\Delta \mu)^2 - (\Delta \mu')^2} \\ \text{Uncertainty ...} & & \text{on Parameter} \\ & \text{of Interest} \\ \end{split}$$

→ Dominant Contribution:

Statistical uncertainty on MC Sample

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- ightarrow Share of uncertainty group to total uncertainty

$$\label{eq:impact} \begin{split} \text{impact} &= \sqrt{(\Delta \mu)^2 - (\Delta \mu')^2} \\ \text{Uncertainty ...} & & \text{on Parameter} & & \text{of Interest} \\ & & \text{given group} \end{split}$$

→ Dominant Contribution:

Statistical uncertainty on MC Sample

→ Fake Templates Combination reduce impact of MC Stat

POI	mjj_350700_ptH_0_200	
Fake Template	Reference	Combined
MCStat	0.376	0.335
SigTheory	0.191	0.191
JETMET	0.147	0.148
TopTheory	0.086	0.081
Lepton	0.086	0.078
Tau	0.079	0.071
Fake	0.06	$\bar{0.105}$
ZttTheory	0.042	0.041
BTag		0.031
Lumi		0.017

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- \rightarrow **Share** of uncertainty group to total uncertainty

$$\label{eq:impact} \begin{split} \text{impact} &= \sqrt{(\Delta \mu)^2 - (\Delta \mu')^2} \\ \text{Uncertainty ...} & & \text{on Parameter} & & \text{of Interest} \\ & & \text{given group} \end{split}$$

→ Dominant Contribution:

Statistical uncertainty on MC Sample

→ Fake Templates Combination reduce impact of MC Stat + increases impact of Fake systematics

POI	mjj_350700_ptH_0_200	
Fake Template	Reference	Combined
MCStat	0.376	0.335
SigTheory	0.191	0.191
JETMET	0.147	0.148
TopTheory	0.086	0.081
Lepton	0.086	0.078
Tau	0.079	0.071
Fake	0.06	0.105
ZttTheory	0.042	0.041
BTag		0.031
Lumi		0.017

- → Systematic uncertainties categorized in groups
 - Theory Uncertainty on signal & background
 - Experimental uncertainties
 - Statistical uncertainty on Monte-Carlo Sample
- \rightarrow **Share** of uncertainty group to total uncertainty

$$\label{eq:impact} \begin{split} \text{impact} &= \sqrt{(\Delta \mu)^2 - (\Delta \mu')^2} \\ \text{Uncertainty ...} & & \text{on Parameter} & & \text{of Interest} \\ & & \text{given group} \end{split}$$

→ Dominant Contribution:

Statistical uncertainty on MC Sample

 → Fake Templates Combination reduce impact of MC Stat + increases impact of Fake systematics

POI	mjj_350700_ptH_0_200	
Fake Template	Reference	Combined
Full Syst	0.535	0.513
MCStat	0.376	0.335
SigTheory	0.191	0.191
JETMET	0.147	0.148
TopTheory	0.086	0.081
Lepton	0.086	0.078
Tau	0.079	0.071
Fake	0.06	0.105
ZttTheory	0.042	0.041
BTag		0.031
Lumi		0.017

→ Positive Impact of Combined Fake Templates!

gg→H, 1-jet, 120 ≤ p_T^H < 200 GeV gg→H, ≥ 1-jet, 60 ≤ p_T^H < 120 GeV gg→H, ≥ 2-jet, $m_{_{\rm H}}$ < 350, 120 ≤ $p_{_{\rm T}}^{\rm H}$ < 200 GeV gg→H, ≥ 2-jet, $m_{_{\rm H}} \ge 350 \text{ GeV}, p_{_{\rm T}}^{\rm H} < 200 \text{ GeV}$ gg→H, 200 ≤ p__⊥^H < 300 GeV gg→H, p_⊥^H ≥ 300 GeV qq'→Hqq', ≥ 2-jet, 60 ≤ m_µ < 120 GeV qq'→Hqq', ≥ 2-jet, 350 ≤ m < 700 GeV, p + < 200 GeV qq'→Hqq', ≥ 2-jet, 700 ≤ $m_{_{\rm H}}$ < 1000 GeV, $p_{_{\rm T}}^{\rm H}$ < 200 GeV qq' \rightarrow Hqq', \geq 2-jet, 1000 \leq m_. < 1500 GeV, p₊^H < 200 GeV qq'→Hqq', ≥ 2-jet, $m_{_{\rm H}}$ ≥ 1500 GeV, $p_{_{\rm T}}^{\rm H}$ < 200 GeV qq'→Hqq', ≥ 2-jet, 350 ≤ m_µ < 700 GeV, p₇^H ≥ 200 GeV qq'→Hqq', ≥ 2-jet, 700 ≤ $m_{_{\rm H}}$ < 1000 GeV, $p_{_{\rm T}}^{\rm H}$ ≥ 200 GeV qq'→Hqq', ≥ 2-jet, 1000 ≤ m < 1500 GeV, p + ≥ 200 GeV qq'→Hqq', ≥ 2-jet, $m_{_{\rm H}}$ ≥ 1500 GeV, $p_{_{\rm T}}^{\rm H}$ ≥ 200 GeV ttH, $p_{\tau}^{H} < 200 \text{ GeV}$ ttH, 200 $\le p_{_{\rm T}}^{\rm H} < 300 \, {\rm GeV}$

STXS MEASUREMENT

 \rightarrow Remarkable precision in high p_T^H/m_{ii}

- \rightarrow Remarkable precision in high p_T^H/m_{ii}
- → Relative precision ($\mu = 1$): 35% - 300%

- \rightarrow Remarkable precision in high p_T^H/m_{ii}
- → Relative precision ($\mu = 1$): **35%** - **300%**
- → Observations of strong pulls Extreme cases up to 3σ

$$pull = \frac{\hat{\theta} - \theta_0}{\Delta \theta}$$

- \rightarrow Remarkable precision in high p_T^H/m_{jj}
- → Relative precision ($\mu = 1$): **35%** - **300%**
- → Observations of strong pulls Extreme cases up to 3σ

 $pull = \frac{\hat{\theta} - \theta_0}{\Delta \theta}$

- BUT: measurements strongly correlated
 - → Relative movement understood and validated in dedicated studies

Statistical Fluctuation

- \rightarrow Remarkable precision in high p_T^H/m_{jj}
- → Relative precision ($\mu = 1$): **35%** - **300%**
- → Observations of strong pulls Extreme cases up to 3σ

 $pull = \frac{\hat{\theta} - \theta_0}{\Delta \theta}$

- BUT: measurements strongly correlated
 - → Relative movement understood and validated in dedicated studies

Statistical Fluctuation

→ Compatibility with SM: **p-value 6%**

- \rightarrow Remarkable precision in high p_T^H/m_{jj}
- → Relative precision ($\mu = 1$): **35**% - **300**%
- → Observations of strong pulls Extreme cases up to 3σ

$$pull = \frac{\hat{\theta} - \theta_0}{\Delta \theta}$$

- BUT: measurements strongly correlated
 - → Relative movement understood and validated in dedicated studies

Statistical Fluctuation

→ Compatibility with SM: **p-value 6%**

DECAY-MODE DEPENDENT BACKGROUND COMPOSITION

Composition of background not constant across full phase-space

DECAY-MODE DEPENDENT BACKGROUND COMPOSITION

Composition of background not constant across full phase-space

Fake contribution increases with number of neutral pions

DECAY-MODE DEPENDENT BACKGROUND COMPOSITION

Incorporate the dependency in the Fake estimation Fake contribution increases with number of neutral pions

- More-detailed description
- Identify signal regions with good signal to background ration
 - \dashrightarrow Prospect to loosen au-ID working point

τ	1p0n	1p1n	1pXn	3p0n	3pXn
1p0n	3.3%	14.8%	6%	5.6%	3%
1p1n		16.8%	14%	12.6%	6.8%
1pXn			2.9%	5.2%	2.8%
3p0n				2.4%	2.6%
3pXn					0.7%

Decay-mode dependent Fake Factors

determined and validated

Decay-mode dependent Fake Factors determined and validated

Decay-mode dependent Fake Factors determined and validated

~	·
\checkmark	I

Decay-mode dependent Fake Factors determined and validated

τ	1p0n	1p1n	1pXn	3p0n	3pXn
1p0n	3.3%	14.8%	6%	5.6%	3%
1p1n		16.8%	14%	12.6%	6.8%
1pXn			2.9%	5.2%	2.8%
3p0n				2.4%	2.6%
3pXn					0.7%

Low-background signal regions identified

L

Decay-mode dependent Fake Factors determined and validated

τ	1p0n	1p1n	1pXn	3p0n	3pXn
1p0n	3.3%	14.8%	6%	5.6%	3%
1p1n		16.8%	14%	12.6%	6.8%
1pXn			2.9%	5.2%	2.8%
3p0n				2.4%	2.6%
3pXn					0.7%

Low-background signal regions identified

 \Rightarrow

Promising approach for future setups

TO DO: Study interplay of

- fit stability
- statistical uncertainties
- signal purity

arxiv 2407.16320

CONCLUSION

- → $H \rightarrow \tau \tau$: Good agreement with SM at current level of precision
- → STXS cross-section measurements yield increased level of detail
- → Fake Background promises precision gain

OUTLOOK

- → Increase in statistics:
 - factor 2 in Run 3
 - factor 10 over the HL-LHC era
- → Complex analysis strategies continuously refined

THE ANALYSIS: BINNED PROFILE LIKELIHOOD FIT

- Likelihood fit \rightarrow find parameter set that optimizes modeling of data
- Validation of model crucial \rightarrow investigate parameter dependencies

$$\mathcal{L}\left(\vec{n}, \vec{a} | \vec{\theta}, \vec{k}\right) = \prod_{i \in \text{bins}} \text{Pois}\left(n_i | \mu \times S_i(\vec{\theta}) + B_i(\vec{k}, \vec{\theta})\right) \times \prod_{j \in \text{sys}} c_j\left(a_j | \theta_j\right)$$

- ATLAS performance groups determine auxiliary measurements

Gaussian constraint to deviate from prior knowledge

 θ_i

 a_i

i.e.:
$$L = (140 \pm 21) fb^{-1}$$

 $a \rightarrow 140$
 $\theta \rightarrow 132$

SELECTION

	$ au_e au_\mu$	$\begin{array}{c c} & \tau_{lep} \tau_{had} \\ e \tau_{had} & \mu \tau_{had} \end{array}$	$ au_{had} au_{had}$		
Preselection Object counting	# of $e = 1$, # of $\mu = 1$, # of $\tau_{had,vis} = 0$	# of $e/\mu = 1$, # of $\tau_{had,vis} = 1$	# of $e/\mu = 0$, # of $\tau_{had,vis} = 2$		
p_T cut	e/μ : p_T cut 10 to 27.3 GeV	e/μ : p_T cut 21 to 27.3 GeV, $\tau_{had,vis}$: $p_T > 30$ GeV	$\tau_{had,vis}: p_T > 40,30 {\rm GeV}$		
ID, Isolation, and eveto	e/μ: Medium e: FCLoose, μ: FCTightTrackOnly	$ \begin{array}{c} e/\mu: \mbox{Medium}, \tau_{had,vis}: \mbox{RNN Medium} \\ e: \mbox{FCLoose}, \mu: \mbox{FCTightTrackOnly} \\ 1\mbox{-prong} \ \tau_{had,vis}: \\ ele\mbox{BDT} \ e\mbox{-veto} \end{array} $	$ au_{had,vis}$: RNN Medium	VBF inclusive	sub-leading jet $p_T > 30 \text{ GeV}$ $m_{jj} > 350 \text{ GeV}, \Delta \eta_{jj} > 3$ $\eta(j_0) \times \eta(j_1) < 0$ lepton centrality: visible decay products of the τ leptons between VBF jets
Charge product Kinematics	Opposite charge $m_{\tau\tau}^{\text{coll}} > m_Z - 25 \text{ GeV}$ $30 < m_{e\mu} < 100 \text{ GeV}$	Opposite charge $m_T < 70 { m GeV}$	Opposite charge	VH inclusive	$60 \text{ GeV} < m_{jj} < 120 \text{ GeV}$ sub-leading jet $p_T > 30 \text{ GeV}$
b-veto	# of <i>b</i> -jets = 0 wp: DL1r_FixedCutBEff_85	# of <i>b</i> -jets = 0 wp: DL1r_FixedCutBEff_85	# of <i>b</i> -jets = 0 wp: DL1r_FixedCutBEff_70 not applied in tt(0L) $H \rightarrow \tau_{had} \tau_{had}$	$tt(0L)H \to \tau_{had}\tau_{had}$	# of jets ≥ 6 and # of <i>b</i> -jets ≥ 1 or # of jets ≥ 5 and # of <i>b</i> -jets ≥ 2
E_T^{miss}	$E_T^{miss} > 20 \mathrm{GeV}$	$E_T^{miss} > 20 \mathrm{GeV}$	$E_T^{miss} > 20 \mathrm{GeV}$		
Leading jet	$p_T > 40 { m GeV}$	$p_T > 40 { m GeV}$	$p_T > 70 \text{GeV}, \eta < 3.2$	Boost inclusive	Not VBF inclusive Not VH inclusive $p_T(H) > 100 \text{ GeV}$
Angular	$\Delta R_{e\mu} < 2.0, \Delta \eta_{e\mu} < 1.5$	$\Delta R_{l\tau_{\rm had,vis}} < 2.5, \Delta \eta_{l\tau_{\rm had,vis}} < 1.5$	$\begin{array}{l} 0.6 < \Delta R_{\tau_{\rm had,vis}\tau_{\rm had,vis}} < 2.5 \\ \left \Delta \eta_{\tau_{\rm had,vis}\tau_{\rm had,vis}} \right < 1.5 \end{array}$		I
Coll. app. x_1/x_2	$0.1 < x_1 < 1.0, 0.1 < x_2 < 1.0$	$0.1 < x_1 < 1.4, 0.1 < x_2 < 1.2$	$0.1 < x_1 < 1.4, 0.1 < x_2 < 1.4$		arxiv 2407.16320

ANALYSIS DESIGN

- 78 signal regions targeting 18 stage
 - 1.2 STXS bins
 - boost: 3 x 6
 - VH: 3 × (1+1)
 - VBF: 3 × (8+8)
 - $t\bar{t}H: 3+3$

- 80 control regions to normalize top
 - and Ztt backgrounds
 - boost: 3×6 Ztt, 2×1 $t\bar{t}$
 - VH: $3 \times (1+1)$ Ztt, $2 \times 1 t\bar{t}$
 - VBF: $3 \times (8+8)$ Ztt, $2 \times 1 t\overline{t}$
 - $t\bar{t}H$: 1 × Ztt, 1 × $t\bar{t}$

ANALYSIS DESIGN

- 78 signal regions targeting 18 stage
 - 1.2 STXS bins
 - boost: 3 x 6
 - VH: 3 × (1+1)
 - VBF: 3 × (8+8)
 - $t\bar{t}H: 3+3$

• 80 control regions to normalize top

and Ztt backgrounds

- boost: 3×6 Ztt, 2×1 $t\bar{t}$
- VH: $3 \times (1+1)$ Ztt, $2 \times 1 t\bar{t}$
- VBF: $3 \times (8+8)$ Ztt, $2 \times 1 t\bar{t}$
- $t\bar{t}H$: 1 x Ztt, 1 x $t\bar{t}$

ANALYSIS DESIGN

added to CONF note appendix

- 78 signal regions targeting 18 stage
 - 1.2 STXS bins
 - boost: 3 x 6
 - VH: 3 × (1+1)
 - VBF: 3 × (8+8) • $t\bar{t}H: 3+3$

- 80 control regions to normalize top
 - and Ztt backgrounds
 - boost: 3×6 Ztt, 2×1 $t\bar{t}$
 - VH: 3 × (1+1) Ztt, 2 X 1 *tt*
 - VBF: 3 × (8+8) Ztt, 2 × 1 *t*t
 - $t\bar{t}H$: 1 x Žtt, 1 x $t\bar{t}$

TAGGER

- **VBF tagger:** differentiate ggH and $Z \rightarrow \tau\tau$
 - VBF 0 enhanced in bkg, VBF 1 in signal
 - Per region choose threshold to maximize

$$\sigma = \sqrt{\frac{S_0^2}{S_0 + B_0} + \frac{S_1^2}{S_1 + B_1}}$$

- ttH: multiclass BDT with 3 output nodes: differentiate signal $Z \rightarrow \tau \tau$, t \overline{t}
 - Separate training for low, high \boldsymbol{p}_{T}^{H}
 - Score used to define regions

	Variable	VBF	ttH multiclass
	Invariant mass of the two leading jets	•	
	$p_{\mathrm{T}}(jj)$	•	
~	Product of η of the two leading jets	•	
tie	Sub-leading jet $p_{\rm T}$	•	
per	η of the 5 leading jets		•
pro	Scalar sum of all jets $p_{\rm T}$		•
let	Scalar sum of all <i>b</i> -tagged jets $p_{\rm T}$		•
-	Best W-candidate dijet invariant mass		•
	Best <i>t</i> -quark-candidate three-jet invariant mass		•
ses	$\Delta \phi$ between the two leading jets	•	20
and	$\Delta\eta$ between the two leading jets	•	
dist	Minimum ΔR between two jets		•
ar	Minimum ΔR between a <i>b</i> -tagged and a τ		•
lug	$ \Delta\eta(au, au) $		•
An	$\Delta R(\tau, \tau)$		•
p.	$p_{\rm T}(au au)$		•
pro	Sub-leading $\tau p_{\rm T}$		•
1	Leading $\tau \eta$		•
H cand.	$p_{\mathrm{T}}(Hjj)$	•	
niss	Missing transverse momentum $E_{\rm T}^{\rm miss}$		•
\vec{E}_{T}	Smallest $\Delta \phi (\tau, \vec{E}_{\mathrm{T}}^{\mathrm{miss}})$		•

$Z \to \tau \tau$

- Shortcomings in modelling of Z+jets events
 → uncertainties folded with uncertainties from tau decay
- Can not study background in SR
- Determine normalization for MC from embedded $Z \rightarrow ll$ in control regions
- Embedding :
 - 1. Select $Z \rightarrow ll$
 - 2. Unfold effects from lepton reconstruction, isolation, identification
 - 3. Parametrize tau decay from visible pt and total truth $\ensuremath{p_{T}}$
 - 4. Scale lepton $p \mbox{ accordingly }$
 - 5. Consider efficiencies by reweighting
 - 6. Apply τ SR selection

SIGNAL PURITY

- VBF 0: background enriched, VBF 1: signal enriched
- VBF-like ggH events contribute strongly in VBF 0

arxiv 2407.16320

CORRELATIONS

gg→H, 200 ≤ p_^H < 300 GeV

ATLAS

CONSEQUENCES FOR FUTURE MEASUREMENTS

Signal separation:

- Profit from MVA techniques to ensure better separation (VBF vs ggH)
- Neural network observable instead of MMC to differentiate higgs processes
- Optimize STXS binning

Fakes:

Signal region split in decay-mode dependent reconstruction

Tau reconstruction:

- End-to-end in particle flow

$Z \to \tau \tau$:

- Modelling in extreme phase-space not satisfactory
- Can also extract shape from embedding
- Binned normalization factors

DECAY-MODE EFFICIENCY CORRECTION FACTORS

APPROACH: Account for decreasing classification efficiency by correction factors in the fit

$$m(\tau_{\text{had-vis},0}) = \sqrt{(E_{0,c} + E_{0,n})^2 - (Px_{0,c} + Px_{0,n})^2 - (Py_{0,c} + Py_{0,n})^2 - (Pz_{0,c} + Pz_{0,n})^2}$$

$$\overset{300}{\underset{220}{}_{220}} \xrightarrow{}_{221 \text{ (pn - 2 a styrond}}} \\ \xrightarrow{}_{221 \text{ (pn - 2 a styrond}} \\ \xrightarrow{}_{221 \text{ (pn - 2$$

leading visible mass [GeV]

MATRIX METHOD FOR LEP FAKES

- Applied in leplep channel

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} \epsilon_r \epsilon_r & \epsilon_r \epsilon_f & \epsilon_f \epsilon_r & \epsilon_f \epsilon_f \\ \epsilon_r (1 - \epsilon_r) & \epsilon_r (1 - \epsilon_f) & (1 - \epsilon_f) \epsilon_r & \epsilon_f (1 - \epsilon_f) \\ (1 - \epsilon_r) \epsilon_r & (1 - \epsilon_r) \epsilon_f & (1 - \epsilon_f) \epsilon_r & (1 - \epsilon_f) \epsilon_f \\ (1 - \epsilon_r) (1 - \epsilon_r) & (1 - \epsilon_r) (1 - \epsilon_f) & (1 - \epsilon_f) (1 - \epsilon_r) & (1 - \epsilon_f) (1 - \epsilon_f) \end{bmatrix} \begin{bmatrix} N_{rr} \\ N_{rf} \\ N_{fr} \\ N_{ff} \end{bmatrix}$$

- Differentiate real and fake leptons
- Determine efficiencies of real or fake leptons passing tight selection
- Determine number of tight and loose leptons

FAKE ESTIMATION HADHAD CHANNEL

- Both τs failing loose excluded in n-tuples
- W+jet CR of the lephad selection includes failing loose
- If both τs fake, need additional FF

– τs selected in the SR:

 $\tau_0^P \tau_1^P = \tau_0^T \tau_1^T + F F^0 \tau_0^A \tau_1^P + F F^1 \tau_0^P \tau_1^A - F F^0 F F^1 \tau_0^A \tau_1^A.$

Application:

- Single-fake \rightarrow exclusively nm FF
- Double-fake → ...

1.
$$\tau_0$$
-ID: lnm, τ_1 -ID: nl: $w = -\frac{1}{2} \left(FF_{lnm}(\tau_0) \cdot FF_{nm}(\tau_1) \right)$

3.
$$\tau_1$$
-ID: lnm, τ_0 -ID: lnm: $w = -\frac{1}{2} \left(FF_{lnm}(\tau_0) \cdot FF_{nm}(\tau_1) + FF_{nm}(\tau_0) \cdot FF_{lnm}(\tau_1) \right)$

FAKE UNCERTAINTIES

1. Statistical:

Cause: W+jet CR with limited statistics

 \rightarrow Vary FF by 1σ of statistical uncertainty originating from CR

2. Parametrization:

<u>Cause:</u> closure of method not guaranteed

→ Derive FF for a SS region + determine deviation between data and background as measure of non-closure (test application strategy)

3. Background composition

<u>Cause:</u> different background composition in SR and CR

→ Determine FFs in different fake enriched regions + consider deviations

THE STANDARD MODEL LAGRANGIAN

Phys. Educ. 52 (2017) 034001

ELECTROWEAK SYMMETRY BREAKING

Directly measure λ_{HHH} via HH production

Strength of λ_{HHH} relative to SM prediction ($\lambda_{HHH}/\lambda_{SM}$) = κ_{λ}

Katharine Leney: [1]

P-VALUE FOR STXS

- Describe compatibility with SM
- Test statistic:

 $D = 2 \cdot \|NLL - NLL_{SM}\|$

NLL_SM \rightarrow negative log-likelihood value for setting "all POIs = 1"

- D follows χ^2 with #dof #POI
- P-value = 1 CDF

