~
kS O D

§o0
e %

T T T T

K pi.*,ua-.qlu-.ﬁluwlq'-uw e e e

UMNIVERSITAT LTI

Deutscher Akademischer Ausiiushdiens
Gerenan Academic Exchange Service

Content

e |Introduction

* Analog Front-end for semiconductor detectors
* Function blocks
* Electrical parameters
» Measurement methods
 Hardware and software

e Embedded-System-Lab
 Hardware overview
e Software environment
e (General Purpose Input/Output port (GPIO)programming example)

Introduction

The “Embedded System Lab” experiments are relatively new

Introduced as part of the lecture “Advanced Electronics and Signal Processing”

Upgrade/addition to the “Electronics Lab Course”, student internships etc.

Here only the analog frontend module “AFE” will be used

Signal Path from Hardware to Software (and back)

Example: ATLAS pixel detector data acquisition system (simplified)

Physical events
(particle tracks)

Computer / File server Data Acquisition Electronics Pixel Detector

e Detector control software e Data aggregation & preprocessing e Application Specific

e Data processing & storage FPGA boards Integrated Circuits (ASICS)
e Analysis software e Bus interface boards

30.9.2024 H. Krager 4

Signal Path from Hardware to Software (and back)

e Generic data acquisition system

Standard Protocol
DAQ
HW

Computer Data Acquisition Electronics
Control & analysis software

Proprietary Protocol

o

1

&

=

Some

ﬁ physical

quantity

Detector Frontend Electronics

e Much of the interaction between SW and HW in a black-box

e Overhead of standard data protocol (USB, TCP/IP etc.)

* Signal preprocessing in intermediate DAQ hardware (FPGAS)

 Added complexity by multiple SW and HW layers

30.9.2024 H. Kruger

Embedded-System-Lab Concept

» Use Raspberry Pi General Purpose Input/Output (GPIO) port to communicate with
external electronic circuits

GPIO port
* Input/Output pins Experiment
Raspberry Pi e Serial bus (SPI, 12C, UART) Modules

 Hardware
e LEDs, Buttons
 Simple (and more complex) circuits: (modules, aka Experiments)

e Software
* User code in Python (and some C) to access GPIO port
 More complex |O functions: Python modules (a bit of a black-box again...)
* Python scripts for data acquisition and analysis

Embedded-System-Lab Learning Contents

Data
visualization and
analysis

Analog signal
processing

Basic
communication

protocols

GPIO port
* Input/Output pins Experiment
Raspberry Pi e Serial bus (SPI, 12C, UART) Modules

Understanding

of electronic
circuits

Computing

hardware

30.9.2024 H. Krager

The Embedded System Lab Hardware

Embedded-System-Lab Setup

User interface

e Python scripts

 Data plots

e Web browser
(documentation)

External instruments
e Oscilloscope
e Lab power supply

Embedded-System-Lab

base board RJ-45 cable with

| ~ GPIO signals

Experiment module

Keyboard & mouse

30.9.2024 H. Krager 9

Lab-Experiment Modules

1. Source Monitoring Unit (SMU)

Dual channel voltage source, nA to mA current measurement

2. Precision Capacitance Measurement (CVM)
Current-based-capacitance-measurement

3. Analog Front-end for sensor signal processing (AFE)

Charge sensitive amplifier, programmable shaping amplifier and
comparator + Digital logic for the AFE signal processing (FPGA)
Time over threshold amplitude digitization

4. Analog-Digital-Converter (SAR-ADC)
8-bit successive approximation ADC, based on R-2R DAC

5. Time domain reflectometry measurement (TDR)
Serial pulse analyzer with < 50 ps resolution

Embedded-System-Lab Base Board + Module

/le
" BONN

Embedded
System
Lab

Trxcom® |5
| TRyGO926HENL |/

30.9.2024

®7/c31 B
®8/CS0.B
®9
.
®1@sck

®g usymo
8 Zar M1
®h

® 15/RX

L]
®
e
0

®0
1
8z

Embedded-System-Lab base board

H. Kruger

Embedded

Lab
SAR-ADC

Embedded-System-Lab experiment
module (SAR-ADC, for example)

11

Embedded-System-Lab Base Board

/UNI
" BONN

Embedded
System

INPUT Bl @
GPIOY | @ @ (-
crios|@ @)=
TRGES

®vee

@ 2/SDA
® 3/sCL
® 4/TRG
@ 5/ECHO
®6
®7/cs1B
® 8/CS0_B
®9.

o1

® IEK

Trxcom?® |
I TR7GO926HEN

30.9.2024 H. Kruger

()
5V DC/DC 12-b ADC
) SPI
HDMI t
o |
o
HomI| | BCM o |
2711 o
G)
UART
BTN
12C
USB | | USB ETH LED
\ y,
12

General Purpose Input/Output Ports - GPIO

[H [H
' ' ! HDMI
! SDRAM ! H '
H H | Ports !
Broadcom BCM2711
ARM Cortex A-72 ! VideoCore VI
DRA deo ;! 2 Ira 1) pla
D

[o | e [e

(ujujuoju

RPi 4B board

* Single board computer
* CPU, file storage

e Audio & Video

* Network

30.9.2024

e e T
Bridge_| 1C 1 PHY Dcard || W GPIO o |
V1 S i 1T W BLE Connect =
fhogugs 11 USBL LT
3002000 o L oTa._ -
T Eernal
|Compona

I GPFSELn I

I GPSET/CLRn

Alternate Function Output

Driver

Physical pin
GPIO Mux

I GPLEVN I—

Alternate Function Input e

Receiver

SOC block diagram

e ARM based CPU (quad core)
e VideoCore (GPU)

* Peripheral I/O blocks

H. Kruger

GPIO block diagram
e Basic input/output function
e Alternate functions (UART, 12C, SPI...)

13

The Analog Front-end Module

Lab Exercise Analog Front-end (AFE)

e Signal chain with charge sensitive amplifier, pulse shaper, and comparator

e Parameters to control: sl Q=
e Input charge Qg

» Detector capacitance Cpgy
* Shaping timet

* Threshold VTHR Detector capacitance Cpgy Shaping time t Threshold Vg
Signal charge Qg

 Parameters to measure and analyze
* Pulse shape
 Threshold
* Noise
e time-other-threshold

AFE Module

Monitor output Sensor depletion
(to oscilloscope) voltage input

Emt;edded)
ystem = 2.3 ; 121 S o o ;G q ;

Lab RaZEm[EETERY . - : TP

° e Em@uh B | R gl Connector for

AFE R am

Cl1mk 5-
R 3

detector diode

[
l 'l' W
LS

Connector to
RPi main board

Comparator Shaping amplifier Charge sensitive amplifier

Lab Exercise Analog Front-end (AFE)

e Signal chain with charge sensitive amplifier, pulse shaper, and comparator

Charge Sensitive Amplifier Pulse Shaping Amplifier Comparator Dig. Logic
» Parameters to control: ' o = ¥
e Input charge Qg
» Detector capacitance Cpgy
* Shaping timet
* Threshold Vq5

e Control interface | u ; a .
ey : . < DAC
e Digital input “INJ”: trigger charge injection __l
o e 13 ”, . . @
e Digital output “HIT”: signals detected hit L- <P

e SPI-bus (serial bus):
e Charge injection amplitude
e Comparator threshold
e Shaping time
* Time-over-threshold (comparator pulse width)

AFE Pulse Shape Analysis

e Charge injection

QIN] = CIN]) VIN]

CSA output (step amplitude):

Q : ‘VTHR CPLD —-ile—
Ve, = — ! !
csa = ¢ o
 SHA output (15t order high-pass | N | |
and 1st order low-pass filter) ' I A B I
{ DpAc 1
t t __l INJ
VSHA(t)=VCSA'g';'eT L. ¢ ,SPT_
* Charge sensitivity e —
ypeak 1 * Inject signal charge and study the pulse shapes (at CSA, SHA, and COMP
gg="2—=g- e~ 1 nodes) as a function of the signal charge, shaping time and threshold
¢ CF * Measure the shaping time as a function of the programmed filter time
constant

e Calculate the charge sensitivity and compare with the expected value.

Charge injection scans

Many real detector systems do not provide analog signal outputs (no access to
characterize pulse waveforms)

Only information of the comparator digital output available

Threshold/noise measurement with charge injection scans
» Sweep of the injected charge at const. threshold
* Multiple injections (O(100)) per charge
* Analyze comparator response probability (S-curves)

Amplitude measurement by analyzing the comparator pulse width (time-over-threshold)

PriTy
100%
lsi Q= f] dt Ucsa Uspia Ucome
RATTCY I —
= Sl — o e 50%
' CSA | > t SHA | > ' COMP b
_____________________________ o
Detector capacitance Cpgr Shaping time T Threshold Vqz 0%

Signal charge Qg

Charge injection scans

- PHiT
 Sweep of the injected charge at constant threshold 100%‘

* |deal (noise-free) system has a step-function response (blue)

* The position of the step indicates the signal charge equivalent 50%
to the set threshold

* In areal system (red) amplitude fluctuations due to the noise

0% >
smear out the step Qrn Q,
* From the slope of the s-curve at the 50% probability point (@threshold) the noise can be
calculated
. . . . 1 £ — . 2 " 2
 Gaussian-error function is fitted to the data: /(@) = 5 (1 +er/l %5:) with - erfl@) = —= | et

 Threshold and noise are represented by u and g, respectively.

Exercises:
* Measure s-curves for different threshold settings
* Measure the noise for different shaping times

AFE Example Code Snippet

(bus, device)

Setup GPIO ports

Function for
SPI bus access

AFE configuration
parameters

Loop for 100 injections # inject charge
and comparator reads

read latched comparator output

reset charge injection and hit latch

30.9.2024 H. Kruger

Embedded-System-Lab Online Script

| BONN| Lab

e Documentation and module exercises are
available online:
https://embedded-system-

Analog-to Digital Conversion using

lab.readthedocs.io/en/latest/introduction.html

Device Parameter Extraction with |-
W Curves

Analog Signal Processing Chain for

 General introduction to the hardware and

Capacitance Measurement
S O I I W a re Transmission Line Characterisation
with the TDR Method

Software Environment

Embedded System Hardware

e General Purpose |0 interface programming

Interface

e Detailed description of each lab experiment o e e

Experiment: Successive Approximation

(module)

Experiment: Capacitance Measurement

Experiment: Analog Signal Processing
for Semicanductor Sensors

e Lab exercises (including preparatory questions) [

Reflectometry

Experiment: Fast ADC

30.9.2024 H. Kruger

Introduction

The Embedded System Lab setup

This modular lab course gives an introduction to selected aspects of analog signal processing and
data acquisition techniques. An embedded system running user programs written in Python and/or
C is used to directly interact with the experiment module’s hardware . The embedded system
hardware is based on a Raspberry Pi single board computer which is mounted to a custom base
board. The base board allows access to various interfaces (UART, 12C, SPI etc.) which are
implemented via the general purpose 10 ports (GPIO). In addition, the base board features a fast
12-bit ADC, which allows the Raspberry Pi to be used as a simple oscilloscope to sample
waveforms for further processing, documentation, and analysis.

Embedded System Lab base board with a Raspberry 4 module

22

https://embedded-system-lab.readthedocs.io/en/latest/introduction.html
https://embedded-system-lab.readthedocs.io/en/latest/introduction.html

Module Description (Example: Analog Front-End)

Embedded

e Each module description starts with an
introduction to its basic functionality and block
level diagram of the electronic circuit.

30.9.2024 H. Kruger

Introduction
Software Environment
Embedded System Hardware

General Purpose Input/Qutput
Interface

GPIO Programming Tutorial

Experiment: Source-Monitorin
and MOSFET Parameter Extraction

Experiment: Successive Approximation
ADC

Experiment: Capacitance Measurement

Experiment: Analog Signal Processing
for Semiconductor Sensors

Signal Processing Overview
Circuit Implementation

Data Acquisition and Analysis
Methods

Exercises

Experiment: Time Domain
Reflectometry

CPLD/FPGA Programming

& Read the Docs

/ Experiment: Analog Signal Processing for Semiconductor Sensors ©) Edit on GitHub

Experiment: Analog Signal Processing for
Semiconductor Sensors

Analog Front-end Module

The goal of this lab is to understand typical analog signal processing steps used for read-out of
semiconductor detector charge signals, plus the associated basic data acquisition and analysis
methods. In this module, a single-channel analog front-end (AFE) chain made of discrete hardware
components will be used to analyze the functionality of each circuit block. In particular the
characterization of the noise performance and its dependence on circuit parameters will be
discussed. The electrical connections to the AFE hardware allow injection of calibration charge
signals, programming of circuit parameters, and the detection of hits. On the software side, scan
routines will be developed to set the circuit parameters of interest and read the AFE digital output
response. Basic analysis methods will be introduced to extract performance parameters such as
equivalent noise charge (ENC), charge transfer gain, linearity etc. Additionally, the fast ADC can be
used to record analog waveforms for further analysis.

Signal Processing Overview

A typical analog read-out chain - also called analog front-end - for a semiconductor detector
consists of a charge sensitive amplifier (CSA), a pulse shaping amplifier (SHA) and digitization
circuit, which simplest implementation is a comparator (COMP), as shown in the picture below. The
CSA converts the charge signal of a detector diode (or an injection circuit) to a voltage step
according to the feedback capacitance C'y . The shaping amplifier (SHA) acts on the CSA output as
a signal filter with a band-pass transfer function. By adjusting its band-pass center frequency the
signal-to-noise ratio of the signal processing chain can be optimized. The comparator compares the
output of the shaped signal with a programmable threshold. When the input signal is above the
threshold, the comparator output goes high and flags a signal hit to the digital read-out logic.

s} OZIHM Ucsa|

Threshold Vyg

Detector capacitance Cyg; Shaping time T
Signal charge Qg

Generic read-out chain for a semiconductor detector: charge sensitive amplifier (CSA), pulse shaping
amplifier (SHA), and comparatar (COMP). Shown are typical signal waveforms between the blocks and
the parameters that can be controlled for each block.

Module Description (Example: Analog Front-End)

' Embedded Circuit Implementation
[M H .t d t N l d l. t f m l. SyStem The simplified schematic in the figure below shows the implementation of the signal processing
O re CI rC u l e a I S a n re eva n O r u a S a re .Em Lab chain. The CSA is build around a low noise op-amp that is feed-back with a small capacitance Cf
and a large resistance RfAThe feedback capacitance C'f defines the charge transfer gain and the
resistance Rf allows for a slow discharge of C’] and setting of the dc operation point of the op-

e x p a I n e . amp. The output voltage of the charge sensitive amplifier in response to an input charge Q is a step

function with an amplitude given by the expression:

.
Q
e Also a link to the full schematic circuitis given [Vooa= &
. Software Environment
I e A I: E 1 1 D df p—— _ - For calibration and characterization measurements an injection circuit is used to generate
. . — o Ll) . mhedded System Hardware programmable charge signals. On the rising edge of the digital INJ signal a negative charge of the

?‘"“fil Purpose Input/Output size C'yy times the programmable voltage step amplitude VINJ is injected to the CSA input.
nterface

GPIO Programming Tutorial Charge Sensitive Amplifier Pulse Shaping Amplifier ~ Comparator Dig. Logic
h 1 Do TR

Experiment: Source-Monitoril
and MOSFET Parameter Extraction

Experiment: Si e Approximation
ADC HIT
)) T

Experiment: Capacitance Measurement
Experiment: Analog Signal Processing
for Semiconductor Sensors

Signal Processing Overview

Circuit Implementation INJ

Data Acquisition and Analysis SPI

Methods
Simplified schematic of the analog frent-end. INJ and HIT control the charge injection and digital hit

Bedgis readout, respectively. The SPI bus is used to program the DAC voltages VTHR and VINJ and select the
Experiment: Time Domain shaping amplifier time constant. The full AFE schematic is found here: & AFE_1.1.pdf
Reflectometry
CPLD/FPGA Programming The shaping amplifier consists of a first-order high pass filter (HPF) and a first-order low pass filter
(LPF). Therefore such a filter is also called CR-RC shaper. The high- and low-pass filter are isolated
by a voltage amplifier that adds additional signal gain to the circuit. A total gain of g = 1000 is
achieved by using three gain stages with g’ = 10 each. They are located at the CSA output,
between the high-pass filter and the low-pass filter (signal HPF) and at the output of the shaper
(SHA), respectively. The time constants of the high- and low-pass filter are controlled by selecting
the resistor values for Rgrp and Rp,p. The control circuit sets the values such Tsg4 = 7gp = TP,
i.e. the time constants for low pass filter and high pass filter are equal (Cgp = Crp = const.). It
can be shown that in this case the pulse shape in response to an input step function with the
amplitude Viogy is (for & = 0)

t .
Vsna(t) =Vesa-g- ——-€%
TSHA

with the peak amplitude:

. _ Q =
Vﬁ!ﬂc:VSﬁA(t:TSHA):VC‘SA'Q'E = c; -g-e’l,

where Voga = (%‘The charge sensitivity of the whole signal chain can be expressed as

-peak
Vsga _ 1

T T

-1
g-e

and is typically given in units of [mV/ fC| or [mV /electrons].

30.9.2024 H. Kruger

24

https://embedded-system-lab.readthedocs.io/en/latest/_downloads/71b887770acdeccbdd90485441200a85/AFE_1.1.pdf

Module Description (Example: Analog Front-End)

e Analysis methods are explained.

30.9.2024

Embedded
System

| BONN| Lab

Introduction
Software Environment
Embedd stem Hardware

General Purpose Input/Qutput
Interface

GPIO Programming Tutorial

Monitoris
on

Experiment: Successive Approximation
ADC

Experiment: Analog Signal Processing
for Semiconductor Sensors

Signal Processing Overview
Circuit Implementation

Data Acquisition and Analysis
Methods

Exercises

Experiment: Time Domain
Reflectometry

CPLD/FPGA Programming

Data Acquisition and Analysis Methods

An important performance metric of a signal processing circuit is its signal-to-noise ratio (SNR),
which is directly related to the efficiency and accuracy of the detection process. A noiseless system
would generate a comparator hit signal with 100 % probability if the signal is above threshold and
always detect no hit if the signal is below threshold. In the presence of noise, however, the step-like
response function of the comparator hit probability as a function of the difference between signal
and threshold is smeared out. The following figure shows the comparator response probability of a
real system and an ideal system. When the injected charge is equal to the comparator threshold
Q1ng = QTHR, the hit probability is 50% in both cases. In a noiseless system the hit probability
immediately goes to 0 % (100 %) for lower (higher) charge. The noise smooths out this transition
region. Actually the knowledge of the slope at the 50 % probability mark allows the calculation of
the noise i.e. the noise is propertional to the inverse slope. Mathematically, the response curve is
given by a Gaussian error-function (also known as “s-curve”). It is the convolution of a step-function
(the ideal comparator response) with a Gaussian prabability distribution (representing the noise).

The normalized error function describes the response probability of the comparator as a function of
the signal charge in the presence of noise. The mathematical expression is given by the following
equation:

fla) = 3+ erfE,

where p is the mean value and ¢ is the standard deviation of the Gaussian distribution and er f is
the error function:

2 7
== di.
erf(z) o ﬂ e

Puir.
100%
50%
0% J
: Qg Qu

Response probability of the comparator as a function of the signal charge. The ideal system (noiseless,
blue curve) exhibits a step function, while noise (red curve) will smear-out the transition. That results in a
Gaussian error-function, which fitted parameters define the threshold (50 % transition point) and the

noise (slope of the curve) of the system.

The measurement of an s-curve is based on a nested loop of injection/read-out cycles. The
following steps need to be implemented in a scan routine (also called threshold scan):

1. Set threshold and shaping time constant to the desired values.
. Outer loop: Define a range of injection voltage values (i.e. injection DAC values) to scan. The
injection range must cover the chosen threshold, i.e. the transition from zero hits to 100 % hits

N

must occur within the scan range.
. Inner loop: For each charge value repeat the injection and read-out cycle (see above) a number
of times (typical 100) and count the number of detected comparator signals in relation to the
total number of injections.
Finally plot the hit probability data as a function of the injection voltage.

5]

&

The dataset for the injection voltage scan will represent an s-curve that allows the extraction of the
threshold and the noise. For a quantitative evaluation of the s-curve the injection voltage (i.e. DAC
setting) has to be converted to the equivalent injection charge @ n..

Module Description (Example: Analog Front-End)

Embedded

* Finally, the exercise tasks are explained.

e Thereis always an Exercise O with
preparatory questions. This exercise should be [ss

Software Environment

worked on before coming to the lab .

General Purpose Input/Qutput
Interface

 The Exercise 0 questions will be discussed at

Experiment: Source-Manitori

th e beg i n n i n g Of th e la b. and MOSFET Parameter Extrac cm.

Experiment: Successive Approximation
ADC

Experiment: Capacitance Measurement

e Each experiment comes with a basic Python

for Semiconductor Sensors

script to simplify the start of your code

Circuit Implementation

development (“afe.py”).

Exercises

* A detailed solution (“afe_solution.py) is also
available. Look at it to get hints if you are
stuck with your own code.

Note: There are more exercises than potentially
could be worked on as part of this school. The
tutors will guide you.

30.9.2024 H. Kruger

Exercises

The exercises are grouped into three parts. In the first part the basic functionality of the analog
front-end is tested. This is accomplished by implementing a script to enable the charge injection
and to observe waveforms of the charge sensitive amplifier, shaper, and comparator with an
external oscilloscope and/or the fast ADC on the Raspberry Pi base board. In the second part
methods to extract analog performance parameters from the digital hit information will be
developed. Finally, the full analog signal processing chain will be characterized as a function of
shaping time and detector capacitance.

The exercise O contains preparatory questions that should be answered before coming to the lab.

1. The injection circuit generates a charge signal of the size Cip; - Vin;. What is the charge in
femto Coulomb generated by a voltage step of 100 mV with C,; = 0.1pF? What is the
charge step size for V;,; = 0.05mV, which corresponds to the effective LSB size of the
injection voltage DAC? Also calculate these numbers in units of the elementary charge
(electrons).

[

. An ideal charge sensitive amplifier generates a step-like output waveform in response to an
instantaneous charge signal at the input. What is the CSA output step amplitude for an input
charge of 1 fC given the feedback capacitance of 1 pF? The charge sensitivity is defined as
the output amplitude per input charge. What is its unit?

. A shaping amplifier responds with a characteristic output pulse to a step-like input
waveform. What is the peak pulse amplitude for an input step with a unit amplitude (i.e. 1
V)? Assume a CR-RC (high-pass + low-pass filter) with equal time constants.

. What is the ideal charge sensitivity of the experiments analog front-end chain (CSA + SHA)
i.e., peak amplitude in mV at the shaper output per fC (or electron) charge at the CSA input
(Note: Use the effective feedback capacitance value Cf = 1.39pf for your calculation)?

. The threshold voltage to detect a signal with the comparator is set by a DAC with an LSB
size of 0.5 mV. What is the equivalent LSB size in fC or electrons ? Note: Use the total
charge sensitivity as calculated above.

w

s

w

o

. Draw a sketch of an amplitude histogram of an ideal noise-free system. It consist of two
delta-like peaks: one for the baseline and one for the signal amplitude produced by a
constant input charge. In a real system, however, noise is overlaying the ideal signals, leading
to fluctuations of the baseline and signal amplitudes. Modify the amplitude histogram to
reflect these fluctuations (assume a Gaussian distribution of the noise).

. The threshold of the comparator should be set in a way, that the noise is suppressed and

~

only the signals are detected. Draw an optimum threshold in your amplitude histogram
What would happen if the threshold was too low, what would happen if it was too high?
How could the terms purity and efficiency of the detection process be defined in this
context? What happens if baseline and signal fluctuations are getting too close to each
other?

. The term ‘equivalent-noise-charge’ (ENC) represents the number of electrons at the input of

©

an ideal (noise-free) charge sensitive signal chain that would produce the same amplitude at
the output as the noise alone would in a real system. What is the ENC value for a noise
amplitude of 10 mV given the charge sensitivity calculated above?

. How are the Gaussian distribution and the error-function related? How can one extract the
width (sigma) and the mean (lambda) of the underlying Gaussian distribution from a
measured error function? How is the noise calculated from the slope of the error function at
the 50 % point?

10. Advanced tasks: Calculate and plot the time-over-threshold as a function of the ratio of CR-

RC shaper peak amplitude and threshold voltage. You can do that either by inverting the
mathematical expression for the shaper pulse waveform (-> Lambert W function) or by

0

implementing a function representing the shaper pulse waveform in Python and numerically
evaluating TOT width for a range of amplitude values at a fixed threshold. Note: this function
will be useful to fit measured pulse waveforms (see the later exercises). What is the relation
between the TOT and the injected charge? What is the effect of the shaping time constant

on the TOT? Assume the TOT counter has a resolution of 25 ns and a maximum count of

Software & File System

* Raspberry OS (32-bit), user name “pi”, auto-login

e Home directory structure

___Embedded-System-Lab (GitHub root directory)
| _ code (code examples in sub-folders for each experiment)
| docs (sources for this documentation)
| hardware (documentation: schematics, datasheets)
___work (user working directory, not synchronized to GitHub)

 Copy example code from the code folder to your work folder and modify it only there

30.9.2024 H. Kruger

27

Software & File System

File Edit Selection View - € 2 Embedde tem-Lab

* Visual Code IDE integrated Python interpreter R

a n d C - CO m pi le r “ EMBEDDED-SYSTEM-LAB

E

» Use “git checkout --force origin/master” in the T oy
Embedded-System-Lab folder to get a fresh copy E—
from git if needed e 0115 mox 54909 Go10. setuarminga(i -

. « ’ simulate_tot.py spi = SPI.SpiDev
 Start with the "Hello World” examples from the - i en,0)

spi.mode = @

code folder to check your Python and C et spi.nax_speed_hz - 5000000
environment s

> GPIO

> LabDevices GPI

> lib GPIO0.output(INJECT, GPIO.LOW)

> PWM

5 SAR_ADC time constants_list = [@.1, 8.2, 8.5, 1, 2, 5, 18, 28]

5 SMU > out_mux_dict = {

> SPI
> TDR

update spi_regs(threshold, injected signal, time constant, out mux):

charge 180
threshold = 2600
time_constant = 5
n_injections = 100

hello_world.c .
monltor =

hello_world.py

interactive_plot_thread.py update_spi_regs(threshold, charge, time_constant, monitor)

interactive_plot.py
lambert i in tions):
picamera_test.py PIO.output -HIGH)
N TInE time.sleep(@.0001)
if (GPIO.input(D E
¥ > TIMELINE : .)

hit ronnt = hit count + 1

¥ I master O @ ®14 %o Ln9,Col1 Spaces:2 UTF-8 CRLF {} Python 3.11.964-bit & /A 14 Spell

30.9.2024 H. Krager 28

Lab Course Details

We have 6 setups for two students each (total 12 students)
Location: FTD, Room 3.013, 3" floor
Time: Tuesday and Wednesday from 16h to 18h

Call 69464 from the entrance (main or back) in case the FTD doors are closed

Preparation (Important!)

e Go to https://embedded-system-lab.readthedocs.io/en/latest/index.html and read the documentation
* Introduction
» Software Environment
e Embedded System Hardware

e Read the AFE description at https://embedded-syste-lab.readthedocs.io/en/latest/afe.html
and work on the preparatory questions found in Exercise O.

Source code: https://github.com/silab-bonn/Embedded-System-Lab

30.9.2024 H. Krager 29

https://embedded-system-lab.readthedocs.io/en/latest/index.html
https://embedded-syste-lab.readthedocs.io/en/latest/afe.html
https://github.com/silab-bonn/Embedded-System-Lab

General Purpose Input/Output Ports - GPIO

Broadcom BCM2711
ARM Cortex A-72

[o | e [e

(ujujuoju

i E | HOMI |
H H | Ports !
ideoCore
DRA deo ;! 2 Ira 1) pla
D

RPi 4B board

* Single board computer
* CPU, file storage

e Audio & Video

* Network

30.9.2024

————————————————————————

USB 3.0 | r- .
Bridge ! _..-- ! $D Card ; [v |
TTUsE) r'l";_q's“‘ T 05BC : BLE :COn ect FUJVE
3.0020! [S * § (< T :
T “Extarnal !
|Compona

SOC block diagram

e ARM based CPU

* VideoCore

e Peripheral I/O blocks

H. Kruger

I GPFSELn I

I GPSET/CLRn

Alternate Function Output

Driver

Physical pin
GPIO Mux

I GPLEVN I—

Alternate Function Input e

Receiver

GPIO block diagram
e Basic input/output function
e Alternate functions (UART, 12C, SPI...)

31

Programming the GPIO pins

o GPFSEL register control the GPIO configuration

GPIO Function Select Register (GPFSELD @ 0x7E200000)

FSELn

000

001

100

101

110

111

011

010

GPIO Function Modes

Function

Input

Qutput

Alternate function 0
Alternate function 1
Alternate function 2
Alternate function 3
Alternate function 4

Alternate function 5

default

Bit

31-30

29-27

26-24

23-21

20-18

17-15

14-12

11-9

8-6

2-0

Field Name Description
Reserved

FSEL? Function Select GPIO9
FSEL8 Function Select GPIO8
FSEL7 Function Select GPIO7
FSEL& Function Select GPIO6
FSELS Function Select GPIO5
FSEL4 Function Select GP104
FSEL3 Function Select GPIO3
FSEL2 Function Select GP10O2
FSEL1 Function Select GPIO1
FSELO Function Select GPIO0

Type

RIW
R/W
RIW
R/W
RIW
R/W

R/W

Default

I GPFSELn I

I GPSET/CLRn

Alternate Function Output

Driver Physical pin

GPIO Mux

I GPLEVn

Alternate Function Input

Receiver

e GPSET/CLR register control the output state, GPLEV the input state

GPIO Pin Output Set Registers (GPSETO @ 0x7E20001C)

Description

1 = set pin to logic 1

GPIO Pin Output Clear Registers (GPCLRO @ 0x7E200028)

Bit Field Name

31-0 SETn

Bit Field Name

31-0 CLRn
30.9.2024

Description

1 = set pin to logic 0

Type

R/W

Type

R/W

Default Bit
U Set pin to high (3.3V) 31-0
Default

0 Set pin to low (0 V)

H. Kruger

GPIO Pin Input Level Registers (GPLEVO @ 0X7E200034)

Field Name

LEVn

Description Type Default

0 = pin n is low, 1 = pin n is high R/W 0

32

How to access the GPIO registers

GPIO Function Select Register (GPFSELO @ 0x7E200000)

 Every register has a unique address (i.e. 0x7E200000) A
* An access to the register reads or writes 32 bit g
 |/O peripherals registers cannot be directly accessed - —— .
from user space (security) o -
 Some mapping needs to be done between user (virtual) o T e

address space, bus and physical address space

ARM / VideoCore Address Mapping (32-bit, Rpi 2/3, 1 GB RAM) OXFFFF_FFEE
-
§2
L2y
T8
[AR g3
| 1/O Peripherals | .
1/0 Peripherals VS _REG._ BASE o 1/0 Peripherals User/Kernel split set by SDRAM
= OxIFO0 POAD SDRAM kernel configuration (for cPU)

SDRAM
(for VC) AXCORE_D0aa

This is the address space
where the configuration

VPU/CPU RAM split set .

_ by platform configuration

1/0 Peripherals

register are accessible o .8 .
— §3 This is the address space
e R soram =4 B
soman forcou) 53 for your code
| &= = = =
VideoCore Bus Address Space CPU Physical Address Space CPU Virtual Address Space

30.9.2024 H. Krager 33

GPIO Access Example Code (C)

#define BUS_REG_BASE Ox7EQ00000 // start address of the I/0 peripheral register space on the VideoCore bus
#define PHYS_REG_BASE OxFE@00000 // start address of the I/0 peripheral register space seen from the CPU bus
Hdefine GPIO_BASE Ox7E200000 // start address of the GPIO register space on the VideoCore bus

/ calculate the GPIO register physical address from the bus address
uint32_t gpio_phys_addr = GPIO_BASE - BUS_REG_BASE + PHYS_REG_BASE;

/ get a handle to the physical memory space
if ((int file_descriptor = open("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC)) < 0)

/ allocate virtual memory (one page size) and map the physical address to a pointer
void *gpio_virt_addr_ptr = mmap(@, ©x1000, PROT_WRITE|PROT_READ, MAP_SHARED, file_descriptor, gpio_phys_addr);

/ define memory pointer to access the specific registers

gpfseld = (uint32_t*)((void *)gpio_virt_addr_ptr + GPIO_FSELO);
(uint32_t*)((void *)gpio_virt_addr_ptr + GPIO_SETO);
(uint32_t*)((void *)gpio_virt_addr_ptr + GPIO_CLRO);

gpseto

gpclro

/ main() block: define GPIO27 as output and toggling it once and cleanup
*gpfsel2 = 0x001 << (7 * 3); // output mode: FSEL[3:0] = 6x001, GPI0O27 FSEL field starts a bit 7

*gpseto = 1 << 27; // set output to ‘1’

sleep(1); C-code

*fpct"e =12 // set output to 6° « (Almost) as close to direct hardware
clean-up - .

*gpfsel2 = 0; // set default mode (all input) programming as pOSSIb"e

punmap(gpio_virt_addr_ptr, 0x1000); // free allocated memory

e Fast and small compiled code
30.9.2024 H. Kriiger 34

GPIO Access Example Code (Python)

import the Llibrary and define the prefix for using its members
import RPi.GPIO as GPIO

tell the Library to use pin numbers according to the GPIO naming
GPIO.setmode(GPIO.BCM)

define GPI027 as an output
GPIO.setup(27, GPIO.OUT)

toggle the output state
GPIO.output(27, GPIO.HIGH)
time.sleep(1)

GPIO.output(27, GPIO.LOW)

g set GPIO configuration back to default

PIO.cleanup() Python code

e Less lines of (user) code

* Registers access (memory mapping, register addresses etc.)

hidden in precompiled libraries (black box again...)

e Module implementation uses similar C-code as shown with

the previous example

30.9.2024

H. Kruger

35

Alternate GPIO Functions

GPIO Function Modes

FSELn Function

e Data communication beyond simple pin toggling

000 Input
e Various serial bus protocols (implemented in HW) o o
100 Alternate function O
101 Alternate function 1
110 Alternate function 2
12C b us Punl ALTO ALT ALT2 ALT3 ALTA ALTS
GPIOo High 111 Alternate function 3
° — Grior | High
S DA — GPI02 High 011 Alternate function 4
L4 S C L z:zj :::n \ 010 Alternate function 5
GPIOS High GPCLK1 ARM_TDO
GPIOE High GPCLKZ ARM_FTCK [: [— ;
GPIOT High 10_CE1_N } SDRAM ' PI:E:‘;
GPios Tiigh SPI0_CEO_N fomopee ekl il
S P I b u S P08 T o BroadcomgcM2711 |
Wﬂ' [T sPo_mosT ARM Cortex A-72
Py 011 Tow ¥
M I S O / GrioTE Tow AT THS
GPIO13 Low M1
° M O S I [~ Grio1a | Tow

GPIOS Lo
 SCK —mo—
GPIO1E w T _

GPIDTT Tow SPIT_CEI N
L4 C E G Tow SPI_CEO_N PWMO
> I Low SP_MISO | PWM1T |
GPIOZ0 Tow SPI_MOSI | GPCLED |

UA RT GPIO21 Low B 1_: GPCLKI
GPIO22 Low

GPIO23 Low ARM_RTCK
d TX GPIO L I L
24 Low ARM TDO e Wl pomm-aen
GPIOZ5 Tow ARM_TCK Br st LsD Card | | "B""::‘ ' 'COGPIO [ou |
L4 RX GPIO26 Tow ARM_TDI : i sl E A (R R : Connector,
GPIOZ7 Tow - "
Paripharals
T Extarnal 1
\Componants.

30.9.2024 H. Krager 36

Universal Asynchronous Receive and Transmit (UART) Bus

e Serial data transfer between two devices

 TX device A =» RX device B X TX
. RX device A € TX device B ax ——<— rx
* |ndependent sending and receiving UART
Device A Device B

 Asynchronous communication
* Both devices need same baud rate setting

« Typical baud rates: 9600 bit/s up to 115200 bits/s s:)?trt %?::‘ Piriitty S;’tp
 Additional control bits N
 START (always low) l f) l l
« STOP (always high, var. lengths) X \Start} D0 Y D1 Y D2 ¥ D3 Y D4 X D5 Y D6 Y D7 P)Stop/
* PARITY (optional: ODD or EVEN or NONE) pata=0xcD /L /
» 8-bit data symbols (typical) v
Bit period UART protocol

= 1/baud rate
e Popular standard used for

* General lab equipment

* Microcontroller

 Debug port

 Terminal to mainframe communication (1970’s)

UART Example Code

import serial
import time

ser = serial.Serial('/dev/ttySe', 115200)
ser.reset_input_buffer()

while True:

if (ser.inWaiting() > 9):
data_str = ser.read(ser.inWaiting()).decode('ascii')
print("Received:", data_str)

key = input("Transmit: ").encode()
ser.write(key)
ser.flush()

30.9.2024

H. Kruger

LRl
*e
LR
L]
LR]
..
.e
.e

SN DBN

Connect TX line to RX line (loopback)
Check TX signal with scope

38

Serial Peripheral Interface (SPI) Bus

e Serial bus which typically uses four wires:
« MOSI (SDI), data line from master to slave (master out, slave in)
« MISO (SDO), data line form slave to master (master in, slave out)
e SCLK, clock line from master to slave(s)

o (CS_B, chip select line (active low, one per slave, or single for
daisy-chained slaves)

e Synchronous operation
» Data line synchronized to a clock signal

MOSI \D9 Y D8) D7) D6)D5%D4)D3)YD2)D1)D0/
MISO 77 fROYR8YR7T(R6YR5 R4 (RIYR2YR1INRO)
CS B \ [

SCLK %% %%

* Main interface between Raspberry Pi base board and
external modules (RJ-45 / CAT cable)

MOS| fp MOSI MOSI
MISO jrg— MISO—#J_ MISO Jrmm
SCLK = $—1 SCLK SCLK
CS B CS B CS B
Master SPI Slave Slave
SPI master with two slaves
i LD N-bit data latch
! 1
MOS! i p o Q
CS_B — CE N-bit shift register
SCLK =+

__

SPI interface details
Serial shift register

Data latch

Output buffer (tri-state)

MISO

SPI Bus Access Example Code (Python)

Bit-bang implementation Alternate GPIO function implementation

« Use GPIO pins in input/output mode * Use GPIO alternate function (spidev library)

« Implement toggling in SW * Bit toggling implemented in dedicated peripheral HW block
import RPi.GPIO as GPIO # import the Library import spidev # SPI module using GPIO alternate function
GPIO.setmode(GPIO.BCM) # use pin numbers according to the GPIO naming

spi = spidev.SpiDev() # initialize Python module

SCK = 11 spi.open(0,0) # open device 0 at bus 0
GPIO.setup(SCK, GPIO.OUT)
GPIO.output(SCK, GPIO.LOW) data_array = [0xf0, 0x00, 0xef]
SDO = 10 spi.xfer(data_array)
GPIO.setup(SDO, GPIO.OUT)
GPIO.output(SDO, GPIO.LOW) spi.close() # clean-up
CSe B = 8

GPIO.setup(CSO_B, GPIO.OUT)
GPIO.output(CS@_B, GPIO.HIGH)

start transfer

GPIO.output(CSO B, GPIO.LOW)

for i in reversed(range(num_bits)):
GPIO.output(SDO, 0x01 & (data >> i))
GPIO.output(SCK, GPIO.HIGH)
GPIO.output(SCK, GPIO.LOW)

end of transfer

GPIO.output(CSO_B, GPIO.HIGH)

GPIO.c%gﬁgqﬂﬁ&AF set GPIO configuration back to default H. Kriger 40

Backup

30.9.2024

H. Kruger

41

Embedded-System-Lab Base

Embedded
System
Lab

PERRRRRRRRRRTAYE I

hins M 1904
Alus

30.9.2024

Board Schematic

RPiCen VCC RPI
2
3V3 V5
GPIO2 5V &
GPIO3 GND G
GPIO: GPIOI4 (o
GND GPIOIS Mo
GPIOI7 GPIOIS (—3—¢.
GPIOY] GND [~e—cor
GPIO2) GPIO23 |5y
V3 GPIOXM |5
GPIOL0 GND |57
GPIO9 GPIODS (—5—¢.
GPIOLl GPIOS |5e—Cee
D D [Z D
GFios Gp 0SB0
GPIOG GPIOI2 |-
GPIOI3 GND |5 —nione
GPIOI9 GPIOI6 [—Se—ams
GPIO26 GPIO20 (——ceees
GND GPIO21 =
RPiconnector
LED ELE g
1
RIDRIL A geros B0 5
T3 1 5| V3
GPIO4 == N

61-23-RGB-TRS

U_PowerSupply
PowerSupply.SchDoc

U_RPiADC
RPIADC. SchDoc
3V3 GPIO WL ADC_DATA[L 0] ADC
GPIO2/SDA : ADC EN = e -
E 8i SCE 3 .1.“ é CIES > ADC_CLK S1K204-400A5
GFIoS 4 EGHD | > GPIO_TRG
GPIOG : |smoEB) SR
— o
GPIOD : ST
GPIOL0 o
GPIOL1 1
GPIO12 5
GPIO13 = ADC DATAI | - =
GPIO14 ADC DATAZ | | VCC MOD
GPIOLS DC DATA3 | |5 8
GPIO1E DATAY |, | SMI DATA8 SCK *
GPIO17 > DATAS 17 SMI_DATA® MOSI -4
GPIO18 DATAS | o | SMI_DATAID 4
GPIO19 DATAT | jg | SMI_DATA1L MISO -
GPIO20 DATAS | 5 | SMI DATAI2 Cs0B °
GPIOZ1 “DATAD | ;| SMI_DATA13 °
G > DATAIO | 5 SMI_DATA14 ECHO e
G ALL | o SMI_DATA1S TRG =
G 5 | SMI_DREQ ol cn *
G 2 XTR 4| MXTR SPI
GPIO2 % 102 10n Molex
GPIO27 — s Fil Ri2 446200002
D sD T 100R | |100R
D sC = N
GND =
‘protection resistors (27 Ohm)
Header 30
5 . VCC MOD VCC MOD
VOC MOD VCC MOD T Parnilo T P
GPIO12 1 GPIO13 1
VCC MOD 3V3 c1 s 5 3
X7R XTR 3 3
- e % 2%
R37 [R38 Header 3 Header 3
1k 300R
. 3
VCC_MOD o , N CCIUAKE
L
sv 33V E—L|
wom T e | [
GPIO1S -2 RX 7
GPIO14 — TX, >
3V3 VCC_MOD R36100R 3
4
Y?Headem
vce e
RC C B
GPIO3/SCL SCL 1S q 1
F30 |[R#®0 | 11 R4 Ra2 3 3
47 | a7 ! mssias | 8T 8T : 5
GPIO2/SDA 2 3 SDA 1S 1 A
T2 I
BSS133 Y;Headent mm pitch header
Title: Raspberry Pi Base Board Physikalisches Institut
- 3 Universitat Bonn
FID1FID2FID3 A Project: Embedded System Lab ’-B—g—‘?g%ﬁ— LAB NuRallee 12
K XK K =D 090277027 Time 170700 [Sheet 1 of 2 Siaium Lebor Bom 53115 Bonn
File: RPiLabBaseBoard.SchDoc

H. Kruger

42

GPIO Connector

GPIO pins 2-27

3.3V CMQOS levels

3.3 volt supply pins (outputs)

5V power supply input (VCC_RPI)

Some GPIO have special (fixed)
functions (ID_SA, ID_SC)

30.9.2024

H. Kruger

-

-
=]
.
=
o
e
&
(=]

|

V3

GPIO3/SCL

GFIO4 J
GND 9
GPIO17 11
GPIO27 13
GFIO22 15
Vi 17
GFIO10 19
GPIO2 21
GFIO11 23
GND 5
ID 5D 27
GPIOS 29
GPIO6 31
GPIO13 33
GFIO19 35
GFPIO26 37
GND 39

1
GPIO2/SDA 3
5

RPiCon VCC RPI

V3 sV i
GPIO2 5V
GPIO3 GND g GGPI JIDO =
GPIO4 GPIO14

10 GPIOLS
GND GPIOIS (et
GPIOI7 GPIOIS (Hr—orC
GPIOY] GND (Hi oD
GPIO22 GPIO23 2

1§ GPIOM
3V: GPIOM [o—or
GPIOI0 GND (oD
GPIO9 GPIO2S [+—oriO2
GPIO11 GPIOS —

% GPIO]
GND GPIO7

5% 1D SC
IDSD ID SC

L _SC 3 GND

GFlos GND (S —CTD_
GPIO6 GPIOI2 2

31 GND
GPIOI3 GND (S-——T2—
GPIOI9 GPIOls (S0 —OTlOlS
GPIO26 GPIO20 (S5 CPlO%
GND GPIO21 2

FPi connector
43

Main Interface between Base Board and Modules

 Patch cable with RJ-45 connectors

e Serial Peripheral Interface (SPI)
« MOSI, MISO, SCLK, CS_B

e Two additional GPIO signals
« TRG, ECHO
e Async. Signals

e 5.5V power supply

Function Description
Name

X VCC_MOD é g
4 TRG Send trigger to module ok S
L
MOSI 7
5 ECHO Receive response from module —— .
('56 B 4 ®
8 CS_B SPI chip select = .
] ” TRG 1 :
9 MISO SPI data from slave to master Sy (S ST
10n 10n Molex
10 MOSI SPI data from master to slave locr. |[iocr € Hae0-000n
11 SCK SPI clcok
GPIO signal mapping SPI connector pinout

30.9.2024 H. Kruger

Serial Peripheral Interface Bus - SPI

e Serial bus which typically uses four wires:
« MOSI (SDI), data line from master to slave (master out, slave in)
« MISO (SDO), data line form slave to master (master in, slave out)
e SCLK, clock line from master to slave(s)

o (CS_B, chip select line (active low, one per slave, or single for
daisy-chained slaves)

e Synchronous operation
» Data line synchronized to a clock signal

MOSI \D9 Y D8) D7) D6)D5%D4)D3)YD2)D1)D0/
MISO 77 fROYR8YR7T(R6YR5 R4 (RIYR2YR1INRO)
CS B \ [

SCLK %% %%

MOS| fp MOSI
MISO g MISO —PJ_
SCLK = — SCLK
CS B CS B
Master SPI Slave

MOSI
MISO

SCLK

CS B

Slave

SPI master with two slaves

__

Mosl ——1p
CS_B = CE
SCLK —+—

LD

N-bit data latch

1

N-bit shift register

Q

__

SPI interface details
Serial shift register

Data latch
Output buffer (tri-state)

MISO

	Introduction to Analog Front-end �Signal Processing Experiment
	Content
	Introduction
	Signal Path from Hardware to Software (and back)
	Signal Path from Hardware to Software (and back)
	Embedded-System-Lab Concept
	Embedded-System-Lab Learning Contents
	The Embedded System Lab Hardware
	Embedded-System-Lab Setup
	Lab-Experiment Modules
	Embedded-System-Lab Base Board + Module
	Embedded-System-Lab Base Board
	General Purpose Input/Output Ports - GPIO
	The Analog Front-end Module
	Lab Exercise Analog Front-end (AFE)
	AFE Module
	Lab Exercise Analog Front-end (AFE)
	AFE Pulse Shape Analysis
	Charge injection scans
	Charge injection scans
	AFE Example Code Snippet
	Embedded-System-Lab Online Script
	Module Description (Example: Analog Front-End)
	Module Description (Example: Analog Front-End)
	Module Description (Example: Analog Front-End)
	Module Description (Example: Analog Front-End)
	Software & File System
	Software & File System
	Lab Course Details
	Embedded-System-Lab�General Purpose Input/Output�Programming
	General Purpose Input/Output Ports - GPIO
	Programming the GPIO pins
	How to access the GPIO registers
	GPIO Access Example Code (C)
	GPIO Access Example Code (Python)
	Alternate GPIO Functions
	Universal Asynchronous Receive and Transmit (UART) Bus
	UART Example Code
	Serial Peripheral Interface (SPI) Bus
	SPI Bus Access Example Code (Python)
	Backup
	Embedded-System-Lab Base Board Schematic
	GPIO Connector
	Main Interface between Base Board and Modules
	Serial Peripheral Interface Bus - SPI

