Cosmic Variance

Control Variates

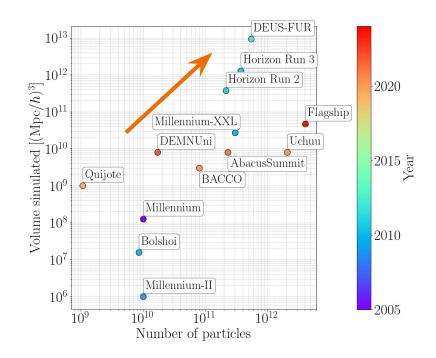
Gabriele Parimbelli M. Crocce, R. Angulo

What the compromise is about

Ideal simulation:
$$N=\infty$$
 $V=\infty$

Realistic simulation:
$$\frac{\sigma_{P(k)}}{P(k)} \propto \frac{1}{\sqrt{V}} \left(1 + \frac{V}{NP(k)} \right)$$

Largest scales are easier to model but also the ones most affected by statistical uncertainty (cosmic variance)



"Axis" not shown is mass resolution Elephant in the room is computational cost

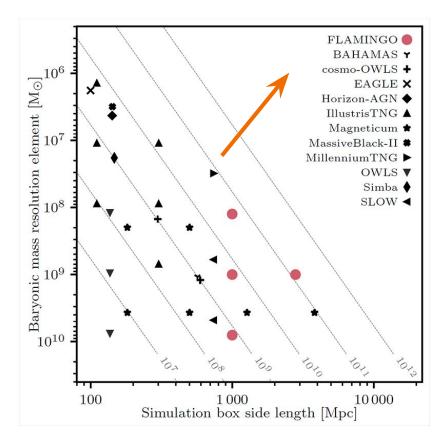
What the compromise is about

Ideal simulation:
$$N=\infty$$
 $V=\infty$

Realistic simulation:
$$\frac{\sigma_{P(k)}}{P(k)} \propto \frac{1}{\sqrt{V}} \left(1 + \frac{V}{NP(k)} \right)$$

Largest scales are easier to model but also the ones most affected by statistical uncertainty (cosmic variance)

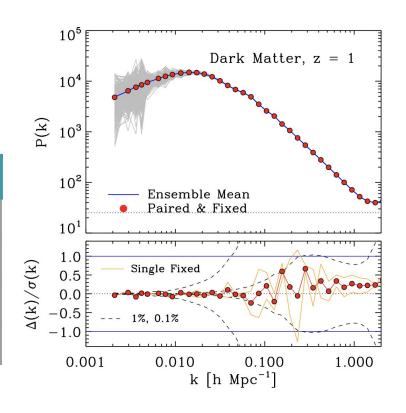
This is even more evident when dealing with hydro simulations



Variance reduction methods

Several techniques have been used modifying initial conditions

Туре	Amplitudes $ \delta_{ic}(k) $	Phases φ _{ic} (k)
Standard	Rayleigh	Uniform [0,2π)
Paired	Rayleigh	ϕ_k , ϕ_k + π
Fixed	Dirac δ _D	Uniform [0,2π)
Fixed + paired	Dirac δ _D	ϕ_k , ϕ_k + π

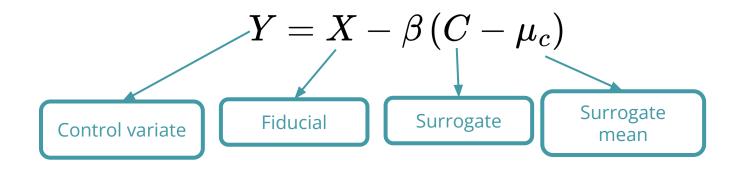


Minimize variance AND noise?

Angulo, Pontzen, 2016

Control variates

Reducing the variance of a random variable (X) using a correlated surrogate (C)



Mean

$$\langle Y \rangle \equiv \langle X \rangle$$

Regardless of the value of β

Control variates

Variance

Optimal choice for
$$\beta = \frac{\operatorname{Cov}[X,C]}{\operatorname{Var}[X]}$$

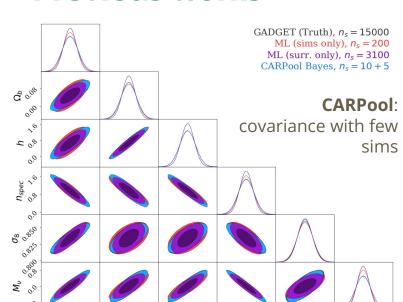
Correlation coefficient
$$\rho_{XC}^2 = \frac{\operatorname{Cov}[X,C]}{\operatorname{Var}[X] \operatorname{Var}[C]}$$

negligible

Variance reduction
$$\operatorname{Var}[Y] = \operatorname{Var}[X] \left(1 - \rho_{XC}^2 + \beta^2 \operatorname{Var}[\mu_C] \right)$$

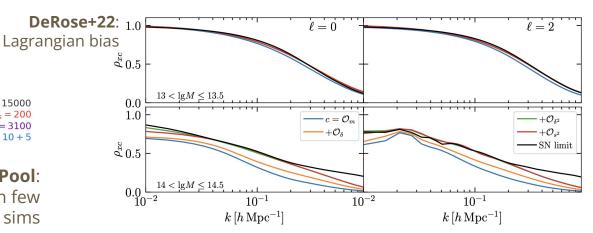
- Reduce number of sims for covariance estimate (Chartier+22)
- Mitigating noise of DESI mocks for BAO reconstruction (Hadzhiyska+23)
- Improve clustering predictions of volume-limited hydro sims (Doytcheva+24)

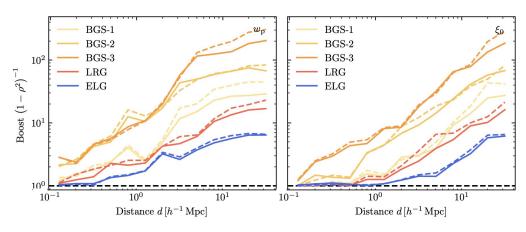
Previous works



++ Hadzynska+24: mitigating noise with CV in BAO reconstruction

0.8 h





Doytcheva+24: volume gain in hydro sims

Our setup

SIMULATIONS

2 box sizes:

- "small" 512 Mpc/h 384³ particles
- "big" 1440 Mpc/h 1080³ particles

Realizations (ICs):

- fixed amplitude
- 2 opposite phases

Gravity solver:

- N-body
- m2m = ZA + "map2map" emulator (Jamieson+22)
 + Lagrangian bias expansion

Observable: P(k)

- dark matter
- SHAM galaxies $\frac{1}{2}$ [n_g = 0.001, 0.00054 (h/Mpc)³]

$$Y = X - \beta (C - \mu_c)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\text{big small small big m2m}$$

$$\text{N-body N-body m2m}$$

METHODS:

- direct application
- fit of Lagrangian bias to N-body
- maximization of rho(k)

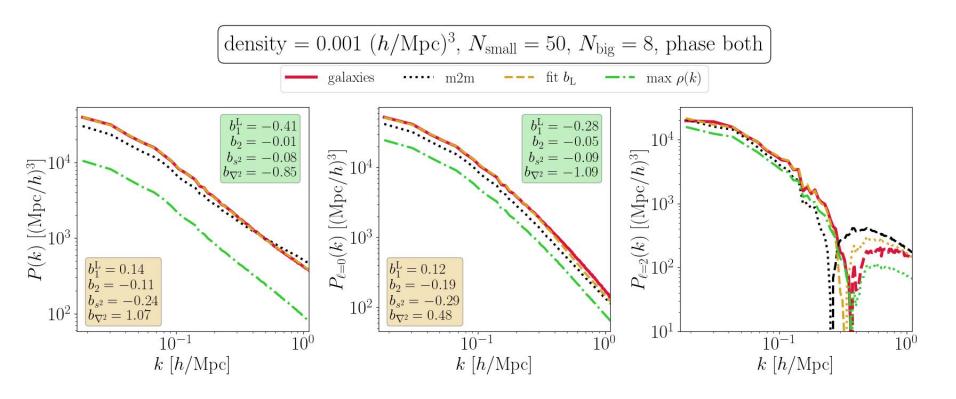
APPROXIMATIONS:

- disconnected approximation

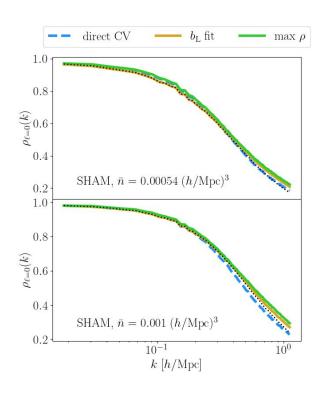
$$Cov[P_{X'}P_C] \cong Var[P_{XC}]$$

small-scale filtering

Results: methodologies



Results: correlation coefficient

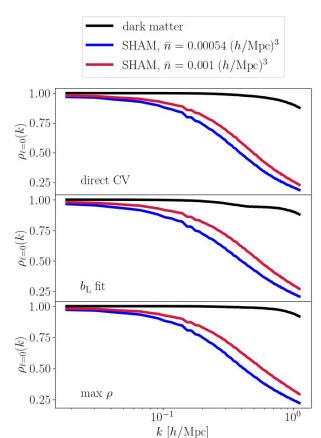


Impact of method

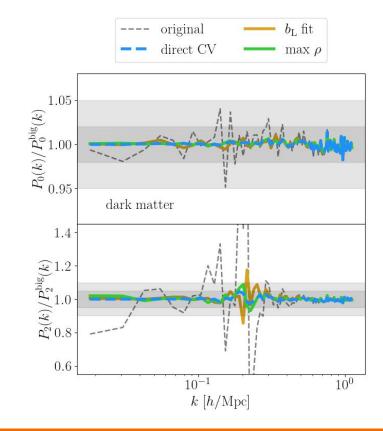
moderate improvement with m2m w.r.t. ZA-only

Impact of tracer

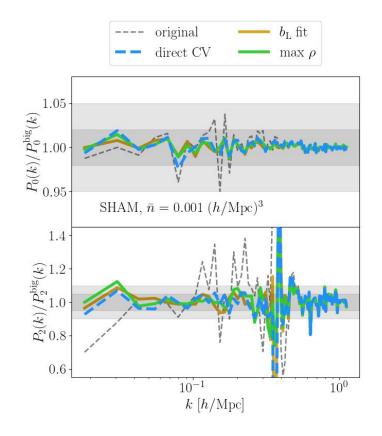
sparser objects and randomness of galaxy-halo connection make it more difficult to keep correlations high



Results: CV prediction

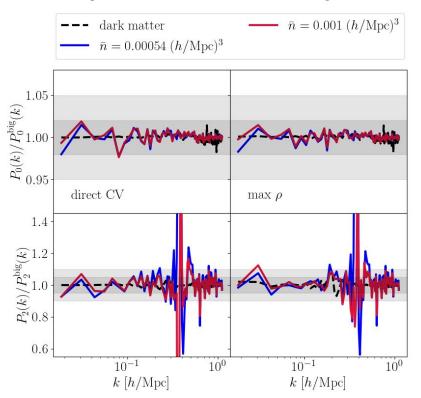


- For DM direct works better than Lagrangian bias fit
- For SHAM we can recover P(k) of big sim at ~2% level

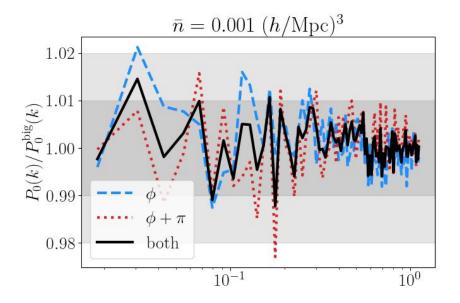


Results: impact of number density and phases

impact of number density on CV



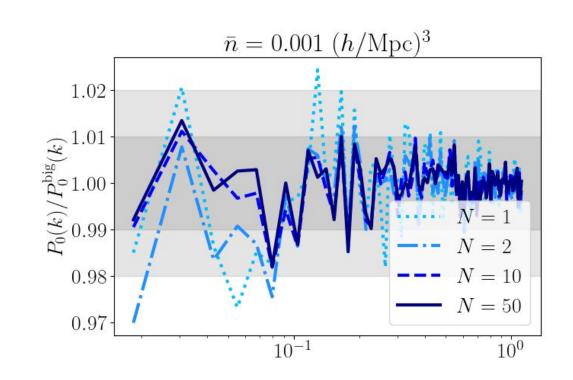
Opposite phases help increasing the accuracy even more



Results: impact of number of SHAM realization

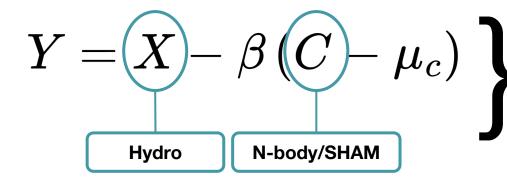
Increasing the number of SHAM realizations increases the accuracy

Valid for each methodology used (direct, Lagrangian bias, maximization of ρ)



Further applications

$$Y = X - \beta (C - \mu_c)$$



- 1. Beat down cosmic variance in hydro
- 2. Super realistic galaxy-halo connection
- 3. Library of mocks with varying cosmology
- 4. Priors to galaxy bias!

Conclusions

- Hydro simulations are costly and limited in volume
 - handful of galaxy formation models
- **Control variates** represent a useful tool to beat down both cosmic variance and noise
 - reproduce larger volume with a surrogate observable (ZA for N-body, HOD/SHAM/SAM for hydros?)
 - **realistic** galaxy-halo connections to put priors to galaxy bias
- Maximize signal extracted by reproducing summary statistics from a big box using a small box
 - novelties: fixed+paired+CV all together, m2m as an improvement to ZA
 - \circ methods: direct application of CV, Lagrangian bias fit, maximization of $\rho(k)$
 - \circ results: large number of SHAM, opposite phases, max. $\rho \to \text{reproduce P(k)}$ at ~1-2%
 - o caveats: difficult to quantify gain, disconnected approximation...
 - next: bispectrum (cross-covariance?)