Detector Characterisation: Irradiation and Test Beam

Yannick Dieter University of Bonn

dieter@physik.uni-bonn.de

Deutscher Akademischer Austauschdienst German Academic Exchange Service

ARISTOTLE UNIVERSITY OF THESSALONIKI

UNIVERSITÄT BONN

Hochschulpartnerschaften mit Griechenland 2023-2025

WHY IS DETECTOR CHARACTERISATION IMPORTANT?

LAB TESTING AND TEST BEAM

Typically, new device is characterised in lab and in test beam (complementary)

Lab characterisation (,simple' table-top setup in lab):

- Current vs. voltage characteristic (IV-curve)
- Optimisation of device settings/configuration (power, threshold, speed, noise, ...)
- Calibration of detector with radioactive sources or x-ray tube (photons with well known energy)

Test beam (,complex' setup at external facility):

- Spatial and time resolution of detector
- Detailed studies of efficiency and charge collection (within pixels)

LEMO and TLU

 System integration tests (readout of several detectors in parallel or testing of larger subsystems)

Data/CMI and HitOR

BASICS: INTERACTION OF PARTICLES WITH MATTER

- Restrict here to charged particles
- (Mean) energy loss of charged particles in matter described by Bethe-Bloch
- Broad minimum at $\beta\gamma = 3 \rightarrow$ "minimum ionising particles" (MIP)
- In practice, all particles $\beta \gamma > 3$ are considered as MIPs
- MIPs are what we use for test beam measurements!
 - a few GeV electrons
 - 120 GeV hadrons

BASICS: INTERACTION OF PARTICLES WITH MATTER

- Bethe-Bloch describes the mean energy loss, but actually thats not a good estimator to quantify energy loss!
- Energy loss fluctuates -> Landau distribution
 - Number fluctuations -> number of collisions varies
 - Energy-transfer fluctuations
- Most-probable value (MPV) is more stable wrt. to fluctuations
- In silicon, MPV is ~75 e/h per um (depends on thickness!)

$$\begin{split} \Delta_p &= \xi \left[\ln \frac{2mc^2 \beta^2 \gamma^2}{I} + \ln \frac{\xi}{I} + j - \beta^2 - \delta(\beta \gamma) \right] \\ \xi &= (K/2) \left\langle Z/A \right\rangle z^2 (x/\beta^2) \end{split} \text{ [PDG (2022), 34.2.9]}$$

 $w_i = 3.65 \,\mathrm{eV}$ (in Silicon)

IRRADIATION

We will only talk about **bulk damage**

IRRADIATION

- Reminder: **1 MeV neutron-equivalent fluence**: $\Phi_{eq} [n_{eq}/cm^2]$ \rightarrow Amount of radiation damage caused by 1 MeV neutrons with fluence Φ_{eq}
- Why is this important?

Fluences in HEP experiments can reach up to $10^{16}n_{eq}/cm^2$ after life time of detectors

We need to make sure that performance of detector is still fulfilling the requirements!

IRRADIATION FACILITIES: HOW?

- Irradiation facility provides particle beam (e.g. protons)
- Install device under test in beam and shoot particles onto it

Hardness factor scales fluence to neutronequivalent fluence (NIEL ▲ scaling)

- $\phi_{\rm p} = \frac{{\rm I}_{\rm p} \cdot {\rm t}}{{\rm e} \cdot {\rm A}} \qquad \kappa = \frac{\phi_{\rm neq}}{\phi}$
- By measuring the beam current we can then estimate how much "damage" we create in the detector material
- Typically, a homogenous irradiation over the detector is wanted
- -> Move the device in beam ("scanning")

IRRADIATION SITES: SOME EXAMPLES

- A very nice irradiation facility is Bonn at the Isochronous Cylotron at HISKP
 - Provides protons, deuterons, alphas... up to ¹²C
 - 7 MeV 14 MeV per nucleon
- Mostly proton beam is used for irradiation:
 - A few nA to 1 uA beam current
 - Gaussian beam profile (up to 2 cm FWHM)
 - Flux (1 uA) = $6 \times 10^{12} \text{ s}^{-1} \text{cm}^{-2}$
- Live monitoring: precise knowledge of fluence and feedback
- Homogeneous application of fluence
- 5 x 10¹⁵ within 60 min (for a 2 cm² sample)

Scan number

IRRADIATION SITES: SOME EXAMPLES

Of course there are many other facilities...

27 MeV protons at MC40 Cyclotron in Birmingham...

23 GeV protons at IRRAD proton facility at CERN (PS)...

A nice summary of the irradiation sites

24 MeV protons at KIT irradiation facility in Karlsruhe...

1 MeV neutron-equivalent fluence: $\Phi_{eq} [n_{eq}/cm^2]$

 \rightarrow Amount of radiation damage caused by 1 MeV neutrons with fluence Φ_{eq}

TEST BEAMS

TEST BEAMS

- Goal: Measure reponse of detector under test (DUT) to particle beam (MIPS)
- Interested in measuring ...
 - ... Hit detection efficiency
 - ... Temporal resolution
 - ... Spatial resolution
 - ... Charge collection properties

all versus detector parameters (detection threshold, bias voltage, ...)

TEST BEAM FACILITIES

Many test beam facilities available...

DESY II test beam facility

- bremstrahlungs converted electron beam
- several beam lines with 1 5 GeV electron beam
- a few kHz beam rate

SPS North Area beam facility

- converted beam from SPS
- several beam lines with high energetic protons (400 GeV)
- beam has spill structure from SPS
- 5 10 sec. spill length (1 spill every 14 – 60 sec)

ELSA test beam facility

- primary electron beam
- single extraction line provides 3 GeV electron beam
- user-adjustable beam rate ranging from 1 Hz – 625 MHz
- Spill duty cycle (80 %)

BEAM TELESCOPE

- Aim of beam telescope is to track incoming particle beam and extrapolate trajectory on DUT ٠
- Several pixel detectors with excellent spatial resolution (a few um)
- Optional: good timestamping capabilites (ns us)
 - Do not want to be rate limited (a few kHz) _
 - Study of temporal resolution of DUT

BEAM TELESCOPE: TIME REFERENCE

- Typical time resolution of (current) beam telescope not sufficient (a few hundred us)
- Several tracks are "integrated" -> track ambiguity (track multiplicity)
- Use high precision timing layer to disentangle track multiplicity

Snapshot of one event

BEAM TELESCOPE: TIME REFERENCE

- Typical time resolution of (current) beam telescope not sufficient (a few hundred us)
- Several tracks are "integrated" -> track ambiguity (track multiplicity)
- Use high precision timing layer to disentangle track multiplicity
- We can also use this additional layer as **"region of interest"** (ROI)

EXAMPLE OF A BEAM TELESCOPE

- EUDET-type beam telescope available since years
- Highly used tool for device characterisation in test beams
 - Several copies of the telescope at various places Bonn, CERN, SLAC, DESY, ...
- Consisting of 6 high resolution MIMOSA26 sensors (MAPS)
- Great track resolution of a few um and very little material budget ...
- Charge collection mainly due to diffusion (20 um epi-layer)
- ... but slow (rolling shutter readout)

<u>More about</u> <u>Performance of EUDET</u> <u>type beam telescope</u>

Mimora 26

	Winnosu 20
Chip sensitive size	$21.2 \text{ mm} \times 10.6 \text{ mm}$
Chip thickness	50 μm to 70 μm
Pixel pitch	$18.4 \text{ mm} \times 18.4 \mu\text{m}$
Pixel matrix	1152×576
Detection efficiency	>99 %
Fake-hit rate	$\sim 10^{-4}$ pixel ⁻¹ event ⁻¹
Typical frame readout time	115.2 µs

EXAMPLE OF A BEAM TELESCOPE

	Performance of EUD type beam telescop remainder the story of the story			erformance of EUDE type beam telescope ds to on of es
			Mimosa 26	Alpide
Ces	Chip sensitive size		21.2 mm × 10.6 mm	13.8 mm × 29.9 mm
	Chip thickness		50 µm to 70 µm	50 µm to 100 µm
	Pixel pitch	\backslash	$18.4 \text{ mm} \times 18.4 \mu\text{m}$	$26.88 \text{ mm} \times 29.24 \mu\text{m}$
Wore about beam	Pixel matrix	\mathbf{X}	1152×576	512×1024
telescope built from	Detection efficiency		>99 %	>99 %
ALPIDE chips	Fake-hit rate		$\sim 10^{-4}$ pixel ⁻¹ event ⁻¹	$<10^{-6}$ pixel ⁻¹ event ⁻¹
	Typical frame readout	it time	115.2 µs	10 µs

TRACK RECONSTRUCTION

TRACK RECONSTRUCTION OVERVIEW

CLUSTERING

• Cluster: Accumulation of (neighboring) pixel hits from the same particle (",charge sharing")

... due to lateral charge carrier diffusion $\sigma(t)=\sqrt{2Dt}$ ~ few um!

... large track angles (particle crosses several pixels)

CLUSTERING

• Cluster: Accumulation of (neighboring) pixel hits from the same particle (",charge sharing")

... due to lateral charge carrier diffusion $\sigma(t)=\sqrt{2Dt}$

... large track angles (particle crosses several pixels)

CLUSTERING

• Cluster: Accumulation of (neighboring) pixel hits from the same particle ("charge sharing")

... due to lateral charge carrier diffusion $\sigma(t)=\sqrt{2Dt}$

... large track angles (particle crosses several pixels)

- For track reconstruction we need to combine these hits into single (x,y) -> clustering
- Typically, use "centre-of-gravity" method (if charge information available)

$$x_{rec} = \frac{\sum S_i \, x_i}{\sum S_i}$$

Position resolution can improve with "centre-of-gravity" method

$$\sigma_x = a/\sqrt{12}$$
 (Binary hit resolution)

CLUSTER SIZE DISTRIBUTIONS

TRACKING

- Goal of tracking: Get optimal (least χ^2) estimate of track parameters using the hit information
- Simplest case is straight line:

• At least two points required to determine track parameters

DIRECTION UNCERTAINTY: POSITION RESOLUTION

• If we have only two measuements, we can derive the direction uncertainty analytically

$$b = \frac{x_2 - x_1}{z_2 - z_1} = \frac{x_2 - x_1}{D}$$

- Each position measurement has intrinsic detector resolution
- Direction uncertainty then becomes:

TRACKING: MULTIPLE SCATTERING

- Multiple Coulomb scattering: scattering of particles in the Coulomb field of nuclei (Rutherford cross section)
- Typically we can neglect "offset" y_{plane}
- RMS-value of scattering angle can be approximated by

6

θplane

TRACKING: MULTIPLE SCATTERING

- How to include multiple Coulomb scattering tracking? -> covariance matrix
- Covariance: "How much two random variables vary together"
- Covariance matrix allows to describe correlation between scattering angles and track parameters
- Global fit method ("all at once"):
 - Requires inversion of n x n covariance matrix (n: number of measured coordinates)
 - Computationally expensive! (~n³)
- Local method (recursive track fitting, "step by step"):
 - Assume scatterings only at several detector planes
 - Propagate track state iteratively from detector to detector
 - Kalman Filter is one option

KALMAN FILTER

- Advantages of Kalman Filter:
 - Simultaneous track finding and track fitting
 - No inversion of large matrices needed
- What do we need?
 - State vector describing the track (track parameters)
 - Measurements (hits in our detector)
 - Measurement transformation (from track parameters to measurements)
 - Transportation matrix (from plane k -> k +1)
 - Measurement noise (detector resolution)
 - Process noise (includes multiple scattering)

More about Kalman Filter: <u>"A new approach to linear</u> <u>filtering and prediction</u> <u>problems"</u> (1960)

KALMAN FILTER: TRACK MODEL

• Track model:

Model how track parameters at a given detector plane k-1 depend on the track parameters on plane k

$$x_{k} = F_{k|k-1}x_{k-1} + w_{k}$$
Process noise (multiple scattering)
$$V_{\theta} = \begin{pmatrix} \theta_{ms}^{2} & 0 \\ 0 & \theta_{ms}^{2} \end{pmatrix}$$
Covariance matrix of scattering angles
$$m_{k} = H_{k}x_{k} + \epsilon_{k}$$

$$Measurement \text{ noise (position resolution)}$$

$$V_{k} = \begin{pmatrix} \sigma_{int,x}^{2} & 0 \\ 0 & \sigma_{int,y}^{2} \end{pmatrix}$$

$$More about covariance matrix for kalman filter track fitting$$

KALMAN FILTER: TRACK FITTING

- Start with defining some initial state and initial covariance matrix (uncertainty)
- Then propagate track state through detector planes

1) Prediction step

TRACKING: KALMAN FILTER

predictions

measurements

The more information we add, the smaller the error on the track state is!

TRACKING: KALMAN FILTER

predictions

• measurements

The more information we add, the smaller the error on the track state is!

Smoothing: combine forward and backward filter (to include information before and after scattering) How can we "judge" a track fit? -> residuals

$$\Delta r_x = x_{\rm hit} - x_{\rm track}$$

Unbiased and biased residuals

This is what we have minimised

$$\sigma_{\rm res} = \sqrt{\sigma_{\rm meas}^2 + \sigma_{\rm track}^2}$$
 $\sigma_{\rm res} = \sqrt{\sigma_{\rm meas}^2 - \sigma_{\rm track}^2}$

Unbiased: Hit in DUT is not included in track fit

Biased: Hit in DUT is included in track fit

RESIDUALS

Resolution is dominated by pixel pitch Box distribution with RMS = 45 um (~150/ $\sqrt{12}$)

Resolution is dominated by multiple scattering Gaussian distribution with $\sigma = 19$ um (~50/ $\sqrt{12}$)

TELESCOPE CONFIGURATION

- Goal: Optimise track resolution at DUT depending on "size" of DUT
- Telescope spacing: dz
- DUT spacing: dz_{DUT}
- Material budget (of DUT): E_{DUT}

DETECTOR CHARACTERISATION RESULTS

EFFICIENCY AND CHARGE COLLECTION

• Measure efficiency and charge collection as a function of bias voltage ...

... for different detection threshold settings

... different levels of irradiation

Hit detection efficiency (noise occupancy is important!)

Typical requirement for silicon tracking detectors 99 % efficiency before irradiation 97 % effciency after irradiation

IN-PIXEL STUDIES

[Christian Bespin, PhD thesis]

- Map all data into pixel unit cell to see "what happens inside the pixel" -> in-pixel plots
- Gives useful insights into charge collection processes in sensor

Before irradiation

After irradiation

Low E-fields in inter-pixel region causing efficiency drop

More about the Characterisation of the MALTA CMOS sensor

IN-PIXEL STUDIES

... we can also map cluster size into one pixel ... The larger the diffusion is, the smaller this "cluster size 1 area" is 60 60 50 50 40 40 cluster size 30 30 y [µm] y [μm] Cluster size = 1 20 20 10 10 0 0 -10 --10-10 40 50 60 10 -10 0 20 30 0 10 20 30 x [µm] x [µm] Dominant cluster shape inside Average cluster size inside pixel $(50 \times 50 \text{ um}^2)$ pixel (50 x 50 μ m²)

cluster shape

...

. 50

60

40

SPATIAL RESOLUTION

• Spatial resolution depends on...

.... threshold setting -> charge sharing!

.... rotation angle -> charge sharing!

$$\sigma_{\rm res} = \sqrt{\sigma_{\rm meas}^2 + \sigma_{\rm track}^2}$$

Spatial resolution of detector

SPATIAL RESOLUTION

Spatial resolution (row) [µm] More in: Turchetta et al., A335 (1993) 44-58 Spatial resolution depends on... 167413 threshold setting -> charge sharing! .1016/j.nima.2022. rotation angle -> charge sharing! —• Epi: 300 μm n distribution is not Epi: 100 um Epi: 50 µm ... cluster reconstruction algorithm flat -> non linear Epi: 40 µm $\underline{\text{pitch}}$ is charge division! Centre-of-gravity method not suitable if 500 1000 1500 2000 2500 $\sigma_{\rm diff}$ Threshold [e] large η Continuous n-implant Spatial resolution [µm] 6 10. 10. reality CoG 1 - ETA 400H /doi.org ΔN/Δη [Events/ 0.02] 5 300 0.5 [https:/ η 200 4 100 3 0 1.0 x_{cluster} 0.5 0 10 20 30 40 50 60 PH(R) Rotation angle [deg] left pixel right pixel

Continuous n-implant

GRAZING ANGLE TECHNIQUE

One can even study **depletion depth** using so-called "angular scans" ("grazing angle" technique)

A QUICK WORD ABOUT SIMULATIONS

- Beam time can be ...
 - ... Costly
 - ... Rare to get
 - ... Tideous (a lot of night shifts + complex setup)
- Sometimes it is easier to use a simulation instead of measuring everything (you can have a lot of design variants!)
- Many nice tools available like
 - GEANT4
 - Allpix²
 - TCAD
 -

[TCAD]

[GEANT4]

A COMPLETE SIMULATION OF DEVICE IN TEST BEAM

More about Monte Carlo simulating a beam telescope

01.10.2024

TAKE HOME MESSAGE

- Device characterisation consists of
 - Lab testing + test beam
 - Irradiation
 - (Simulation)
 - ... to understand the detector and do design adjustments if needed
- A beam telescope setup in combination with a high energetic particle beam is a very powerful tool to characterise the detector
 - Particle reconstruction is key
 - We can study spatial resolution, charge collection, efficiency, ... of our detectors
- Simulation can help us to characterise detector if many design variants need to be studied

LITERATURE

- N. Wermes and H. Kolanoski, "Particle Detectors: Fundamentals and Applications"
- R. Frühwirth et al., "Data Analysis Techniques for High-Energy Physics"
- Many papers, links, ... on slides ;)

Deutscher Akademischer Austauschdienst German Academic Exchange Service

THANK YOU FOR YOUR ATTENTION!