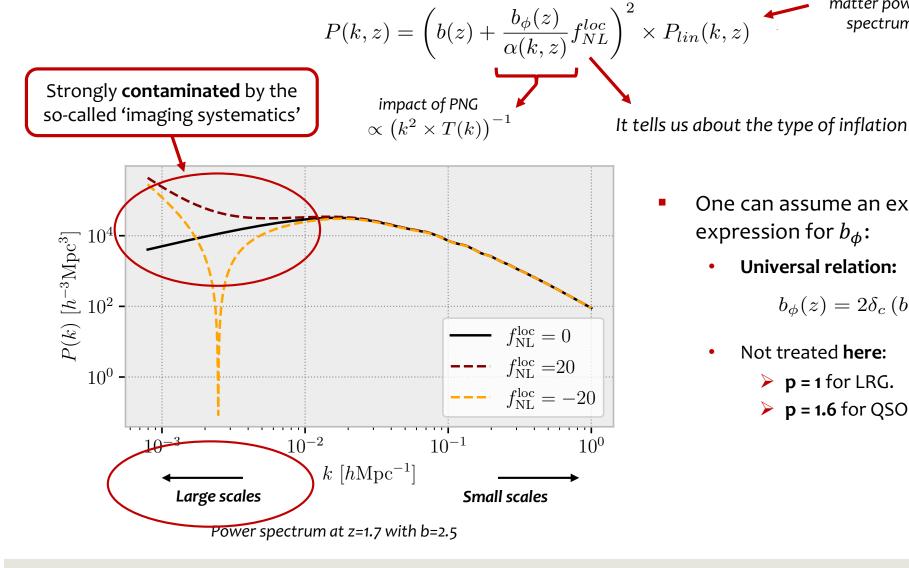


U.S. Department of Energy Office of Science


Primordial non-Gaussianity with DESI.

Edmond Chaussidon (LBNL)

New Strategies for Extracting Cosmology from Galaxy Surveys Sexten, July 10, 2025

Power spectrum with PNG

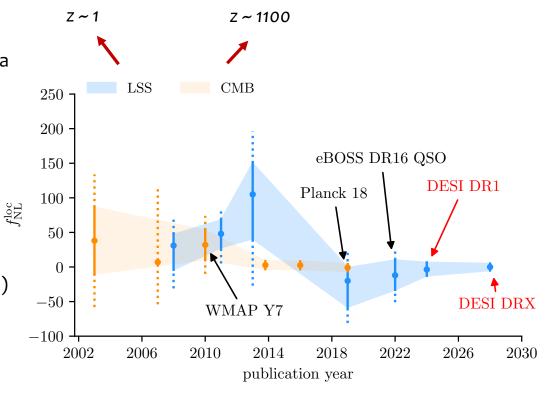
Noticed in Dalal et al. 2008, PNG will act at large scales via the scale-dependent bias:

- One can assume an explicit expression for b_{ϕ} :
 - **Universal relation:**

$$b_{\phi}(z) = 2\delta_c \left(b(z) - p \right)$$

matter power

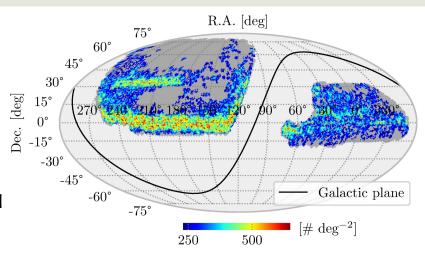
spectrum


- Not treated **here**:
 - \triangleright p = 1 for LRG.
 - \rightarrow p = 1.6 for QSO.

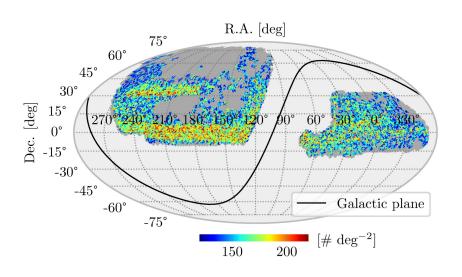
Current constraints on PNG

- Best constraints from Planck18:
 - $f_{NL}^{loc} = -0.9 \pm 5.1$
 - but **now** limited by the **cosmic variance** (only a factor of 2 of improvement is expected with CMB-S4)!
- With scale-dependent bias:
 - eBOSS Quasar DR16 P(k) (Mueller+2021)
 - ightharpoonup p=1.6: -33 < f_{NL}^{loc} < 10 (at 68% CL)
 - eBOSS Quasar DR16 P(k) + B(k) (Cagliari+2025)
 - ightharpoonup p=1.6: -23 < f_{NL}^{loc} < 14 (at 68% CL)
 - > 16% gain.
 - **DESI**: today presentation!

Upcoming generation of surveys should be competitive with Planck!

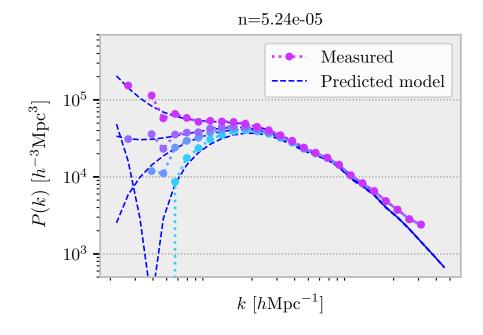

Evolution of the constrain on f_{NL} .

DESI DR1 Analysis


- What's new compare to eBOSS DR16?
 - DESI DR1 is already the largest galaxy clustering sample:
 - > ~ 2 100 000 LRG with 0.4 < z < 1.1 (Zhou+2023)
 - > ~ **850 000** QSOs with 0.8 < z < 3.1 (Chaussidon+2023)
 - ➤ **New survey:** need to study/validate all the observational systematics!
 - Analysis in conduct with a blinding scheme for the first time:
 - Avoid any confirmation bias!
 - Geometrical model improvement:
 - Radial Integral Constraint
 - Angular Integral Constraint

DESI DR1 LRG and QSO angular densities (corrected by completeness)

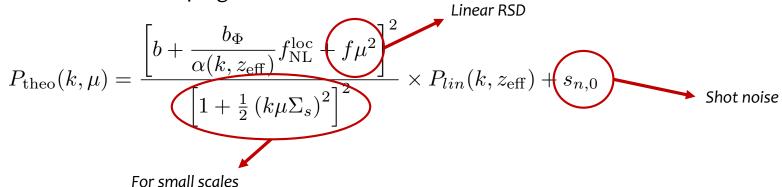
	$LRG [deg^{-2}]$	$QSO [deg^{-2}]$
North	531.7	186.6
South	535.3	188.7
Des	519.5	192.7



DESI DR1 LRG (top) and QSO(bottom) angular distribution without completeness correction

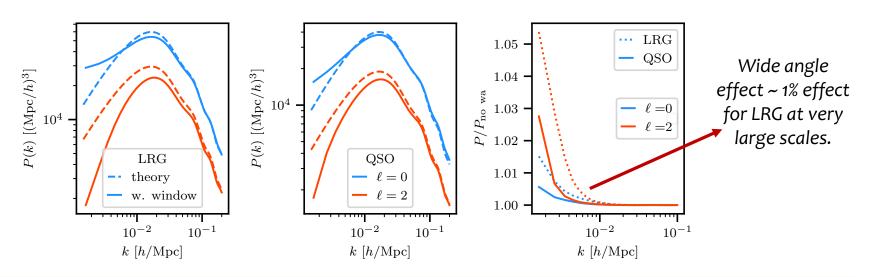
Blinding Scheme

- Risk: Force our new measurement to agree with the former one:
 - Do we find $f_{NL}^{loc} = 0$, like Planck 18?
- Solution: Blind the signal!
 - Specific weights for the data mimicking the expected scale-dependent bias in the power spectrum.
 - Test imaging systematic mitigation without confirmation bias.
- This blinding procedure is used in the default pipeline of DESI:
 - In the following, all the data are blinded i.e. the large-scales are not the true one!
 - $f_{NL}^{blind} \in [-15, 15]$
 - Same for all the tracer!



Power spectrums computed from simulated data with blinding weights for several blinding values.

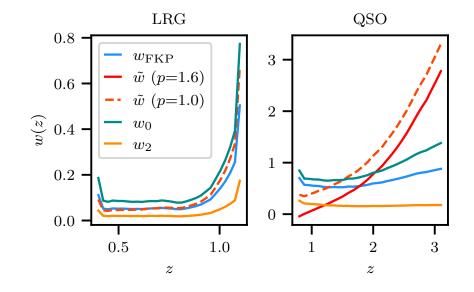
From Chaussidon+2024a


Model

We fit the monopole (ell=0) and quadrupole (ell=2) of the power spectrum (0.003 to 0.08 hMpc⁻¹) with a simple Kaiser term and a damping function:

Geometry impact is included via window convolution (Beutler and McDonald 2021):

$$(P_{\ell}^{\text{conv}})_i = (\mathcal{W}_{\ell\ell'})_{ij} \cdot (P_{\ell'}^{\text{theo}})_j$$

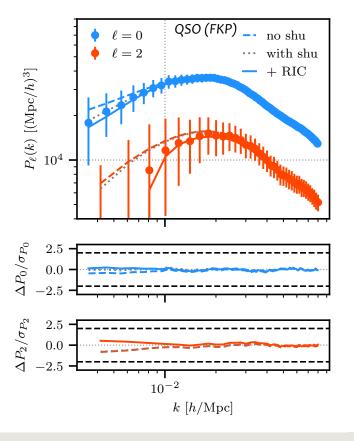


Optimal weighting scheme for $f_{\rm NL}^{\rm loc}$

- Following Castorina+2019.
- Using FKP weights is the optimal way to measure the power spectrum.
- Using OQE weights is the optimal way to measure f_{NL}^{loc} with the power spectrum:
 - Increase the effective redshift of the data.
 - Reducing the errors on $f_{
 m NL}^{
 m loc}$ since:

$$\propto b \times f_{
m NL}^{
m loc}$$

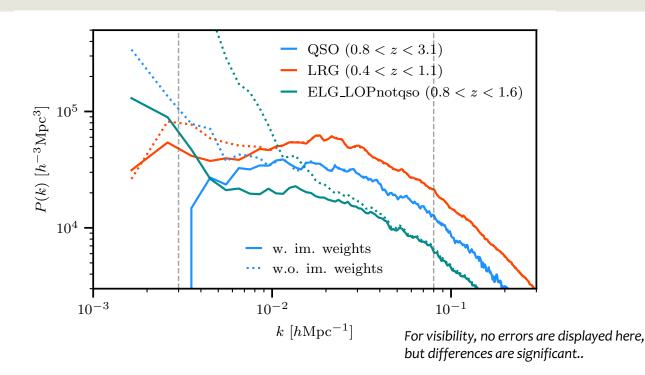
- Weights not the same for ell=0 and ell=2
- Window function has to be computed for each weighting scheme !!

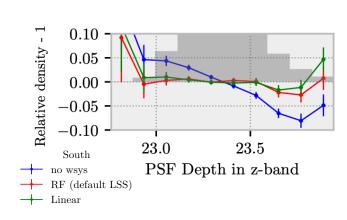


	LRG	QSO
	0.4 < z < 1.1	0.8 < z < 3.1
Ī	0.741	1.768
$z_{ m eff}$	0.665	1.570
$z_{\rm eff}$ (FKP)	0.732	(1.649)
$z_{\rm eff}$ (OQE $\ell=0,p=1.0$)	0.753	1.924
$z_{\rm eff}$ (OQE $\ell = 2, p = 1.0$)	0.751	1.811
$z_{\rm eff}$ (OQE $\ell = 0, p = 1.6$)	-	2.080
$z_{\rm eff}$ (OQE $\ell = 2, p = 1.6$)	-	1.987

Radial Integral Constraint (RIC)

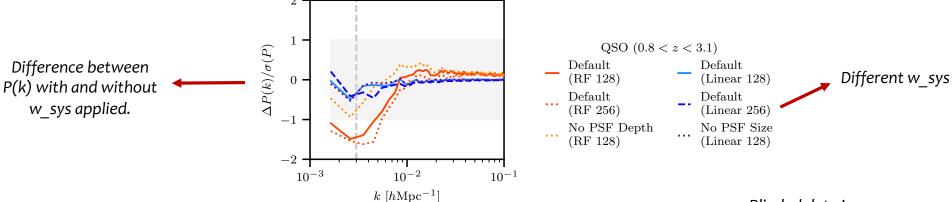
- Use of "shuffling method" leads to RIC:
 - Randoms are generated on the sky (R.A., Dec.).
 - Data redshifts are used as redshifts for the randoms (remove radial modes ...).
- Use mocks to infer the contribution of the window function to correct for RIC:


$$(P_{\ell}^{\text{obs}})_{i} = (\mathcal{W}_{\ell\ell'} - \mathcal{W}_{\ell\ell'}^{\text{RIC}})_{ij} \cdot (P_{\ell'}^{\text{theo}})_{j}$$

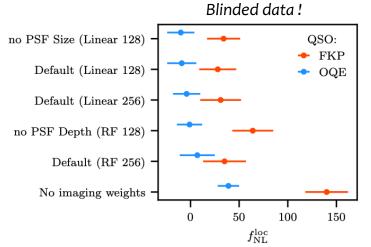

	params	no shuffle	shuffle	$\mathrm{shuffle} + \mathrm{RIC}$
LRG	$f_{ m NL}^{ m loc}$	7 ± 15	-4 ± 18	7 ± 16
	b_1	1.952 ± 0.033	1.948 ± 0.036	1.950 ± 0.034
	$s_{n,0}$	0.047 ± 0.060	0.059 ± 0.063	0.052 ± 0.060
	Σ_s	4.41 ± 0.47	4.69 ± 0.45	4.53 ± 0.45
QSO	$f_{ m NL}^{ m loc}$	4 ± 17	-7 ± 20	6 ± 17
	b_1	2.371 ± 0.048	2.376 ± 0.052	2.365 ± 0.047
	$s_{n,0}$	-0.002 ± 0.052	-0.001 ± 0.054	0.004 ± 0.054
	Σ_s	2.71 ± 0.90	3.03 ± 0.82	2.91 ± 0.84
QSO (blind 20)	$f_{ m NL}^{ m loc}$	29 ± 13	22 ± 15	30 ± 13
1	b_1	2.368 ± 0.043	2.360 ± 0.045	2.363 ± 0.042
	$s_{n,0}$	-0.011 ± 0.049	0.006 ± 0.050	0.000 ± 0.049
	Σ_s	2.75 ± 0.88	3.02 ± 0.81	2.98 ± 0.81
•				

Apply this correction on mocks with the **exact same geometry** but with a **different power spectrum**

DESI DR1 power spectra

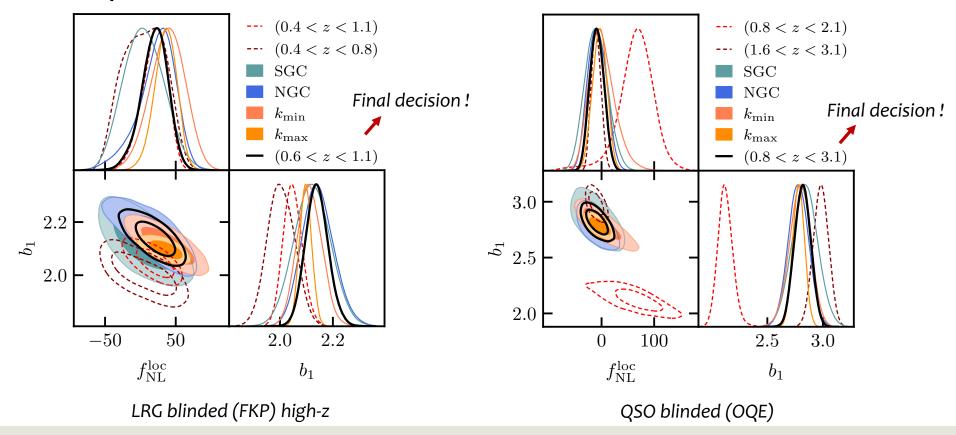


- Large scale modes are heavily contaminated by imaging systematics !!
 - = dependence of the target selection on imaging qualities!
 - This is the largest systematics in this analysis!!
- After lot of efforts:
 - QSOs look great !!! (even greater in DR2)
 - Weird excess of power with LRGs (solved in DR2 ...)
 - I gave up with the ELG .. (still a major concern with DR2 data)

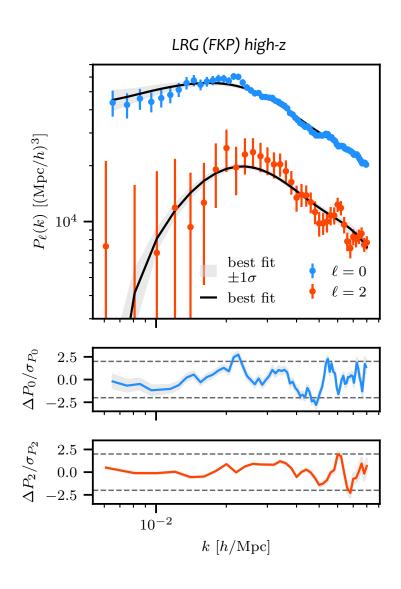


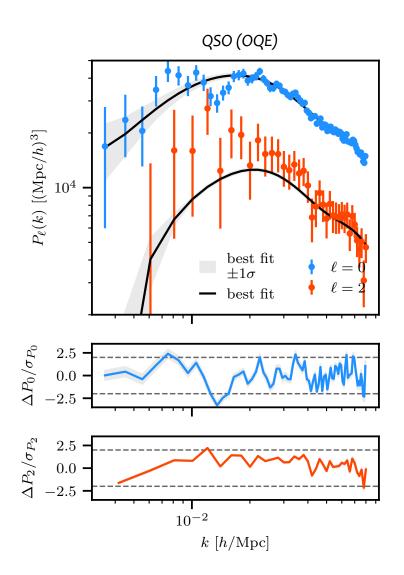
Angular Integral Constraint (AIC)

- Compute and apply imaging weights on mocks with **no** contamination:
 - Remove power at large scales --> Need to correct for!
 - **Expected**!! This is **pure geometry**. We are "flattening" the angular distribution i.e. we are removing the angular modes (larger than the size of the pixel!) --> Angular Integral Constraint.
 - Infer the window correction from these mocks (similar than for RIC): $\mathcal{W} o \mathcal{W} \mathcal{W}^{\mathrm{RIC}} \mathcal{W}^{\mathrm{AIC}}$

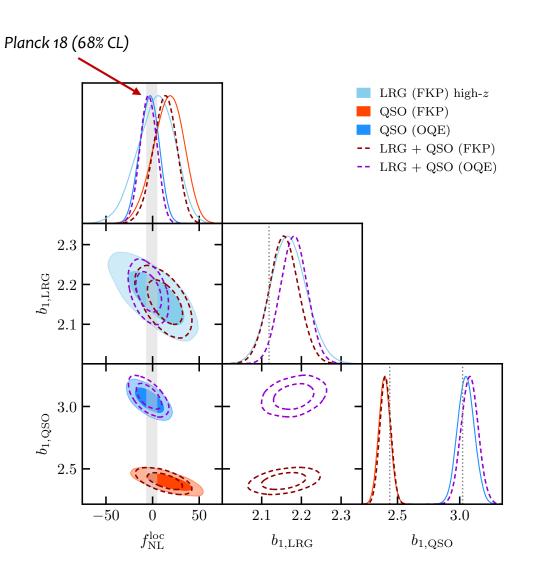


- AIC needs to be computed for each imaging weights:
 - Then, we can compare the efficiency of these different weights!




Blinded data

- Blinded LRG:
 - weird shape for the low-z part of the sample --> use only 0.6 < z < 1.1.
 - Largest scales exhibit inconsistent signal --> reduce k_{min} to 0.006 h/Mpc.
- Blinded QSO:
 - Remaining systematic in the low-z sample -> OQE under-weighted enough this part of the sample!



Best fit (unblinded)

Final Measurement (unblinded)

DESI QSO + LRG:

$$f_{\rm NL}^{\rm loc} = \begin{cases} -3.6_{-9.1}^{+9.0} & (68\%) & \text{with } p_{\rm QSO} = 1.6\\ 1.7_{-7.7}^{+8.4} & (68\%) & \text{with } p_{\rm QSO} = 1.0 \end{cases}$$

Individual constraints:

$$f_{\rm NL}^{\rm loc} = \begin{cases} 6^{+22}_{-18} & (68\%) & {\rm LRG~only} \\ -2^{+11}_{-10} & (68\%) & {\rm QSO~only~with}~p_{\rm QSO} = 1.6 \\ 3.5^{+10.7}_{-7.4} & (68\%) & {\rm QSO~only~with}~p_{\rm QSO} = 1.0 \end{cases}$$

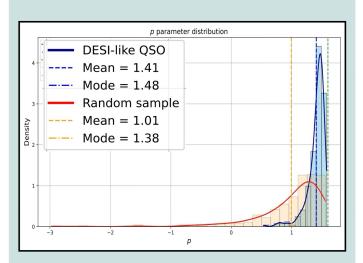
 Systematic error budget represents an increase of 8% for LRGs and 12% for QSOs.

Forecast for DESI

$$f_{\rm NL}^{\rm loc} = \begin{cases} -3.6_{-9.1}^{+9.0} & (68\%) & \text{with } p_{\rm QSO} = 1.6\\ 1.7_{-7.7}^{+8.4} & (68\%) & \text{with } p_{\rm QSO} = 1.0 \end{cases}$$

- 10% gain by including LRGs
- Improving by ~ a factor 2 the measurement from eBOSS DR16!

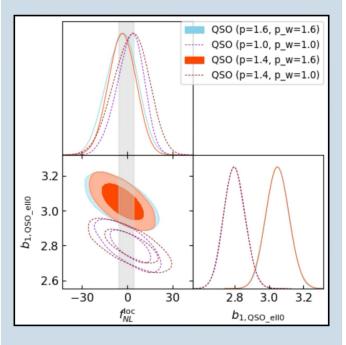
- What next?
 - DESI Y5 (before the extension) with k_{min} = 0.003 : LRG+QSO (p=1.6) --> $\sigma(f_{NL}^{loc})$ = 6.5
 - Decreasing k_{min} to 0.001 --> ~10% gain
 - p ~ 1.4 for QSO --> ~10% gain
 - Includes high-order correlation (e.g. field level inference). --> 15/20 % gain
 - Should be close to defeat Planck18 ($\sigma(f_{\rm NL}^{\rm loc}) = 5.1$).


Ad I: Determination of b_{ϕ} (Emanuele Fondi, ICC)

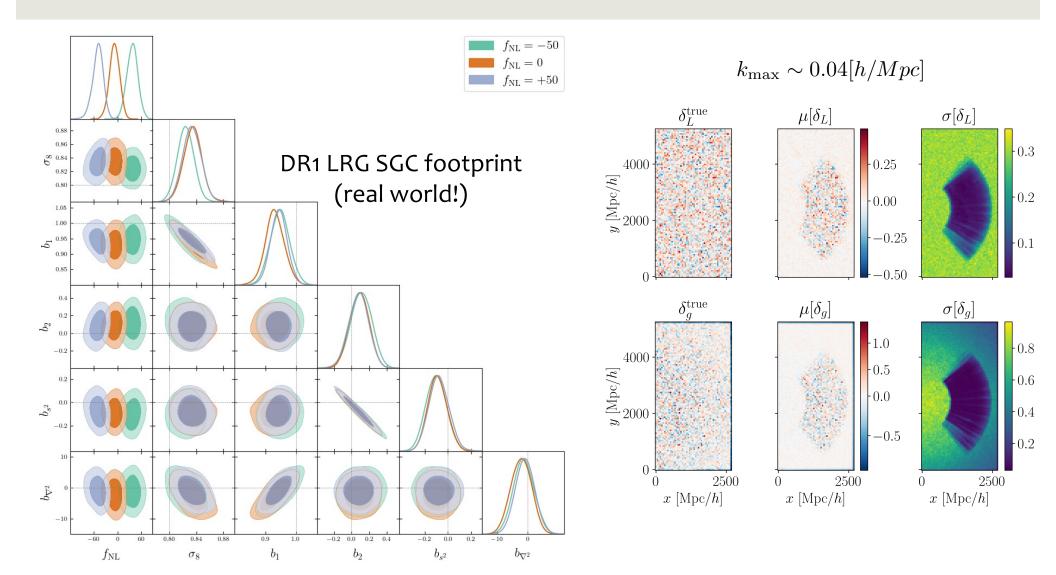
Paper will be released soon!

Strategy

- IllustrisTNG TNG-300
- Halo mass cut $\log_{10} M_h > 12.2$ (M_h of DESI QSO Yuan+ 24)
- QSO sample: rank by Eddington ratio $\lambda = \dot{M}_{BH}/\dot{M}_{Edd}$ Sijacki+ 07
- Measure z_f from merger trees
- Compute $p = p(M, z_f) \text{ using}$ the ePS model Reid+ 10, Fondi+ 24


Results

- $p \simeq 1.4$ close to the recent merger limit p = 1.6
- Robust across redshift and selection assumptions


$f_{\rm NL}^{\rm loc} = -1.9 \pm 9.2, \quad p_w = 1.6$

Application to DR1

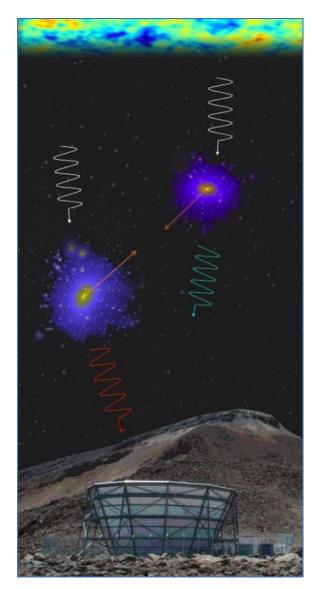
- OQE weights $\tilde{w}(z) = b(z) p_w$
- p fixed during inference

Ad II: Field Level Inference (Hugo Simon, CEA Saclay)

- Based on JaxPM, see arXiv:2504.20130.
- Preliminary! Constraining power looks reasonable compare to power spectrum analysis

New Strategy for Extracting PNG from Galaxy Surveys

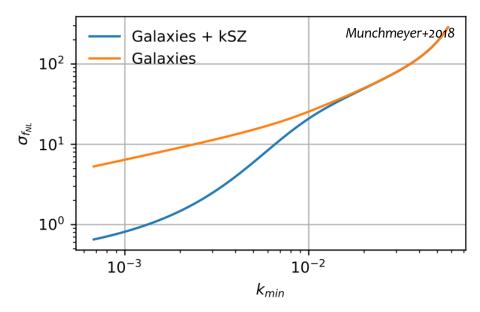
Kinematic-SZ Effect


- One can use the CMB as a backlight for our DESI galaxies or quasars:
 - CMB photons can interact through inverse Compton scattering with high-energy electrons.
- kSZ Effect is the Doppler shift induced by electrons with bulk velocity:
 - Depends on the radial velocity and the electron density.

$$\frac{\Delta T_{\rm kSZ}(\mathbf{n})}{T_{\rm CMB}} \sim \int d\chi e^{-\tau(z)} v_r \delta_e(\mathbf{n}, \chi)$$

 Radial velocities lead to unbiased matter perturbation modes:

$$v_r(k) = \frac{ifaH\mu}{k} \delta_m(k)$$


• A bit more complicated than that due to astrophysical effects that describe the electron density.

Credit: Sudeep Das

Forecast

- Forecast few years ago (Munchmeyer+2018) as THE observable for local PNG.
- $v \sim 1/k$: kSZ is a great probe of matter density with good SNR on large scales!
 - Should lead to sample variance cancellation (Seljak 2009).
 - Expect already ~10/20% gain with DESI DR1 and more with DESI DR2.
- IMPORTANT: Should be systematic free as the LSS x Lensing

Forecast for LSST x CMB S4 (less optimistic for DESI x SO)

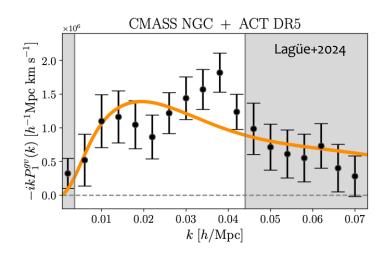
kSZ tomography

The radial velocity will be reconstructed following Smith+2018:

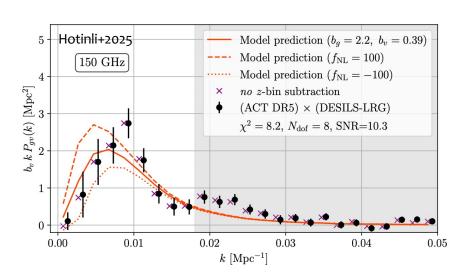
$$\hat{v}_r\left(\mathbf{k}_L\right) = N_{v_r}^{(0)}\left(k_L\right) \frac{K_*}{\chi_*^2} \int \frac{d^3\mathbf{k}_S}{(2\pi)^3} \frac{d^2\mathbf{l}}{(2\pi)^2} \frac{P_{ge}\left(k_S\right)}{P_{gg}^{\mathrm{tot}}\left(k_S\right) C_l^{TT,\;\mathrm{tot}}} \left(\delta_g^*\left(\mathbf{k}_S\right) T^*(\mathbf{l})\right) (2\pi)^3 \delta^3\left(\mathbf{k}_L + \mathbf{k}_S + \frac{\mathbf{l}}{\chi_*}\right)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

With the following power spectrum noise:

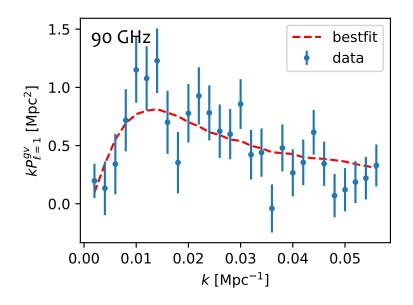

$$N_{v_r}^{(0)} = \frac{\chi_*^2}{K_*^2} \left[\int \frac{k_S dk_S}{2\pi} \left(\frac{P_{ge}(k_S)^2}{P_{gg}^{\text{tot}}(k_S) C_l^{TT, \text{ tot}}} \right)_{l=k_s \chi_*} \right]^{-1}$$

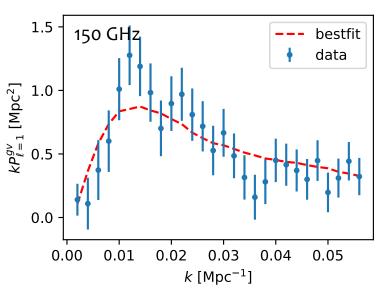
• After filtering the modes that contain only CMB information, we just "read" the temperature value of the position of the galaxy ...


Current status

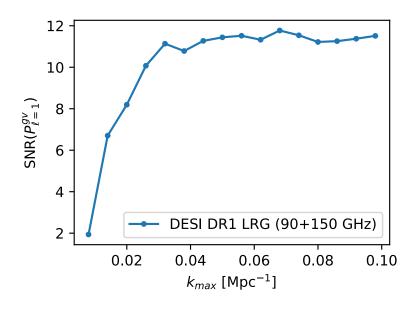
- Thanks to ACT DR5, the signal is detectable:
 - Lagüe+2024: BOSS LRG x ACT DR5 --> Pgv(k) measured at 7.2 sigma
 - Hotinli+2025: DESILS x ACT DR5 --> measured at 11.7 sigma
- These are nice proof of concepts! DESI DR2 will do much much better.

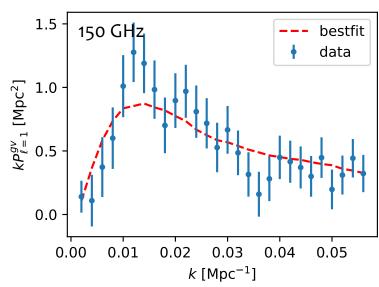
Spectroscopic sample:



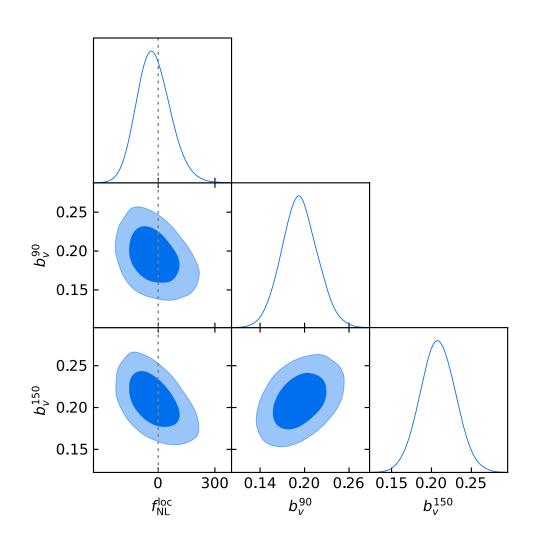

Photometric sample:

Preliminary result: DESI DR1 LRG

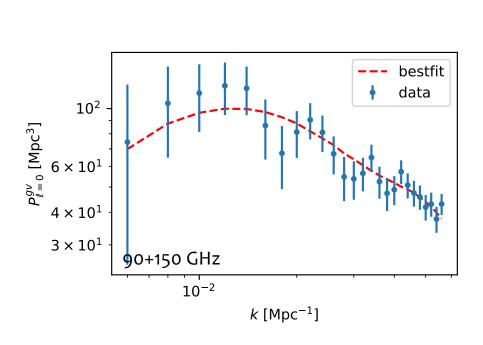

- Reconstructed velocity is biased: $\hat{v_r}(k) = b_v v_{true}(k)$
 - b_v represents the ratio between the true and fiducial galaxy-electron power spectra.
 - It measures astrophysical baryonic feedback! (Hotinli+2025: $b_v \sim 0.4$)
 - Need to fit for a free amplitude in the galaxy-velocity power spectrum.

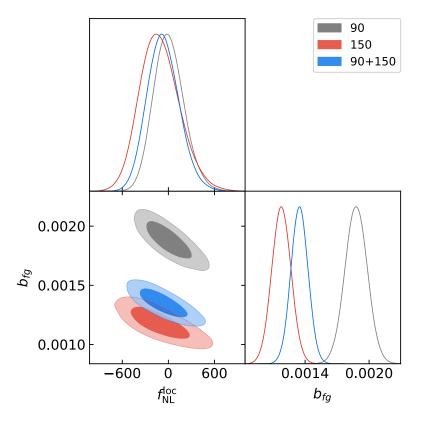


Preliminary result: DESI DR1 LRG


- Reconstructed velocity is biased: $\hat{v_r}(k) = b_v v_{true}(k)$
 - b_v represents the ratio between the true and fiducial galaxy-electron power spectra.
 - It measures astrophysical baryonic feedback! (Hotinli+2025: $b_v \sim 0.4$)
 - Need to fit for a free amplitude in the galaxy-velocity power spectrum

• SNR is a bit low because I find $b_v \sim 0.2 \dots$ (here, I did not model the RSD in Pgv)


Preliminary result: DESI DR1 LRG



- Constraints are not as good as expected:
 - sigma ~ 100 from P_{gv} (vs. 30 from P_{gg})
 - due to small value of bv.
- No cosmic Variance Cancelation observed for now...
 - $\bullet \quad \ \ \, P_{gg}$ and P_{gv} are less correlated than expected
 - due to small value of bv.
- It is under investigation !!

Foregrounds

- CMB does have foregrounds that contaminate the signal:
 - Emissive light of galaxies (like star forming galaxies)
 - Can be introduce in the model: $\hat{v_r}(k) = b_v v_{true}(k) + b_{fg} \delta_g(k)$
 - They contribute on the monopole and very few (via window function) to the dipole and only on small scales.

Strategy

- DR2 x ACT DR6 will be the most accurate measurement of this kind until new CMB experiment!
 - DR2 increases by a factor ~4 the overlap between ACT and DESI.
 - Upcoming DESI extension will increase as well the overlap.
- As a ~ blinding procedure, we will first fully validate the pipeline with DR1 data:

DR1:

- Main advantage: it is a power spectrum.
- Almost there! The paper should be ready soon.

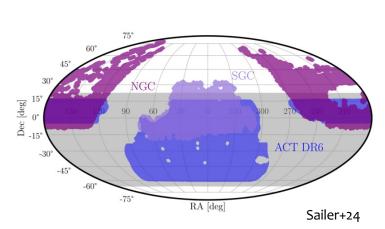
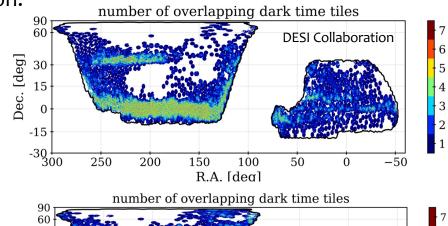
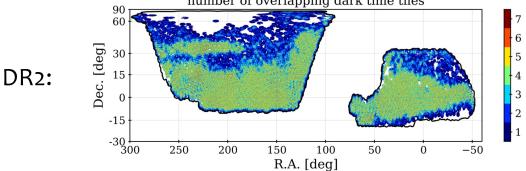




FIG. 1: ACT DR6 and DESI LRG Y1 footprints in equatorial coordinates. In gray, we show the full ACT footprint, while in blue, we show a section of the ACT DR6 survey, where the galactic plane has been masked

