

WHAT YOU ALWAYS WANTED TO KNOW ABOUT SILICON DETECTORS

UNI BONN DESY.

.... and never dared to ask

RADHARD2024 Bonn 2. October 2024 Ingrid Maria Gregor DESY/Universität Bonn

MOTIVATION

- Semiconductors have been used in particle identification for many years:
 - ~1950: Discovery that pn-Junctions can be used to detect particles.

Problems

Semiconductor detectors used for energy measurements (Germanium).

- Since ~50 years: Semiconductor detectors for precise position measurements
 - precise position measurements possible through fine segmentation $(10-100\mu m)$
 - multiplicities can be kept small (goal:<1%)
- Technological advancements in production t Outline
 - developments for micro electronics

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

BONN

ZEUS MVD 2000

DELPHI VFT 1996

IONISATION AND DE/DX

How exactly does a charged particle cause a signal?

VHOET

JUMP

IONISATION

The primary contributor to dE/dx at typical energies

- Particle can collide with atomic electron (EM interaction)
- If enough energy is transferred, the electron escapes, ionising the atom and causing small –dE
 - can also excite the atom, if transferred energy is small
- In general, this happens frequently, with small energy transfers (<100eV), so energy loss is ~continuous

INTERACTIONS OF "HEAVY" PARTICLES WITH MATTER 😕

Mean energy loss is described by the **Bethe-Bloch** formula

$$-\frac{dE}{dx} = 2\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln\left(\frac{2m_e \gamma^2 v^2 W_{max}}{I^2}\right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

 W_{max} Maximum kinetic energy which can be transferred to the electron in a single collision

Excitation energy

 $2\pi N_A r_e^2 m_e c^2 = 0.1535 \text{MeV} \text{cm}^2/\text{g}$

- r_e : classical electron radius =
- $m_e:$ electron mass
- N_A : Avogadro's number
 - I: mean excitation potential
 - Z: atomic number of absorbing material

- Density term due to polarisation: leads to saturation at higher energies
- $\frac{C}{Z}$
- Shell correction term, only relevant at lower energies

- $A: {\rm atomic \ weight \ of \ absorbing \ material}$
- $\rho: \ {\rm density} \ {\rm of} \ {\rm absorbing} \ {\rm material}$
- z: charge of incident particle in units of e
- $\beta: \ v/c \ \text{ of the incident particle}$

$$\gamma: 1/\sqrt{1-\beta^2}$$

BONN

BETHE BLOCH IN A NUTSHELL

A CLOSER ACCOUNT OF ENERGY LOSS

Liquid hydrogen bubble chamber 1960 (~15cm).

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

ENERGY LOSS IN THIN LAYERS

- Bethe Bloch formula describes average energy loss
- Fluctuations about the mean value are significant and non-Gaussian
 - A broad maximum: collisions with little energy loss (more probable)
 - A long tail towards higher energy loss: few collisions with large energy loss T_{max} , δ -electrons.
 - -> Most probable energy loss shifted to lowed values

The Landau distribution is used in physics to describe the fluctuations in the energy loss of a charged particle passing through a thin layer of matter

$$P(\lambda) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(\lambda + e^{-\lambda})\right]$$

$$\lambda = \frac{\Delta E - \Delta E_{mp}}{\xi}$$

UNI BONN

 ξ is a material constant

RADIATION LENGTH X_{\Box}

- Bremsstrahlung is dominating at high energies
- At low energies: ionisation, additional scattering

dE/dx for an electron

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{\frac{1}{3}}}}$$

Parameters only depending on material the electron is passing through.

Thickness of material an electron travels through until the energy is reduced by Bremsstrahlung to 1/e of its original energy

Air: 36.66 g/cm² ->~ 300 m

Usually quoted in [g/cm²], typical values are:

- The radiation length is also an important quantity in multiple scattering
- A very important number when building detectors, one always has to keep in mind how much material is within the detector volume

SEMICONDUCTORS

V HOVET, G, C

How does a pn junction work?

How do you choose the bias voltage?

JUMP

SEMICONDUCTOR BASICS

- In free atoms electron energy levels are discrete.
- In a solid, energy levels split and form a nearly-continuous band.

- Large gap: the solid is an insulator.
- No gap: it is a conductor.
- Small band gap: semiconductor

- For silicon, the band gap is 1.1 eV, but it takes **3.62 eV** to ionise an atom
 - Remaining energy goes to phonon excitations (heat).

BAND MODEL FOR ELEMENTS IV (EXAMPLE FOR SI)

Each atom has 4 closest neighbours, the 4 electrons in the outer shell are shared and form covalent bonds.

- At low temperature all electrons are bound
- At higher temperature, thermal vibrations break some of the bonds
- Free electrons cause conductivity (electron conduction)
- The remaining open bonds attract other e- → the "holes" change position (hole conduction)

Crystal structure

- ··· Valence electron
- Conduction electron

In ultra-pure silicon the intrinsic carrier concentration is 1.45.10¹⁰ cm⁻³ at room temperature.

CONSTRUCTING A DETECTOR

BONN Ingrid-Maria Gregor - RADHARD 2024 - Bonn

0.3mm

DOPING SILICON

n type semiconductor:

BONN

- Negative charge carriers (electrons) by adding impurities of donor ions (e.g. Phosphorus (type V))
- Donors introduce energy levels close to conduction band thus almost fully ionised (E_F closest to CB)

Electrons are the majority carriers.

p type semiconductor:

- Positive charge carriers (holes) by adding impurities of acceptor ions (e.g. Boron (type III)).
- Acceptors introduce energy levels close to valence band thus 'absorb' electrons from VB, creating holes (E_F closest to VB).

Holes are the majority carriers.

BASIS OF SILICON DETECTOR: PN JUNCTION

- At interface of p type and n type semiconductor diffusion of excessive carriers to the other material until thermal equilibrium
- Stable space charge region free of charge carriers: **depletion zone**.

Applying an external voltage V with the cathode to p and the anode to n (reverse biasing), e-h pairs are pulled out of the depletion zone. \rightarrow larger depletion zone \rightarrow suppress current across the junction

pn-junction with reverse bias

Drift

SILIZIUM DETEKTOR IN A NUTSHELL

PRINCIPLE OF SEMICONDUCTOR DETECTORS

Creation of electric field: voltage to deplete thickness d

$$d = \sqrt{\frac{2\epsilon\epsilon_0 V}{e} (\frac{1}{n_D} + \frac{1}{n_A})}$$

with
$$n_A >> n_D$$
 $d = \sqrt{\frac{2\epsilon\epsilon_0 V_{dep}}{en_D}}$

for $d = 300 \mu m$: $V_{dep} \approx 160 V$

- Passage of a charged particle: Electron-hole pairs formed in the depletion zone
 - Drift under the influence of the electric field
 - Signal depends on width of depletion zone

The signal is induced by the motion of charge after incident radiation (not when the charge reaches the electrodes).

SILICON TRACKING DETECTORS

WHOET, S, C

DISCOVERY OF NEUTRAL CURRENTS

Gargamelle, 19.7. 1973

TRACKING DETECTORS

- Precise measurement of track and momentum of charged particles 0 due to magnetic field.
- The trajectory should be minimally disturbed by this process (reduced 0 material)

Charged

- Charged particles ionize matter along their 0 path.
 - Tracking is based upon detecting ionisation trails. 0
 - An "image" of the charged particles in the event 0

Secondary Vertex

Protons

SILICON DETECTOR TYPES

- Pixel detector: deposited charge sensed by small pixels on one side of sensor
 - many channels
 - relatively expensive
 - more material (in case of hybrid pixels)
 - easy pattern recognition
- Strip detector: deposited charge sensed by long narrow strips
 - fewer channels
 - less expensive
 - less material
 - pattern recognition difficult!

Double sided strip sensor

FIRST HEP APPLICATION: NA11

 After discovery of charm (1974), τ-lepton (1975) and beauty (1977) with lifetimes cτ ~100 µm: need fast (ns), and precise (µm) electronic tracking detectors

- Strip detector for NA11 in 1981
 - 1200 strip-diodes
 - 20 µm pitch
 - 60 µm readout pitch
 - 24 x 36 mm² active area ~0.01m²
 - position resolution ~5.4 μm
 - 8 layer at the start
- → precise track reconstruction
- readout electronic: ~1m²!

STRIP DETECTORS

First detector devices using the lithographic capabilities of microelectronics

First Silicon detectors -> strip detectors

- Arrangement of strip implants acting as charge collecting electrodes.
- Low doped fully depleted silicon wafer with implants form a one-dimensional array of diodes
- By connecting each of the metalised strips to a charge sensitive amplifier a position sensitive detector is built.
- Two dimensional: can be achieved by applying an additional strip like doping on the wafer backside (double sided technology)

Principal: Silicon strip detector

Kecar

EXAMPLE: CURRENT ATLAS SILICON DETECTOR

- Ourrent tracking detector "the first meter":
 - Silicon pixel detector
 - 4 layers, 8 disks
 - Pixel size: 50 x 400µm² (IBL: 50 x 250µm²)
 - 2000 modules with 140M channels
 - SemiConductor Tracker (SCT)
 - Strips width: 70µm
 - 4088 modules with 6.3M channels, 62m²

24

SILICON STRIP DETECTOR

- Segmented p-n diode with applied bias voltage
- Particle creates charges
 - 81 e- per um.
- Charges drift to contacts
- Signal is read out typically connected with wire-bonds

Cross-section through sensor

ATLAS SCT BARREL SECTION

ATLAS SCT ENDCAP - BEAUTY SHOT

SILICON TRACKER (SCT)

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

Insertion of the 3rd cylinder (out of the four) into the barrel SCT

SCT BARREL

CMS TRACKER - BEAUTY SHOT

CMS SI-TRACKER

STRIP DETECTORS

AMS-02 silicon strip tracking detector

STAR Strip Tracker

ZEUS MVD 2000 Ingrid-Maria Gregor - RADHARD 2024 - Bonn

SVX-2 CDF Strip Detector

SILICON PIXEL DETECTORS

V HOET, S, C

601

LIMITS OF STRIP DETECTORS

In case of high hit density ambiguities give difficulties for the track reconstruction

Soft lepton

- Deriving the point resolution from just one coordinate is not enough information to reconstruct a secondary vertex
 - Pixel detectors allow track reconstruction at high particle rate without ambiguities
 - Good resolution with two coordinates (depending on pixel size and charge sharing between pixels)

УÎ

- Very high channel number: complex read-out
- Readout in active area a detector

First pixels (CCDs) in NA11/NA32: ~1983

HYBRID PIXELS - "CLASSICAL" CHOICE HEP

- The read-out chip is mounted directly on top of the pixels (bump-bonding)
- Each pixel has its own read-out amplifier
- Can choose proper process for sensor and read-out separately
- Fast read-out and radiation-tolerant
- ... but:
- Pixel area defined by the size of the read-out chip
- High material budget and high power dissipation

- CMS Pixels: ~65 M channels
 150 μm x 150 μm
- ATLAS Pixels: ~80 M channels
 50 µm x 400 µm (long in z or r)
- Alice: 50 μm x 425 μm
- LHCb
- Phenix@RHIC

PIXEL SENSOR

FE chip

sensor

Different sensor materials can be used: Si, CdTe, GaAs, ...

Depending on application (tracking, single photon counting, ..)

Usually several readout chips are connected to one sensor.

Pixel cell (50µm x 425µm)

e

EXAMPLE: ATLAS-PIXELS

A pixel module contains:

1 sensor (2x6cm) ~40000 pixels (50x500 mm) 16 front end (FE) chips 2x8 array bump bonded to sensor Flex-hybrid 1 module control chip (MCC) There are ~1700 modules

Picture: VTT

ng = 6.04 K X

50 um

EHT = 20.00 kt

HYBRID PIXEL DETECTORS

DELPHI VFT 1996

LHCb Velo

CMS Phase1 Pixel Detector

PHENIX pixel detector

ATLAS Insertable B-Layer

NEXT GENERATION SILICON-

600

DETECTORS

A NEW INNER TRACKER IS NEEDED ... WHY ?

- Upgrades of accelerator and detectors are necessary to reach this ambitious goal.
- Primary motivation of all upgrades is to maximise the understanding of particle physics and searches for new phenomena beyond the known processes
 - HL-LHC implies significant scaling of design parameters:
 - Peak luminosity: 5-7 x 10³⁴ 1/cm²s
 - Integrated luminosity: 4000 fb-1
 - Fluences up to 2x10¹⁶MeV n_{eq} /cm²
 - Average pile-up: up to ~200

- ⇒ x 5-7
- ⇒ x10
- **⇒** x10
- ⇒ x 8

LHC, 20 - 55 pile-up events

HL-LHC, 140 - 200 pile-up events

New sensor & readout require more radiation hardness

SI-STRIPS FOR ATLAS (HL-LHC)

VI FIDET, S, C

LARGE AREA SILICON TRACKERS - ATLAS AND CMS

- ATLAS&CMS each plan for ~150 m² silicon strip detector
- Commonalities: \bigcirc
 - **20000** modules to be produced 0
 - choice of sensor technology (n-in-p) 0
 - radiation level (10¹⁵ n_{eq}/cm²) 0

CMS Outer Tracker end-cap to be constructed in Germany

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

CMS 2S Module

ATLAS ITk Strips end-cap to be constructed in Germany

ATLAS End-cap strips module

"OUTER" TRACKER FOR ATLAS&CMS

- ATLAS&CMS each plan for ~150 m² silicon strip detector
- Commonalities:
 - 20000 modules to be produced
 - choice of sensor technology (n-in-p)
 - radiation level (10¹⁵ n_{eq}/cm²)
- CMS:
 - modules discriminate low- p_{τ} tracks in the FE electronics
 - hybrid is key element: Wire-bonds from the sensors to the hybrid on the two sides

1.4 m

- ATLAS:
 - stave concept where silicon is directly glued onto carbon fibre

CMS

2S module

ATLAS BARREL STRIP DETECTOR

- Staves are arranged in concentric cylinders centred around the beam-line
 - overlap is arranged to make the layer hermetic down to 1 GeV/c tracks

Double-sided layers with axial strip orientation and rotated by 26 mrad on other side (z-coordinate) $s_{19} m_m$

- A sandwich construction for high structural rigidity with low mass.
- End insertable (in z) to allow repairs up to the very last moment
- Silicon Modules directly bonded to a cooled carbon fibre plate.

e

R = 1000 mm

R = 862 mm

R = 405 mm

BONN Ingrid-Maria Gregor - RADHARD 2024 - Bonn

END-CAPS - COMPLICATED GEOMETRY

- End-caps are a problem due to their geometrical constraints
 - following stave concept -> build disks out of wedge shaped petals covered by **six** (!) different sensor shapes
 - more complicated layout for the electronics as we have two modules besides each other

STRIPS MODULE COMPONENTS EXAMPLE ATLAS ITK

Exploded view of barrel short strips module

- Square for barrel, trapezoidal for end-cap
- Hybrids glued directly onto sensor
 - Contains up to 12 front-end chips ABC130 (UV glue)
 - One hybrid control chip (HCC) per hybrid
- Power board
 - Providing LV, HV and monitoring chip
- O(7k) wire-bonds

Barrel short strips module

End-cap innermost strips module

BONN Ingrid-Maria Gregor - RADHARD 2024 - Bonn

SILICON STRIP

- Sensor parameters defined: n-in-p with p-stop isolation
 - Collects electrons
 - -> faster signal, reduced charge trapping
 - Always depletes from the segmented side: good signal even under-depleted
- Single-sided process
 - Cheaper than n-in-n
 - More foundries and available capacity world-wide
- Radiation damage most important issue

Sensor	
Substrate material	p type FZ
Thickness	300-320 μm
Resistance	> 3k Ω cm
Collected charge after 1x10 ¹⁵ n _{eq} /	> 7500 e [_] per MIP

Cross-section through sensor

Collected charge versus irradiation

MODULE PERFORMANCE

- Modules should still be operational at the end of HL-LHC
 - Highest expected fluence in ITk Strips: 1.2 10¹⁵n_{eq}/cm²
- Benchmark for module performance
 - >99% detection efficiency
 - <10⁻³ noise occupancy
- Best demonstrated at a test beam (DESY, CERN)
- Compared module results (binary) with analogue sensor results
 - Consistent within uncertainties

END-CAP SYSTEM TEST

- Plan: built 1/8th slice of the EC populated with 12 petals
 - Test different permutations of petals in the structure to study electrical noise behaviour
 - First located at DESY, afterwards move to CERN for full strips system test
- Need realistic mechanical structure with electrical services and cooling infrastructure
 - real mechanical CF disk structure with bulkhead and additional lateral support structure with CF service tray and prototype electrical cables for powering and readout
 - CO2 cooling lines with temporary connections

Under construction now: hope to take first cosmic muon runs end of the year

BUILDING THESE BEASTS

VI FIDET, S, C

INTRODUCTION

- Designing a particle physics (tracking) detector is a very complex business
- Many very nice examples exist
- Also some examples of failures
- Today: overview of main steps to get from sensor to detector
- Some examples where problems appeared

A topic to talk hours about. Some bias in the selection of detectors and examples based on my experience, my friends and other factors ...

WHAT WE WANT

CMS Strip Detector, 2007

ATLAS Pixel Detector 2007

NA11 1981

Belle II PXX, 2022

ALICE ITS

DELPHI VFT 1996

AMS Strip Detector,

54

ATLAS STRIPS: STAVE/PETAL CONCEPT

BONN Ingrid-Maria Gregor - RADHARD 2024 - Bonn

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

ATLAS END-CAP WORKFLOW AT DESY

DESY

Cornell

eд

<u>D</u>:

MODULE PRODUCTION

VI FILLET, S, C

THE MODULE

- Module
 - Smallest building block to be mounted to support structure
 - Sensor plus readout electronics
 - Maybe some powering electronics and interfaces
- The detector can only be as good as its smallest parts
- Module quality defines detector quality (to some extent)
- Large share of production time is dedicated to module production

Project	CMS Pixel Phase I	LHCb Velo	DØ Microst rip Tracker	ATLAS ITk Strips	Belle II
#	1 856	42	672	17 888	40

THE MODULE

Module

- Smallest building block to be mounted to support structure
- Sensor plus readout electronics
- Maybe some powering electronics and interfaces

CMS Phase I Pixel

MODULE CONCEPTS

Pixel

- Hybrid with
 - Bump bonds
 - Wafer to wafer
 - Capacitive coupling
- Monolithic

Independent of hybrid or monolithic: Need connection to outside world!

Bump-bonds -> see backup

Typically flexible circuit board placed on top or below and connected via wire-bonds

CMS pixel module

7 cm ATLAS pixel module

ATLAS quad module (early version)

MODULE CONCEPTS

Strips

- Classic hybrid with wire-bonds
- Monolithic future dream
- FE chips wire bonded to large strip sensor

ATLAS strip barrel module

BONN

WIRE BOND CONNECTION

- Ultrasonic welding technique
 - typically 25 micron bond wire of Al-Si-alloy
- Nowadays: Fully-automatised system with automatic pattern recognition

BUILDING MODULES (EXAMPLE STRIPS)

Before production:

define specifications for module (quality)

To be defined:

- Sensor IV, CV, etc
- Sensor bow

yield: the (expected) fraction of parts surviving

-> only 66% of sensors go into experiment

- Chip on wafer tests
- Hybrid noise performance
- Wire bonds strength
- Electrical performance
- Full module: metrology
-

Understanding the yield:

tests during production

relying on very high yield

example: 20 steps with yield of 98%

many years of R&D •

based on

- defect
 defective die
- good die
- 📒 partial edge die

Exploded view ATLAS ITk Strips module

BUILDING MODULES

- For large detectors many things to be taken into account to set up module
 - Avoid single vendors!!!
 - Try to have as many parts as possible "off the shelf"
 - Where possible stay within industry standards
 - Reduce manual steps and make every thing as simple as possible

Nice videos: <u>https://www.youtube.com/watch?</u> <u>v=Vo4tvenA4rQ</u> (Belle II) <u>https://www.youtube.com/watch?</u> <u>v=fV5SiKzZ8M8</u> (ATLAS)

BUILDING MODULES

During production:

- Perform fast checks on every single module automation
- Provide feedback for construction
- Classify & reject modules
- Store results data base

Fun fact!

	ATLAS	CMS
R&D parts and samples		
during production -	QA	QC
possibly up to destruction	Quality assurance	Quality control
Checks of every single production part	QC Quality control	QA Quality assurance

CHECKS DURING PRODUCTION

- Most checks during production are performed at room temperature
- Detectors are often operated at low temperatures (down to -45C)
- Test detectors at high and low temperatures
 - Test response to thermal cycling
- Burn-In: thermal cycling with tests at extreme temperatures
 - Trigger & identify thermal stress
 - Overcome infant mortality
 - Calibration

Hybrid burn-in test

Setup for module thermal cycling - 3 modules simultaneously tested

Robots

- During production need to limit manual steps
- By now all automated machines are available
- Industrial solutions
 - Wire-bonder
 - Gluing robot
- Home-made developments
 - Module loading (based on gantry)
 - Bustape testing
- Very attractive tasks for detector R&D newcomers

Module gluing and placing tool (ATLAS)

Module construction robot (CMS)

Gluing robots

Semi-electrical petal @ DESY Loading of petal core 07 - back side

Video: Othmane Rifki, 2017

(LOCAL) SUPPORT PRODUCTION

600

AND TESTING

SUPPORT STRUCTURE

- Sounds simple:
 - Something to put modules and cables on that keeps the active components cold and in position
- Years of engineering and design effort, because they require ...
 - Incredibly high precision over large areas
 - Stability (mechanical, thermal & thermo-mechanical)
 - To be customised to module design
 - Best made without material
 - Radiation tolerance (if needed)
- To be *transportable*

Finite element analysis (FEA) vital for a good detector.

MORE QUALITY TESTS NEEDED

- One of the main challenges for large systems: maintain good flatness over large areas
- Measurement: e.g. via metrology arm
- Well define and design construction processes
 - QA of cooling performance: coping with heat dissipation of modules & temperature stability/homogeneity
 - Typical method: Infrared thermography

CMS Outer Tracker

Femperature

റ്
"INTEGRATION"

V HIVET, S, C

Maybe most used word for different steps

MODULE ONTO LOCAL SUPPORT

- Depending on size and amount of modules, a manual approach is probably not recommendable
- Many tools to be designed
- Precision placement needed
- Modules need to be attached (glue)
- Possibly use of robots!

Ladder of ALICE ITS Pixel

DETECTOR INTEGRATION

- Integration of detector modules & support structure
 - Extremely delicate task
 - Handling many certified functional components at the same time
 - Unwieldy in case of small or large systems (either delicate and compact or hard to reach)
 - → Proper tooling required!

CMS Pixel Phase I

LHCb Velo

FROM MODULE TO DETECTOR

DETECTOR INTEGRATION

CMS Phase I Pixel Barrel

- Half barrel: 592 modules,
 - \sim 1 year of module production
- Delicate placing & mounting of modules
- Always label your cables …

FILLING THE SKELETON

- Example: ATLAS ITk Strips
- Tools designed to do all steps
- Here: tool to insert petals into skeleton

SILICON TRACKER (SCT)

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

Insertion of the 3rd cylinder (out of the four) into the barrel SCT

TRANSPORTATION

VI HOVET, S, C

CCP.

GETTING (LARGER) PARTS TO DESTINATION

- Distributed construction of modules, detectors & components requires transportation
- Sensors, Chips, Cables, Connectors, ...: parcel shipment
- Modules: parcel shipment or custom transportation
 - Mounted on carriers
- Full detectors: very special needs

Paul Schütze with 300 CMS Phase I Pixel Detector Modules (selfie)

Belle II PXD2 flying business class

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

COMPLETELY DIFFERENT REQUIREMENTS

- AMS experiment needed a rocket to get inserted
- Acceleration during start/ landing up to 9g

On ground transport requirements <2g due to ramped-up magnet

GETTING THE DETECTOR SAFELY TO EXPERIMENT

INSTALLATION

VI HOUET, S, C

600

BIG TOOLS ARE NEEDED!!

Nice video: <u>https://www.youtube.com/watch?v=NEpfljUk9sk</u> ATLAS Pixel

THE SCHEDULE

V FIDET, S, C

600

AN EXAMPLE - UNKNOWN EXPERIMENT

THE PROBLEMS

VIFILET, S,C

600

UNEXPECTED IRRADIATION FAILURE

VHUET, S, C

Ge C 1

CMS DC-DC CONVERTER

- During 2017 new pixel detector installed in CMS with DC-DC converter for powering
 - After few months: ~5% of deployed converters failed.
 - During winter shutdown: another ~35% of converters were found partially damaged
 - Extremely difficult to identify problem over months multiple tests conducted
 - Found strong correlation between radiation background and failures, as well as the functional sequence necessary for the damage to happen.
 - Damage caused by TID radiation damage opening a source-drain leakage current in **one** transistor in Feast2.1 chip
 - High-voltage transistors can not be designed in an enclosed layout to prevent this problem

PC-PC in a nutshell:

transfer energy into detector with higher voltage/lower current and transform just before the load to operation voltage

Feast2

Consequences for operation
lower input voltage helps
stop disabling the output

https://project-dcdc.web.cern.ch/project-dcdc/public/Documents/ExecutiveSummary2018.pdf https://instrumentationseminar.desy.de/sites2009/site_instrumentationseminar/content/e70397/e282395/e287407/20190614_pixelphase1JIS.pdf

Ingrid-Maria Gregor - RADHARD 2024 - Bonn

ATLAS IBL TID BUMP

- Steep increase in power consumption of IBL during operation increasing the temperature
- Effect of total ionising dose on front-end chip FE-I4B
- Caused by the effect of TID on NMOS transistors:
 - Leakage current was induced by positive charge trapped in the bulk of the shallow trench isolation (STI)
 - Temperature and voltage depending

during running

Mitigation plan:

- Operating temperature was increased from −10 ∘C to and 10 ∘C then decreased to 5 ∘C.
- Digital supply-voltage was decreased to from 1.2 V 1.0 V until TID approached more than 4 MRad.

TID BUMP

Surface effects: Generation of charge traps due to ionizing energy loss (Total ionising dose, TID) (main problem for electronics).

- The leakage current is the sum of different mechanisms involving:
 - the creation/trapping of charge (by radiation)
 - its passivation/de-trapping (by thermal excitation)
- These phenomena are dose rate and temperature dependent!
- Charge trapped in the STI oxide
 - +Q charge
 - Fast creation
 - Annealing already at T_{amb}
- Interface states at STI-Silicon interface
 - -Q for NMOS, +Q for PMOS
 - Slow creation
 - Annealing starts at 80-100C

"LOW TECH" FAILURES

VI FIDET, S, C

W.C.P.

WHAT IS "LOW" TECH ?

- In particle physics experiments almost everything is high tech
 - Need extreme reliability
 - Radiation tolerance
 - Precision
 - Mostly running longer than originally planned
 - However some areas considered as "low tech" and people (and funding agencies) don't like to invest research money into those areas
 - Cables for powering
 - Power plants
 - Cooling
 - Data transfer (optical and electrical)
 - Non sensitive materials (mechanics)
 - Glues

simple, unsophisticated, basic,

For particle physics experiments this is not true !

WIRE-BONDS AND WIRE BREAKAGE

V HOLET, S, C

PROBLEMS WITH WIRE BONDS (CDF,

- Very important connection technology for tracking detectors: wire bonds:
 - 17-20 um small wire connection -> terrible sensitive
- Observation: During synchronous readout conditions, loss of modules (no data, Drop in current)

- Tests revealed:
 - Bonds start moving due to Lorentz Force in magnetic field
 - Wire resonance in the 20 kHz range
 - Current is highest during data readout
 - Already a few kicks are enough to get the bond excited

Implemented "Ghostbuster" system which avoids long phases with same readout frequency

during running

DPAL MVD 1994

- OPAL MVD ran for a short while without cooling water flow.
- Temperature of the detector rose to over 100°C.
 - Most of the modules to fail or to be partially damaged.
 - Chain of problem causing damage:

- MVD expert modified the control/monitoring software between consecutive data taking runs.
- Inserted bug which stopped software in a state with cooling water off but with the low voltage power on.
- Stopped software also prevented the monitoring of the temperature from functioning
- Should have been prevented by additional interlock but that was also disabled....

Lucky outcome:

- Damage was mostly melted wire bonds
- Detector could be fixed in winter shutdown

Mitigation plan:

- new and more rigorous interlock system that could not be in a disabled state during data taking conditions.
- rule was implemented that prohibited software modifications between consecutive data taking runs.

ATLAS IBL - WIRE BOND CORROSION

- Additional pixel layer for ATLAS installed in 2015
- Five months before installation: corrosion residues observed at wire-bonds after cold tests (-25 C)
 - Severe damage of many wire-bonds
- Residue showed traces of chlorine: catalyst of a reaction between Aluminium (wire-bonds) and H₂O (in air)
- Origin of chlorine in system never fully understood

Emergency repair and additional staves from spare parts

https://indico.cern.ch/event/435798/contributions/1074098/attachments/1134177/1622192/encapsulation_study_-_Oxford.pdf

BONN Ingrid-Maria Gregor - RADHARD 2024 - Bonn

MORE WIRE BOND WRECKAGE

- During CMS strip tracker production quality assurance applied before and after transport
 - Quality of wires is tested by pull tests (measured in g)
- Wire bonds were weaker after transport with plane
- Random 3.4 g NASA vibration test could reproduce same problem
- Problem observed during production -> improved by adding a glue layer
- No further problems during production

during production

CURRENT (UNSOLVED) ONES

VI FILET, S, C

661

ATLAS ITK STRIPS: COLD NOISE

- Hybrids for readout and power board directly on silicon strip sensors
- Clusters of very noisy channels observed at operating temperatures of around -35 °C
- Caused by mechanical vibrations from capacitors of powerboard inducing electrical noise
 - Not observed in EC modules
- Studies on new module-building glue show no cold noise for long-strip barrel modules

shortly before production

SAME DETECTOR: MODULE CRACKING

shortly before production

- Fraction of modules loaded on support structures show early breakdown (< 500 V), and show fractures when cycled to very cold temperatures
- Explained as peak stress, induced by CTE mismatching
- Investigated solutions (guided by simulations):
 - Change of loading glue
 - Increase of gap width between flexes
 - Addition of "interposer" layer

OTHER PROBLEMS AND FAMOUS PROBLEMS

ATLAS IBL STAVE BOW

during commissioning

- Distortion depending on the operating temperature was observed.
- Caused by a mismatch between the coefficients of thermal expansion (CTE) of a bare stave made with the carbon foam and the flex attached on the bare stave.
- Maximum more than 300 µm at -20 °C with respect to the nominal position at the room temperature.

Mitigated by temperature control at the level of 0.2 K and the regular alignment correction in the offline reconstruction

CABLE PROBLEM WITH PRESS COVERAGE

- Oscillation Project with Emulsion-tRacking Apparatus OPERA: instrument for detecting tau neutrinos from muon neutrino oscillations
- In 2011 they observed neutrinos appearing to travel faster than light.
 - Very controversial paper also within collaboration

The top 10 biggest science stories of the decade

- Kink from a GPS receiver to OPERA master clock was loose
 - Increased the delay through the fibre resulting in decreasing the reported flight time of the neutrinos by 73 ns,
 - making them seem faster than light.

After finding the problem, the difference between the measured and expected arrival time of neutrinos was approximately 6.5 ± 15 ns.

MAYBE MOST FAMOUS DAMAGE

- Underground water Cherenkov detector with 50,000 tons of ultrapure water as target material
 - Nov 2001: One PMT imploded creating shock wave destroying about 7700 of PMTs

- Detector was partially restored by redistributing the photomultiplier tubes which did not implode.
- Eventually added new reinforced PMTs

during commissioning

LESSONS LEARNED ?

- Spend enough time on simulating all aspects of your detector with ALL materials implemented
- Don't underestimate the "low tech"
 - Cables
 - Cooling
 - Mechanics including FEA
 - Radiation damage of non-sensitive materials
 -
- Make sure the overall timeline is not completely crazy (tough job)
- When mixing materials ask a chemist once in a while
- Better is the enemy of good enough (Marty Breidenbach)

Solving and preventing theses kind of problems is also part of the fascination of detector physics!!

info@mool.in

SUMMARY

Tracking Detectors

- Precise measurement of track and momentum of charged particles due to magnetic field.
- Mostly based on ionisation

Semiconductor Detectors

- In particle physics mostly based on silicon
- Pixel and strip detectors for innermost regions of experiments

