

ELECTRONICS SEMINAR INTRODUCTION TO ASIC DESIGN

WHY ASICS INSTEAD OF FPGAS OR MCUS?

- Application-specific integrated circuit
 - Custom all-in-one solution, specific analog circuits as well as digital logic
 - Integrated solution leads to better signal integrity
- ASICs can be highly optimized
- Smaller resource footprint
 - Space, size, power, material constraints
- Radiation hardness \rightarrow Commercial solutions often not radiation hard

ASIC DESIGN FLOW

- Full Custom Design Methodology
 - Standard for custom analog circuits e.g. amplifiers, regulators, I/O cells, etc.
 - Everything create by designer, individual transistor sizes, layout, interconnect

- Cell based Design Methodology
 - Primarily used for digital circuits
 - The designer uses pre-characterized, pre-designed cells
 - Automation: Most of the design process, including placement and routing

FULL CUSTOM DESIGN METHODOLOGY (ANALOG)

FULL CUSTOM DESIGN METHODOLOGY

- Design specified up to level of individual transistor
 - Allows customization of all design aspects
 - Requires experience in circuit design
 - Large design effort, time consuming
- Design flow used for sensor development
- Used to be default for top-level integration
 - Complex designs tend to favor digital-on-top

Virtuoso® Studio Layout Suite XL Editing: Lab1 inverter layout@light	ning sens buffalo.edu	- 0 ×
Launch File Edit View Create Verify Cognectivity Options Tot	is Window Quantus Roonpyn Buce Boute Concyrrent Pegasus Help	caden
え 🖷 🗑 🕂 🗞 🗞 🗹 🕁 🗉 🐉 😘 🔹	F/Select:0 Sel(N):0 Sel(D):0 X 1.5000 Y 3.3500 dK 0.8300 dY 0.2500 Dist:0.8668 Cmdt 🕎 🕶	
Palette 7 8 ×		
Layers B×		
Valid Used Routing		
tter Q Filter		
Metall drawing		
W • NV • AS • NS •		
gpdk045		
Name Vis Sel	🕺 💋 🚧 📈 💋 💋	
	1 Same Barry Barry Barry Barry Barry State	
Name day of the state		
Oxide drw 🗹 🖌		
Oxide_thk drw 🖌 🖌	Constant of the second	
Poly drw 🗹 🗹		
Pimp drw 🗹 🗹		
Nivt drw 🖌 🖌		
Nimp drw 👱 👱		
Phyt drw 🖌 🖌		
Pivt drw 🗹 🗹		
SiProt dry 🖌		
Cont drw 🗹 🗹		
Metal1 drw ⊻ 🛫		
Vial dry 🗹 🖌		
Via2 drw 🖌		
Metal3 drw 🖌 🖌		
Via3 drw 🗹 🗹		
Metal4 drw ⊻ ⊻	/////////////////////	
Metal5 daw	V / Jack V / John South And South A	
Via5 drw 🖌 🖌	_ · · · · · · · ///////////////////////	
Metal6 drw 🗹 🗹 🔤		
Objects 6 ×		
Objects V S		
- Instances 🕑 🗹 🔟	<u>/ / / / / / / / / / / / </u>	
– Pins 🗶 🗶 🔟		
Vias 🗶 🗶 🛄		
lbjects Grids		
🏔 🍁 🕄 💭 🦞 📰 🏭 😂 📊 🖯 💷 🌫 t	B 13 🖸 🖬 🚰 🚅 🗱	
******	1 x m 4 9, 11 A + M	
mouse L: mouseSingleSelectPt()	M: hiZoomAbsoluteScale(hiGetCurrentWindow() 0.9)	R:_txHiMousePopU
01 >		Cond

FULL CUSTOM DESIGN METHODOLOGY

- Develop circuit topology in schematic editor
- Size all transistors (width/length) to meet requirements
- Simulate design at various stages
 - AC, DC Biasing, Stability Analysis, etc.
- Manual Placement, Layout
 - Minimize Parasitics, Match Critical Components
 - Power and Ground Routing, Guard Elements

CELL BASED DESIGN METHODOLOGY (DIGITAL)

RTL DESIGN / VERIFICATION

- RTL Design
 - Design Abstraction written in Verilog or VHDL
 - Focuses on data transfer and data is processing
 - Combinational and sequential logic
- Verification
 - Testbenches / UVM / Cocotb verification framework
 - Takes more effort than the RTL Design
 - Especially for radhard designs

15 ff_proc: process (clk) 16 begin 17 if (clk = '1' and clk'event) then 18 q <= d; 19 end if; 20 end process ff_proc;

- Translation from high-level description to netlist
- Netlist consists of standard cells and interconnections
- Optimization according to constraints
- Hierarchy Flattening

- Conversion from synthesized netlist into layout of ASIC
- Floorplan defines general layout e.g., position of pins
- Placement of cells, minimizing the total wire length
- Routing connects the cells according to the netlist

CLOCK TREE SYNTHESIS / TIMING

- Clock-tree distributes clock to all sinks
 - CTS aims to minimize clock skew
 - Introduction of clock buffer cells

- Timing optimization
 - Ensure timing is met for all paths
 - resize gates, add/delete buffers
 - restructure netlist, move instances

SIGNOFF / MANUFACTURABILITY VERIFICATION

- Static Timing Analysis (STA)
- Design Rule Checking (DRC)
 - Design for Manufacturability (DFM)
- Layout vs. Schematic (LVS)
- Power Integrity Analysis
 - IR Drop / Electromigration

REQUIREMENTS FOR ASIC DESIGN

ELECTRONIC DESIGN AUTOMATION (EDA) TOOLS

- Schematic Design Editor / Layout Tool
- Synthesis / Place and Route Tool
- Parasitic Extraction
- Timing and Power Analysis
- Physical Verification
- Simulators

- Describe the specifics of a semiconductor process
- Fundamental building block for integrated circuit (IC) design
- Input to EDA tools during chip design:
 - Technology data (Layers / Process constraints / Electrical Properties)
 - Primitive device library / parameterized Cells
 - Simulation Models (Spice)
 - Verification checks / Rules (DRC / LVS / Parasitics)

STANDARD CELLS / IP BLOCKS

- Standard Cells
 - Used in cell-based design flow (Logic synthesis)
 - Set of pre-designed digital cells (AND, Flip-flops, Multiplexer)
 - Physical Layout
 - Logic, timing and power characterization data and simulation models
- IP-Blocks
 - pre-designed, larger functional units (made from standard cells)
 - Custom designed blocks like PLLs or SRAM

PRODUCTION / MANUFACTURING COST

- General Multi-Project-Wafer
- Reduce cost by sharing wafer with different projects
- Available through EUROPRACTICE / IMEC / CERN

TSMC mini@sic Pricelist	Standard prices	
	EUR / min area	EUR / extra area
TSMC 130 BCD+ (min area = 6 mm ²)	13,982	231 / 0.1 mm ²
TSMC 65 LP/GP MS RF (min area = 1 mm ²)	4,462	418 / 0.1 mm ²
TSMC 40 LP MS RF (min area = 3 mm ²) ¹	21,249	662 / 0.1 mm ²
TSMC 28 HPC+ RF (min area = 1 mm ²) ¹	10,541	915 / 0.1 mm ²
TSMC 16 FFC RF (min area = 1mm ²) ^{2, 3}	30,364	2,814 / 0.1 mm ²

RADIATION EFFECTS

CUMULATIVE RADIATION EFFECTS

- Cumulative radiation effects (TID):
 - Affect transistors parameter over time
 - Shift in threshold
 - Reduction in drive current
 - Depending on technology, size, bias conditions, etc.
- Impact on digital circuits:
 - Changes in leakage currents
 - Reduced timing margin

SINGLE EVENT EFFECTS

- Can be triggered at any time by a single particle trace
- Permanent effects, non recoverable, may damage device
 - E.g., Single event latch-up

- Temporary effects, recoverable
 - Single Event Upsets and Transients
 - Can lead to functional interrupt

P subtrate

- Radiation-Hardening by Process (RHBP)
 - Optimization at technology level e.g., materials, oxide thickness etc.

- Radiation Hardening by Design (RHBD)
 - Optimization at cell level e.g., layout, guard rings etc.
 - Special circuit topology e.g., dual interlocked storage cells
 - Single event mitigation by introducing signal redundancy

- Triplication and majority voting of the three identical instances
- Typically used for individual signals and modules, not for large data blocks
- Applicable at different levels, e.g. signal or module level

