# The hunt for long-lived particles

Federico Meloni (DESY)

Particle Physics Seminar Universität Bonn, 24/10/2024

#### **Physics at the energy frontier**

#### **Universe scales in metres**



#### **The Standard Model**



#### The part that matches

Status: June 2024



#### The part that doesn't match too well



#### The part that doesn't match too well



Fundamental open questions:

- Gravity
- Dark matter / energy
- Unification of forces
- Matter-antimatter imbalance
- Hierarchy problem

#### **Exploring the unknown**



#### **Samples of our exploration**



**New resonances** 

#### **Long-lived particles**



#### **Long-lived mechanisms**



 $\tau \propto 1/\Gamma$ 

#### What makes them worth pursuing



- Gravity
- Dark matter
- Unification of forces
- Matter-antimatter imbalance
- Hierarchy problem

<u>1412.0018</u> 2005.01515

✓ (~)

#### **Massive dark photons**



# Small couplings

Dark matter

DESY. | F. Meloni | Particle Physics Seminar, Universität Bonn | 24/10/2024

#### **Split supersymmetry**



## Mass hierarchies

- Dark matter
- Hierarchy problem ~

Sketch: N. Arkani-Hamed

$$au = 3 imes 10^{-2} \mathrm{sec} \left( \frac{\mathrm{m_S}}{\mathrm{10^9 \, GeV}} 
ight)^4 \left( \frac{1 \, \mathrm{TeV}}{\mathrm{m_{\tilde{g}}}} 
ight)^5$$

#### **Minimal dark matter**



$$au_{\chi^\pm} \sim rac{44\,cm}{(n^2-1)}$$
 for Y=0 and multiplet dimension ≥ 3

#### The searches: everything is "non-standard"



# **Searches at the LHC**



Published for SISSA by 🖄 Springer

Received: April 8, 2021 Revised: May 30, 2021 Accepted: June 24, 2021 Published: July 23, 2021

#### A search for the decays of stopped long-lived particles at $\sqrt{s}=13\,\text{TeV}$ with the ATLAS detector



#### The ATLAS collaboration





DESY. | F. Meloni | Particle Physics Seminar, Universität Bonn | 24/10/2024







## A completely different strategy





## A completely different strategy









**Run** 306147 **Event** 16519 2016-08-11 21:51:33 CEST

#### **C**OLLISION **RECONSTRUCTION**





#### **Estimating stopped signal yields**

$$N_{\text{events}}^{\text{SR}} = L^{\text{int}} \times \sigma_{\tilde{g}\tilde{g}} \times 2 \times \epsilon^{\text{SR}} \times f_{\text{stopping}} \times (\text{live fraction})$$



## The result









# **Searches at the LHC**





Published for SISSA by 🖄 Springer

RECEIVED: June 27, 2022 ACCEPTED: October 3, 2022 PUBLISHED: June 23, 2023

Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at  $\sqrt{s}=13~\text{TeV}$  with the ATLAS detector



#### The ATLAS collaboration



### Dark photons in Higgs boson decays



Unprobed  $\rightarrow$  exploit WH production (no online selections)

#### Separating dark photon jets from QCD





# Output score

#### Separating dark photon jets from QCD





#### **Extending sensitivity to low masses**





# **Searches at the LHC**





Published for SISSA by 🖉 Springer

RECEIVED: February 2, 2023 ACCEPTED: June 3, 2023 PUBLISHED: June 29, 2023

Search for long-lived, massive particles in events with displaced vertices and multiple jets in pp collisions at  $\sqrt{s}=13\,\text{TeV}$  with the ATLAS detector



The ATLAS collaboration



Simulation

 $\sqrt{s} = 13 \text{ TeV}$ 

Strong RPV:  $\tilde{g} \rightarrow qq\tilde{\chi}^0 (\rightarrow qqq)$  $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}^0) = 200 \text{ GeV}, \tau = 0.1 \text{ ns}$ 

**DV properties** (x, y, z) : (26.9, 19.0, 51.4) mm mass : 107.1 GeV (14 tracks)

## **Displaced vertex reconstruction**

Reconstruction effiency





### The backgrounds

There are no SM processes producing high-mass displaced vertices





#### **Displaced vertex selections**

 $R_{xv} > 4 \text{ mm}$ 

#### Hadronic interactions veto

 $\geq$  5 tracks

DESY.

 $m_{vis} > 10 \text{ GeV}$ 






# **Beyond the LHC**



Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjs/s11734-024-01164-9 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS



#### Technical Design Report for the LUXE experiment

LUXE Collaboration, H. Abramowicz<sup>1</sup>, M. Almanza Soto<sup>2</sup>, M. Altarelli<sup>3</sup>, R. Aßmann<sup>4</sup>, A. Athanassiadis<sup>4,27</sup>, G. Avoni<sup>5</sup>, T. Behnke<sup>4</sup>, M. Benettoni<sup>6</sup>, Y. Benhammou<sup>1</sup>, J. Bhatt<sup>7</sup>, T. Blackburn<sup>8</sup>, C. Blanch<sup>2</sup>, S. Bonaldo<sup>6</sup>, S. Boogerf<sup>9,10</sup>, O. Borysov<sup>4,28</sup>, M. Borysov<sup>4,11,28</sup>, V. Boudry<sup>12</sup>, D. Breton<sup>13</sup>, R. Brinkmann<sup>4</sup>, M. Bruschi<sup>5</sup>, F. Burkart<sup>4</sup>, K. Büßer<sup>4</sup>, N. Cavanagh<sup>14</sup>, F. Dal Corso<sup>6</sup>, W. Decking<sup>4</sup>, M. Deniaud<sup>15</sup>, O. Diner<sup>16</sup>, U. Dosselli<sup>6</sup>, M. Elad<sup>1</sup>, L. Epshteyn<sup>16</sup>, D. Esperante<sup>2</sup>, T. Ferber<sup>17</sup>, M. Firlej<sup>18</sup>, T. Fituwski<sup>18</sup>, K. Fleck<sup>14</sup>, N. Fuster-Martinez<sup>2</sup>, K. Gadow<sup>4</sup>, F. Gaede<sup>4</sup>, A. Gallas<sup>13</sup>, H. Garcia Cabrera<sup>2</sup>, E. Gerstmayr<sup>14</sup>, V. Ghenescu<sup>19</sup>, M. Giorato<sup>6</sup>, N. Golubeva<sup>4</sup>, C. Grojean<sup>4,29</sup>, P. Grutta<sup>6</sup>, G. Grzelak<sup>20</sup>, J. Halford<sup>4,7</sup>, L. Hartman<sup>4,30</sup>, B. Heinemann<sup>4,21</sup>, T. Heinzl<sup>22</sup>, L. Helary<sup>4</sup>, L. Hendriks<sup>4,7</sup>, M. Hoffmann<sup>4,21,31</sup>, D. Horn<sup>1</sup>, S. Huang<sup>1</sup>, X. Huang<sup>4,21,23</sup>, M. Idzik<sup>18</sup>, A. Irles<sup>2</sup>, R. Jacobs<sup>4,40</sup>, B. King<sup>22</sup>, M. Klute<sup>17</sup>, A. Kropf<sup>4,21</sup>, E. Kroupp<sup>16</sup>, H. Lahno<sup>11</sup>, F. Lasagni Manghi<sup>6</sup>, J. Lawhorn<sup>17</sup>, A. Levanon<sup>1</sup>, A. Levi<sup>10</sup>, L. Levinson<sup>16</sup>, A. Levy<sup>1</sup>, I. Levy<sup>24</sup>, A. Liberman<sup>16</sup>, B. Liss<sup>4</sup>, B. List<sup>4</sup>, J. List<sup>4</sup>, W. Lohmann<sup>4,32</sup>, J. Maalmi<sup>13</sup>, T. Madlener<sup>4</sup>, V. Malka<sup>16</sup>, T. Marsault<sup>4,33</sup>, S. Mattiazzo<sup>6</sup>, F. Meloni<sup>4</sup>, D. Miron<sup>1</sup>, M. Morandin<sup>6</sup>, J. Moron<sup>18</sup>, J. Nanni<sup>12</sup>, A. T. Neagu<sup>19</sup>, E. Negodin<sup>4</sup>, A. Savert<sup>3,25</sup>, S. Schmitt<sup>4</sup>, I. Schultes<sup>4</sup>, S. Schuwalow<sup>4</sup>, D. Seipt<sup>23,25</sup>, A. Santra<sup>16</sup>, G. Sarri<sup>14</sup>, A. Sävert<sup>23,25</sup>, S. Schmitt<sup>4</sup>, I. Swientek<sup>18</sup>, N. Tal Hod<sup>16</sup>, T. Tet<sup>23,25</sup>, A. Ashta<sup>26</sup>, S. Waikke<sup>4</sup>, M. Warren<sup>7</sup>, M. Wing<sup>4,7</sup>, Y. C. Yap<sup>4</sup>, N. Zadok<sup>1</sup>, M. Zaretli<sup>6</sup>, S. Vasiukov<sup>6</sup>, S. Walke<sup>4</sup>, M. Warren<sup>7</sup>, M. Wing<sup>4,7</sup>, Y. C. Yap<sup>4</sup>, N. Zadok<sup>1</sup>, M. Zaretli<sup>6</sup>, A. F. Zarnecki<sup>20</sup>, P. Zbińkowski<sup>20</sup>, K. Zembaczyński<sup>20</sup>, M. Zegf<sup>23,25</sup>, D. Zerwas<sup>13,34</sup>, W. Ziegler<sup>23,25</sup>, and M. Zuffa<sup>5</sup>.

## The LLP community



Figure credit: J. Beacham

The focus on LLP searches has only grown in the past ~decade

Significant programme beyond the LHC



## -----

## **LUXE-NPOD: experimental setup**





## **Expected signal yields**



DESY. | F. Meloni | Particle Physics Seminar, Universität Bonn | 24/10/2024



## **LUXE-NPOD: detection**



Plan to measure:

Decay position

• Mass 
$$m=\sqrt{2\,E_1E_2(1-\coslpha)}$$

Geant4 simulation of backgrounds to determine target performance

$$\sigma_{\theta} \leq 10 \text{ mrad} \qquad \sigma_{t} \leq 1 \text{ ns}$$

### ECAL-E prototype

# The journey ahead



## **Beyond the beampipe**



## **Future 0 - ATLAS potential not exhausted!**



## **Future I - LLP searches at LUXE**



Studied also prospects for a LUXE-NPOD-like experiment at <u>Higgs</u> <u>factories</u>

2107.13554



## **Future II - Future colliders**



## Summary

Long-lived particle searches are a particularly creative field:

- Non-standard data collection and analysis
- Dedicated detectors
- New reconstruction techniques

# Thank you!

Contact

Federico Meloni DESY-FH/ATLAS federico.meloni@desy.de https://www.desy.de/~fmeloni

## **Re-interpretation**



## **Exotic Higgs boson decays**



## **R-hadron generation and simulation**



#### ATL-PHYS-PUB-2019-019

## **Stopping R-hadrons**



## **Cosmic-ray background**





### Leading jet Muon track segments



## **Beam-induced background**





## **Estimating stopped signal yields**

$$N_{\text{events}}^{\text{SR}} = L^{\text{int}} \times \sigma_{\tilde{g}\tilde{g}} \times 2 \times \epsilon^{\text{SR}} \times f_{\text{stopping}} \times (\text{live fraction})$$



## **ATLAS stopped particles**



## **CMS stopped particles**



## **Reconstructing tracks with large displacement**

|                                | Standard                       | Large radius |
|--------------------------------|--------------------------------|--------------|
| Maximum $d_0$ (mm)             | 10                             | 300          |
| Maximum $z_0 \pmod{m}$         | 250                            | 1500         |
| Maximum $ \eta $               | 2.7                            | 5            |
| Maximum shared silicon modules | 1                              | 2            |
| Minimum unshared silicon hits  | 6                              | 5            |
| Minimum silicon hits           | 7                              | 7            |
| Seed extension                 | $\operatorname{Combinatorial}$ | Sequential   |

## **Displaced vertexing**



## **Accidental crossings**

Extract **crossing factor** from data exploiting K<sub>s</sub> decays

Take crossing tracks to build template of (n+1)-tracks DV mass







### **Observations**



UDD,  $\tilde{q} \rightarrow tbs$ ,  $m_{\tilde{q}} = 2500 \text{ GeV}$ 

UDD,  $\tilde{g} \rightarrow tbs$ ,  $m_{\tilde{g}} = 2500 \text{ GeV}$ 

UDD,  $\tilde{t} \rightarrow \overline{dd}$ ,  $m_{\tilde{t}} = 1600 \text{ GeV}$ 

UDD,  $\tilde{t} \rightarrow dd$ ,  $m_{\tilde{t}} = 1600 \text{ GeV}$ 

LQD,  $\tilde{t} \rightarrow bl$ ,  $m_{\tilde{t}} = 600 \text{ GeV}$ 

LQD,  $\tilde{t} \rightarrow bl$ ,  $m_{\tilde{t}} = 460 \text{ GeV}$ 

LQD,  $\tilde{t} \rightarrow bl$ ,  $m_{\tilde{t}} = 1600 \text{ GeV}$ 

AMSB,  $\chi^{\pm} \rightarrow \chi_1^0 \pi^{\pm}$ ,  $m_{\chi^{\pm}} = 700 \text{ GeV}$ 

GMSB SPS8,  $\chi_1^0 \rightarrow \gamma \tilde{G}$ ,  $m_{\gamma_1^0} = 400 \text{ GeV}$ 

GMSB, co-NLSP,  $\tilde{I} \rightarrow I\tilde{G}$ ,  $m_{\tilde{i}} = 270 \text{ GeV}$ 



### **Overview of CMS long-lived particle searches**

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

SUSY RPV

## **Observations**

|                | Data-driven "ABCD" background estimation |      |      |       |             |             |  |
|----------------|------------------------------------------|------|------|-------|-------------|-------------|--|
|                |                                          |      |      |       |             |             |  |
| Selection      | Search channel                           | CRB  | CRC  | CRD   | SR expected | SR observed |  |
| a <del>.</del> | $2\mu$                                   | 55   | 61   | 389   | $317\pm47$  | 269         |  |
| $\mathrm{ggF}$ | $\mathrm{c+}\mu$                         | 169  | 471  | 301   | $108\pm13$  | 110         |  |
|                | 2c                                       | 97   | 1113 | 12146 | $1055\pm82$ | 1045        |  |
| WH             | С                                        | 1850 | 3011 | 155   | $93\pm12$   | 103         |  |
|                | $\mathrm{c+}\mu$                         | 30   | 49   | 31    | $19\pm8$    | 20          |  |
|                | 2c                                       | 79   | 155  | 27    | $14 \pm 5$  | 15          |  |

DESY.

## **Long-lived staus**



## **The ATLAS tracking detector**



## LUXE's "transparent dump"



## **The LUXE experiment**





## **Backgrounds**



Initial estimation of the backgrounds emerging from the dump with GEANT4:

- charged particles  $\rightarrow$  bent by a magnetic field (1.5 T of 1 m) ۲
- real photons  $\rightarrow N_{2\gamma} \approx 8 \times 10^2$ •
- fake photons •

## LUXE QED





## Simulated signal event

Exploit **timing** and **inter-layer correlations**.
<u>2105.09116</u>

### **BIB characteristics**

| Particle ( $E_{th}$ , MeV) | MARS15 25 m         | FLUKA 25 m          | FLUKA 250 m         |
|----------------------------|---------------------|---------------------|---------------------|
| Photon (0.2)               | 8.3 107             | 4.3 107             | 5.1 10 <sup>7</sup> |
| Neutron (0.1)              | 2.4 10 <sup>7</sup> | 5.4 10 <sup>7</sup> | 5.9 10 <sup>7</sup> |
| Electron/positron (0.2)    | 7.2 10 <sup>5</sup> | $2.210^{6}$         | $2.310^{6}$         |
| Ch. Hadron (1)             | 3.1 10 <sup>4</sup> | $1.510^4$           | $210^4$             |
| Muon (1)                   | $1.510^3$           | $1.210^3$           | 3.4 10 <sup>3</sup> |

2102.11292

## **BIB rejection: timing**



# **BIB rejection: stub tracks**



#### Expected signal production rates At the MuC 10



## **Event selection**



# **Expected sensitivity**

3 TeV detector 1.5 TeV BIB overlay Extrapolated to 10 TeV

Pure higgsino models at MuC 10

