

Excesses in electroweak SUSY searches at the LHC

BASED ON : 2403.14759, 2112.01389 WITH S. HEINEMEYER (IFT, MADRID), I. SAHA (IIT MADRAS) & C. SCHAPPACHER (KIT, KARLSRUHE)

Bethe Center f Theoretical Ph

25/11/2024

Manimala Chakraborti

-

- Brief recap of MSSM
- Latest status of the LHC searches for EW SUSY...
- ✤ ... and muon g-2
- ✦ Results
- + Summary

MSSM particle content

Standard particles

SUSY particles ~ ~ \sim t C U V H ~ b d S g Higgsino ~ ~ ~ ~ Z V_{μ} Ve ν_{τ} ~ ~ ~ ~ W е μ τ Squarks Sleptons SUSY force particles

Uncolored EW sector Charginos/ neutralinos

Sleptons

Electroweak MSSM

- Modest production cross section, mass bounds from the LHC comparably weak
- Any show up elsewhere : DM experiments, $(g-2)_{\mu}$
- Some interesting excesses

Names	\mathbf{Spin}	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 \ H^0 \ A^0 \ H^{\pm}$
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)
			$\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{\nu}_e$	(same)
sleptons	0	$^{-1}$	$\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ uu}_ au$	$\widetilde{\tau}_1 \ \widetilde{\tau}_2 \ \widetilde{\nu}_\tau$
neutralinos	1 2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

MSSM Superpotential

$$W_{\rm MSSM} = \bar{u}Y_uQH_u - d$$

Soft Breaking Terms

$$\mathscr{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + c \cdot c \right)$$
$$- \left(\tilde{u} \, \mathbf{a}_{\mathbf{u}} \, \tilde{Q} H_u - \tilde{d} \, \mathbf{a}_{\mathbf{d}} \, \tilde{Q} H_d - \tilde{e} \, \mathbf{a}_{\mathbf{e}} \, \tilde{L} H_d + c \cdot c \right)$$
$$- \tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \, \tilde{Q} - \tilde{L}^{\dagger} \, \mathbf{m}_{\mathbf{L}}^2 \, \tilde{L} - \tilde{u} \, \mathbf{m}_{\mathbf{u}}^2 \, \tilde{u}^{\dagger} - \tilde{d} \, \mathbf{m}_{\mathbf{d}}^2 \, \tilde{d}^{\dagger} - \tilde{e} \, \mathbf{m}_{\mathbf{e}}^2 \, \tilde{e}^{\dagger}$$
$$- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - \left(b H_u H_d + c \cdot c \right)$$

$\bar{d}Y_dQH_d - \bar{e}Y_eLH_d + \mu H_uH_d$

Gauge eigenstate basis $(\tilde{B}, \tilde{W}_3^0, \tilde{H}_u^0, H_d^0)$

$$M_{N} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \\ -M_{Z} c_{\beta} s_{W} & M_{Z} c_{\beta} \\ M_{Z} s_{\beta} s_{W} & -M_{Z} s_{A} \end{pmatrix}$$

 $N^*M_{\tilde{N}}N^{-1} = (m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0})$ Mass diagonalisation :

Tree level neutralino mass matrix

	$-M_Z c_\beta s_W$	$M_Z s_\beta s_W$
2	$M_Z c_\beta cW$	$-M_Z s_\beta cW$
c_W	0	$-\mu$
$c_{\beta} c_{W}$	$-\mu$	0

Parameters $\longrightarrow M_1, M_2, \mu, \tan\beta$

Gauge eigenstate basis $(\tilde{B}, \tilde{W}_3^0, \tilde{H}_u^0, H_d^0)$

$$M_N = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \\ -M_Z c_\beta s_W & M_Z c_\beta \\ M_Z s_\beta s_W & -M_Z s_\beta \end{pmatrix}$$

$$N^*M_{\tilde{N}}N^{-1} = ($$

Tree level neutralino mass matrix

Gauge eigenstate basis $(\tilde{W}^{\pm}, \tilde{H}_{uld}^{\pm})$

 $M_{C} = \begin{pmatrix} M_{2} & \sqrt{2}M_{W}c_{\beta} \\ \sqrt{2}M_{W}s_{\beta} & \mu \end{pmatrix}$

Mass diagonalisation : $U^*M_{\tilde{N}}V^{-1} = (m_{\tilde{\chi}^{\pm}_1}, m_{\tilde{\chi}^{\pm}_2})$

Tree level chargino mass matrix

Tree level slepton mass matrix

$$M_{\tilde{L}}^{2} = \begin{pmatrix} m_{l}^{2} + m_{LL}^{2} & m_{l}X_{l} \\ m_{l}X_{l} & m_{l}^{2} + m_{RR}^{2} \end{pmatrix}$$

Parameters
$$m_{\tilde{L}}, m_{\tilde{R}}$$

First two gens. $m_{\tilde{l}_1} \sim m_{LL}$ $m_{\tilde{l}_2} \sim m_{RR}$

$$m_{LL}^{2} = m_{\tilde{L}}^{2} + (I_{l}^{3L} - Q_{l}s_{w}^{2})M_{z}^{2}c_{2\beta}$$
$$m_{RR}^{2} = m_{\tilde{R}}^{2} + Q_{l}s_{w}^{2}M_{z}^{2}c_{2\beta}$$
$$X_{l} = A_{l} - \mu(\tan\beta)^{2I_{l}^{3L}}$$

 $\tilde{R}, \mu, \tan\beta$

LHC searches

- Multilepton + missing E_T
 - Decay via sleptons
 - Decay via gauge/Higgs bosons (on-shell)
 - Decay via gauge bosons (off-shell)
- Disappearing/displaced track searches
 - Decay via pions (mass splitting ~ 100 MeV)
- Monojet searches
 - Pair production of DM

Slepton pair production

ATLAS [1908.08215]

13 TeV, 139 fb^{-1}

ATLAS 1911.12606

What did the LHC exclude ?

Impressive exclusion bounds for winos

EW triplets

Large mass splitting

What did the LHC exclude ?

- Higgsino: $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_1^\pm} \sim m_{\tilde{\chi}_2^0}$
- Small visible energy makes the searches challenging in the "compressed" region

Caution! Simplified models

Limits must be recast to be imposed on real parameter space

Specific assumptions

- Pure Wino decaying to pure bino
- 100% BR _

Relax these assumptions and the limits change!

Recasting with CM

Drees, Dreiner, Schmeier, Tattersall, Kim '13 Kim, Schmeier, Tattersall, Rolbiecki '15 Dercks, Desai, Kim, Rolbiecki, Tattersall '16

Testing models against LHC analyses

Signal events calculated for each SR _

$$r = \frac{S - 1.96 \times \Delta S}{S_{exp}^{95}}$$

For the best SR, $r > 1 \longrightarrow$ excluded! _

CheckMATE

What did the LHC actually exclude ?

pMSSM scan with decoupled colored sector and sleptons

M_1	-2 TeV	2 TeV
M_2	-2 TeV	2 TeV
μ	-2 TeV	2 TeV
M_3	1 TeV	5 TeV
A_t	-8 TeV	8 TeV
A_b	-2 TeV	2 TeV
A_{τ}	-2 TeV	2 TeV
M_A	0 TeV	5 TeV
$\tan \beta$	1	60

Fraction of models excluded

2402.01392

What did the LHC actually exclude ?

pMSSM scan with decoupled colored sector and sleptons

M_1	-2 TeV	2 TeV
M_2	-2 TeV	2 TeV
μ	-2 TeV	2 TeV
M_3	1 TeV	5 TeV
A_t	-8 TeV	8 TeV
A_b	-2 TeV	2 TeV
A_{τ}	-2 TeV	2 TeV
M_A	0 TeV	5 TeV
$\tan \beta$	1	60

2402.01392

excluded Fraction of models

- (even below $\sim 1 \text{ TeV}$)
- To mitigate : Recast, reinterpret

- LHC has not ruled out SUSY.

Much of MSSM parameter space still unexplored

"Simplified SUSY models" are not really SUSY

But when will it discover SUSY?

$2l/3l + E_T^{miss}$ $\gtrsim 3l + E_T^{miss}$

Wino/Bino

 $\Delta m \equiv m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1} \sim 20 \,\text{GeV}$

2402.01888

 $2l + E_T^{miss}$ $3l + E_T^{miss}$

> 1911.12606 2106.01676

 $2l/3l + E_T^{miss}$

searches with heavy sleptons : deficit in observed vs expected exclusion

<u>Higgsino</u>

$\Delta m \equiv m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1} \sim 8 - 20 \,\text{GeV}$

2111.06296

2106.01676

$\Delta m \equiv m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1} \lesssim 20 \,\mathrm{GeV}$

Agin, Fuks, Goodsell, Murphy 2311.17149

 $m_{ ilde{\chi}^0_2}$ $\Delta m \equiv m_{\tilde{\chi}^0_2}$

Wino/Bino DM with chargino coannihilation.

 $\star M_1 \approx M_2 < < \mu$

♦ Relic density 100% saturated

Higgsino DM with chargino coannihilation.

 $\star \mu < < M_1, M_2$

Relic density partially saturated

$$\approx m_{\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}} \sim 20 \ GeV$$

<u>Muon (g-2) in MSSM</u>

Measurement of the Positive Muon Anomalous Magnetic Moment to **0.46 ppm**

[*Phys. Rev. Lett.* 126 (2021) 14, 141801]

... **to 0.20 ppm** [*PRL* 131 (2023) 16, 161802]

Aoyama *et al* '20

Talk by Thomas Teubner, FPCP 2024

$a_{\mu}^{exp} - a_{\mu}^{theo,SM} = (24.9 \pm 4.8) \times 10^{-10}$

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NF}}$$

Final result from Fermilab in 2025

White Paper [T. Aoyama et al., Phys. Rept. 887 (2020) 1-166]

New theory WP expected soon !

0.37 ppm

0.001 ppm

0.01 ppm

SM uncertainty dominated by **HVP** contribution

0.34 ppm

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hadronic}}$$

0.15 ppm

Talk by Thomas Teubner, FPCP 2024

F. Ignatov et al. (CMD-3), 2302.08834 [hep-ex]

New theory WP expected soon !

Tensions between WP and CMD-3,BMW

Talk by Thomas Teubner, FPCP 2024

We need very light BSM particles OR enhancement from couplings

 $\Delta a_{\mu}^{\rm BSM} \sim \Delta a^{\rm SM, EW}$.

SM EW 1 loop :
$$rac{lpha}{\pi} rac{m_{\mu}^2}{M_W^2}.$$

MSSM can easily explain anomaly !

$$\left(\frac{m_W^2}{m_{\rm BSM}^2}\right) \cdot \left(\frac{g_{\rm BSM}}{g_{\rm SM}}\right)$$

MSSM , 1 loop :
$$\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{SUSY}^2} \times \frac{tan\beta}{m}$$

 $\tan\beta \in [5-60] \rightarrow m_{\text{SUSY}} \in [200-600] \,\text{GeV}$

 $\Delta a_{\mu}^{\text{SUSY}} = \Delta a_{\mu}^{\text{WHL}} + \Delta a_{\mu}^{\text{BHL}} + \Delta a_{\mu}^{\text{BHR}} + \Delta a_{\mu}^{\text{BLR}}$

$$\Delta a_{\mu}^{\text{WHL}}(M_2, \mu, m_{\tilde{l}_L}) = \frac{\alpha_W}{8\pi} \frac{m_{\mu}^2}{M_2 \mu} \tan \beta \cdot f_W(\{\mathbf{m}\})$$

$$\Delta a_{\mu}^{\text{BHL}}(M_1, \mu, m_{\tilde{l}_L}) = \frac{\alpha_Y}{8\pi} \frac{m_{\mu}^2}{M_1 \mu} \tan\beta \cdot f_{\text{N}}(\{\mathbf{m}\})$$

$$\Delta a_{\mu}^{\text{BHR}}(M_{1}, \mu, m_{\tilde{l}_{R}}) = -\frac{\alpha_{Y}}{8\pi} \frac{m_{\mu}^{2}}{M_{1}\mu} \tan\beta \cdot f_{N}(\{\mathbf{m}\})$$

$$\Delta a_{\mu}^{\text{BLR}}(M_1, m_{\tilde{l}_L}, m_{\tilde{l}_R}; \mu) = \frac{\alpha_Y}{4\pi} \frac{m_{\mu}^2 M_1 \mu}{m_{\mu_L}^2 m_{\mu_R}^2} \tan\beta \cdot f_{\text{BLR}}(\{\mathbf{n}\})$$

[Borrowed from Kazuki Sakurai]

Summary of g-2 in MSSM

$$\Delta a_{\mu}^{\rm SUSY} = \Delta a_{\mu}^{\rm WHL} +$$

 $\Delta a_{\mu}^{\text{WHL}}(M_{2}, \mu, m_{\tilde{l}_{L}})$ $\Delta a_{\mu}^{\text{BHL}}(M_{1}, \mu, m_{\tilde{l}_{L}})$ $\Delta a_{\mu}^{\text{BHR}}(M_{1}, \mu, m_{\tilde{l}_{R}})$

+ Δa_{μ}^{BHL} + Δa_{μ}^{BHR} + Δa_{μ}^{BLR}

- Higgsino, one gaugino, one slepton all must be light:
- \Rightarrow LHC constraint with large E_T
- gaugino-Higgsino mixing ⇒ DM direct detection

- Bino and both L and R sleptons must be light:
- \Rightarrow Bino abundance $\Omega_{\tilde{\chi}^0_1} < \Omega_{\rm DM}$
- ⇒ Charged LSP, Vacuum stability

Analysis flow

• $\Delta a_{\mu} = (24.9 \pm 4.8) \times 10^{-10}$

• $\Omega_{CDM}h^2 = 0.120 \pm 0.001$

Direct detection SI bounds from LZ

Squarks and gluinos decoupled

DM choices

Bino/wino DM with chargino coannihilation

- $M_1 \sim M_2 < \mu$ (Relic density 100% satisfied)

Bino DM with slepton coannihilation

- $M_1 \sim m_{\tilde{l}} < M_2, \mu$ (Relic density 100% satisfied)

✦ Higgsino DM

- $\mu < M_1, M_2$ (underabundant upto ~ 1 TeV)

♦ Wino DM

- $M_2 < M_1, \mu$ (underabundant upto ~ 3 TeV)

Bino/higgsino DM : tension between DM & g-2

<u>Muon g-2@</u> 5σ

$m_{(N)LSP} \lesssim 650 \ (700) \, {\rm GeV}$

$m_{(N)LSP} \lesssim 550 \ (600) \ {\rm GeV}$

 $m_{(N)LSP} \lesssim 500 \,\mathrm{GeV}$

 $m_{(N)LSP} \lesssim 600 \,\mathrm{GeV}$

MC, Heinemeyer, Saha' 20/21

75 100 GeV
$$\leq M_1 \leq 1000$$
 GeV , $M_1 \leq M_2 \leq 1.1 M_1$
 $1.1 M_1 \leq \mu \leq 10 M_1$, $5 \leq \tan \beta \leq 60$
 100 GeV $\leq m_{\tilde{l}_L} \leq 1500$ GeV, $m_{\tilde{l}_R} = m_{\tilde{l}_L}$

Upper and lower bounds from $(g - 2)_{\mu}$ and LHC searches

MC, Heinemeyer, Saha, Schappacher' 22

Wino/Bino(+) DM

Green: $(g - 2)_{\mu}$ but not DM, LHC Blue: $(g - 2)_{\mu}$ + DM, but not LHC Red: all

- Slepton-pair production $\rightarrow (2l + \text{missing } E_T)$ provides important search channel.
- Considerable BR for $\tilde{e}_L(\tilde{\mu}_L) \rightarrow \tilde{\chi}_1^{\pm} \nu_l$ ATLAS: $\tilde{e}_L(\tilde{\mu}_L) \rightarrow \tilde{\chi}_1^0 l$

Wino/Bino(+) DM

MC, Heinemeyer, Saha, Schappacher' 22

Wino/Bino(+) DM

Excesses do not overlap well

Wino/Bino (+) : $M_1 \times M_2 > 0$

Parameter scan range

100 GeV $\leq M_1 \leq 400$ GeV, $|M_1| \leq M_2 \leq 1.1 |M_1|$, $1.1|M_1| \le \mu \le 10|M_1|, \quad 2 \le \tan \beta \le 60,$ 100 GeV $\leq m_{\tilde{l}_L} = m_{\tilde{l}_R} \leq 1.5 \text{ TeV}$, $M_A = 1.5 \text{ TeV}$.

Only points with : $m_{\tilde{l}} > m_{\tilde{\chi}_2^0}$

Many good points at $\Delta m \approx 20$ GeV

Wino/Bino(+) excess

DD can be complementary

 New LZ bound partially covers the parameter space

2410.17036

Wino/Bino(+) excess

Cross section roughly in the correct range considering the difference between expected and observed limits

NLO+NLL Resummino

ATLAS and CMS overlap better

Wino/Bino (-) : $M_1 \times M_2 < 0$

Parameter scan range

 $\begin{array}{ll} 100 \ {\rm GeV} \leq -M_1 \leq 400 \ {\rm GeV} \;, & |M_1| \leq M_2 \leq 1.4 \, |M_1| \;, \\ & 1.2 \, |M_1| \leq \mu \leq 2 \ {\rm TeV} \;, & 2 \leq \tan \beta \leq 60 \;, \\ 100 \ {\rm GeV} \leq m_{\tilde{l}_L} = m_{\tilde{l}_R} \leq 1.5 \ {\rm TeV} \;, & M_A = 3 \ {\rm TeV} \;. \end{array}$

Only points with : $m_{\tilde{l}} > m_{\tilde{\chi}_2^0}$

Many good points at $\Delta m \approx 25$ GeV

LHC cross section in the right range

Wino/Bino(-) DM

DD can be complementary

- $SU(2)_L$ doublet favored by naturalness
- ♦ Under-abundant upto ~ 1 TeV
- Compressed spectra with $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_1^\pm} \sim m_{\tilde{\chi}_2^0}$

 $100 \text{ GeV} \le \mu \le 1.2 \text{ TeV}, \quad 1.1\mu \le M_1 \le 10\mu,$ $1.1\mu \le M_2 \le 10\mu, \quad 5 \le \tan\beta \le 60,$ 100 GeV $\leq m_{\tilde{l}_L}, m_{\tilde{l}_R} \leq 2$ TeV.

Higgsino(+) : $\mu \times M_1 > 0$

$\Omega_{CDM} h^2 \le 0.122$

Parameter scan range

 $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_1^\pm} \sim m_{\tilde{\chi}_2^0}$

Direct detection cuts away higher Δm

Higgsino(+) : $\mu \times M_1 > 0$

- + Compressed spectra searches most important.
- ★ $\Delta m \sim \mathcal{O}(10)$ GeV → Disappearing track searches
 not sensitive

$$c_{h\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}} \simeq -\frac{1}{2}(1+\sin 2\beta) \left(\tan^{2}\theta_{w}\frac{M_{W}}{M_{1}-\mu}+\frac{M_{W}}{M_{2}-\mu}\right)$$

Drees, Ghaffari '21

Direct detection cuts away higher Δm

Higgsino(+) : $\mu \times M_1 > 0$

<u>SI scattering amplitude</u>

$$\mathcal{M}_p^{\mathrm{SI}} \propto \frac{v}{\mu^2} \left[2 \frac{(M_1 + \mu \sin 2\beta)}{m_h^2} - \frac{\mu \cos 2\beta}{m_h^2} \right]$$

$$\approx \frac{v}{\mu^2} \left[2 \frac{(M_1 + 2\mu/\tan\beta)}{m_h^2} + \frac{\mu \tan\beta}{m_H^2} \right]$$

Cancellation possible for $\mu \times M_1 < 0$

- within the first term : Bino LSP
- + between h and H exchange : light $M_H \approx M_A$

Huang, Wagner'14, Baum et al '23

Parameter scan range

190 GeV $\leq -M_1 \leq 1500$ GeV, $M_2 = 3$ TeV, $\frac{-2M_1 \tan \beta}{4 + M_h^2 / M_H^2 \tan^2 \beta} \le \mu \le |M_1| ,$ $1 \leq \tan \beta \leq 50$, $m_{\tilde{l}_L} = m_{\tilde{l}_R} = 1.5 \text{ TeV},$ $190 \text{ GeV} \le M_A \le 1.5 \text{ TeV}$.

Additional Constraints

- Flavor physics

Higgsino(-) : $\mu \times M_1 < 0$

We take $M_1 < 0$ Original motivation : g-2

Non-standard Higgs searches

Higgsino(-) : $\mu \times M_1 < 0$

Additional Constraints

Flavor physics

Non-standard Higgs searches

$M_A \lesssim 500$ GeV, $\tan \beta \lesssim 2$

 Δm still too low to explain "excesses"

Higgsino(-) : $\mu \times M_1 < 0$

- + $M_1 < 0$: motivation g-2
- + Alternatively, $\mu < 0$

SD constraints restrict Δm

Higgsino(-) DM

Martin, 2403.19598

Future collider prospects

Wino/Bino (+) : $M_1 \times M_2 > 0$

MC, Heinemeyer, Saha, Schappacher' 20

Future collider prospects

Berggren' 20

- ♦ Much of MSSM parameter space still unexplored (even below ~ 1 TeV)
- "Simplified SUSY models" are not really SUSY. Proper recasting required.
- ◆ New muon g-2 result (Theory & experiment) upcoming. Independently at J-PARC, MuonE.
- ◆ Small excesses in ATLAS +CMS soft lepton searches : "Compressed" region needs better sensitivity.

LHC has not ruled out SUSY.

But when will it discover SUSY ? ----- Soon!

- VBF searches, ML-based triggers/cuts

Has the LHC ruled out supersymmetry?

Thank You!

Chargino Co-annihilation

Some annihilation channels that could give right relic density :

A well-tempered bino-wino or bino-higgsino LSP Bino - dominated LSP — Slepton coannihilation

Chargino coannihilation

LHC searches

Disappearing track searches _

FIG. 1: Required number of hits in the ATLAS inner tracker for the analyses of Run-1&2 and ours.

W-mass in MSSM

- Pure slepton loops contribute only via the self energies
- Mixed slepton/chargino/ neutralino contributions enter via vertex and box diagrams

Possibility of A-pole annihilation

Black contour : simplified application of $H/A \rightarrow \tau^+ \tau^-$

A-pole annihilation strongly constrained

$(-2)_{\mu}$

- Large discrepancy from the SM (more than 3σ): $a_{\mu}^{exp} - a_{\mu}^{SM} = (28.02 \pm 7.37) \times 10^{-10}.$
- Important probe for new physics. $\frac{\delta a_l}{a_l} \sim \frac{m_l^2}{\Lambda^2}$.
- hadronic light by light scattering.
- QED : complete calculation up to 5 loops. EW : two loops. Aoyama, Hayakawa, Kinoshita, Nio '17, Ishikawa, Nakazawa, Yasu '18, Heinemeyer, Stökinger, Weiglein '04

Keshavarzi, Nomura, Teubner '19

• SM contributions : QED, weak, hadronic vacuum polarization,

• Uncertainty dominated by non-perturbative, hadronic sector.

given by the LEP2 constraints [30] – [33].

Figure 6: The lifetime of charged wino evaluated by using δm at the one-loop (green band) and two-loop (red band). We neglected the next-to-leading order corrections to the lifetime of the charged wino estimated in terms of the pion decay rate, which is expected to be a few percent correction. The black chain line is the upper limit on the lifetime for a given chargino mass by the ATLAS collaboration at $95\,\%\,\mathrm{CL}$ $(\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 4.7 \text{ fb}^{-1})$ [28]. The blue line shows the constraints which are

Current $(g-2)_{\mu}$ limit

Coannihilation	$\tilde{\chi}_1^{\pm}$	\tilde{l}^{\pm} (Case-L)	\tilde{l}^{\pm} (Case-R)
$m_{ ilde{\chi}_1^0}$	570	533	518
$m_{ ilde{\chi}_2^0}$	605	816	685
$m_{ ilde{\chi}_3^0}$	1087	1370	1098
$m_{\tilde{\chi}_1^{\pm}}$	605	816	685
$m_{ ilde{e}_1, ilde{\mu}_1}$	680	549	696
$m_{ ilde{e}_2, ilde{\mu}_2}$	680	1279	592
$m_{ ilde{ au}_1}$	582	534	747
$m_{ ilde{ au}_2}$	765	1286	526
$m_{ ilde{ u}}$	675	544	692

Points satisfying $(g - 2)_{\mu}$, DM and LHC constraints, masses in GeV.

Anticipated future $(g - 2)_{\mu}$ limit

Coannihilation	$\tilde{\chi}_1^{\pm}$	\tilde{l}^{\pm} (Case-L)	\tilde{l}^{\pm} (Case-R)
$m_{ ilde{\chi}_1^0}$	423	499	402
$m_{ ilde{\chi}_2^0}$	464	535	448
$m_{ ilde{\chi}_3^0}$	1032	1019	830
$m_{\tilde{\chi}_1^{\pm}}$	464	535	448
$m_{ ilde{e}_1, ilde{\mu}_1}$	542	511	795
$m_{ ilde{e}_2, ilde{\mu}_2}$	541	2349	428
$m_{ ilde{ au}_1}$	437	509	807
$m_{ ilde{ au}_2}$	629	2350	406
$m_{ ilde{ u}}$	536	505	792

 $-\sigma^{\mu\nu}q_{\nu}F_{2}$ $\mu(p)A_{\mu}$ $\bar{u}(p')[\gamma^{\mu}F_1(q^2)$ $2m_{\mu}$

 $F_2(0) = a_{\mu}$

 $=g_{\mu}$

SUSY contributions to $(g-2)_{\mu}$

$$\Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\mu}_L) \simeq -2.5$$

$$\Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_R) \simeq -1.5$$

Endo, Hamaguchi, Iwamoto, Yoshinaga'13

tanß enhancement in SUSY

 $\mathscr{L}_{\text{eff}} \ni i \widetilde{a}_{\mu} \cdot \overline{\psi}_{L} \sigma^{\mu\nu} \psi_{R} F_{\mu\nu}$

SM: $\widetilde{a}_{\mu}^{\rm SM} \propto Y_{\mu} \langle H \rangle = m_{\mu}$ SUSY: $\Delta \widetilde{a}_{\mu}^{\text{SUSY}} \propto Y_{\mu} \langle H_{\mu} \rangle = m_{\mu} \cdot \tan \beta$ $m_{\mu} = Y_{\mu} \langle H_d \rangle \quad \tan \beta \equiv \frac{\langle H_u \rangle}{\langle H_d \rangle}$

$$\Delta a_{\mu}^{\rm BSM}$$
$$\tan\beta \in$$

$$\overrightarrow{\mu} = g\left(\frac{e}{2m}\right)\overrightarrow{s}$$

$$a_{\mu} = \frac{(g-2)}{2} \equiv m_{\mu} \widetilde{a}_{\mu}$$

