

NOISE IN (PARTICLE) DETECTOR SYSTEMS LECTURE AT RADHARD SCHOOL (MINI WORKSHOP) THESSALONIKI-BONN (DAAD PROGRAM)

SEPTEMBER 30, 2024

NORBERT WERMES PHYSIKALISCHES INSTITUT UNIVERSITÄT BONN

Disclaimer

Noise Detector Systems_30.9.24, N. Wermes

□ Signal fluctuations versus electronic noise

- □ Noise what do you mean?
- □ Physical noise origins
- □ Noise in a typical detector readout system

Noise Detector Systems_30.9.24, N. Wermes

Signal fluctuations and (electronic) noise

Distinguish

* e.g. from power supplies, digital switching, external RF signals, common grounding

Noise Detector Systems_30.9.24, N. Wermes

Why bother?

Noise Detector Systems_30.9.24, N. Wermes

G.A. Armantrout et al., IEEE Trans. Nucl. Sci. NS-19/1 (1972) 107

Low noise improves the signal-to-noise ratio (narrow signal counts are in fewer bins and thus compete with fewer background counts).

examples from H. Spieler, 2005

Generic detector & R/O scheme: the dominant noise components

The dominant electronic noise of a system is hidden in these parts

Noise Detector Systems_30.9.24, N. Wermes

Signal fluctuations and electronic noise

typical for silicon strip/pixel detectors

skip

EXAMPLE for case A ($\sigma_{\rm B} \ll \sigma_{\rm S}$): Positron Emission Tomography (PET)

 \Rightarrow

$$\sigma_{1. \text{ dyn}} = \sqrt{N_{1. \text{ dyn}}} = \sqrt{2500} e^- = 50 e^- = 2\% N_{1. \text{ dyn}}$$

$$\sigma_{\text{signal}} = \sigma_{1. \text{ dyn}} \times (\text{amplification}) = 5 \times 10^7 e^-.$$

$$\gg \text{ than PMT noise (typ. 10^{-(4-5)} \times \text{ signal})}$$

9

Noise Detector Systems_30.9.24, N. Wermes

Example for case B ($\sigma_{\rm B} \gg \sigma_{\rm S}$): semiconductor detector

take e.g. 60 keV γ -ray from ²⁴¹Am

$$N_{e/h} = \frac{E_{\gamma}}{\omega_i} = \frac{60\,000\,\text{eV}}{3.65\,\text{eV}/(\text{e/h})} \approx 16\,500\,\text{ e/h pairs}.$$

fluctuations
$$\sigma_{\text{signal}} = \sqrt{N_{e/h} \cdot F}$$
 (F = Fano factor,
= $\sqrt{N_{e/h} \cdot 0.1} = 40 e^{-}$.

Relative to signal $\frac{\sigma_{e/h}}{N_{e/h}} = 0.2\%$ (compare with 2% for Nal(Tl))

Noise in Si detectors ($\propto C_D$) is of order 100 e- (pixels) or 1000 e- (strips) i.e. usually larger than the signal fluctuation.

=> electronic noise determines the (charge) resolution of the system

Noise Detector Systems_30.9.24, N. Wermes

Signal Fluctuations

and

Fano Factor

The general computation of the Fano factor is complicated. We consider here as a simple system a silicon detector for which the discussion can essentially be reduced to two energy loss mechanisms (see also [903]): the generation of electron-hole pairs and lattice excitations (phonon excitations). For the creation of an e/h pair at least the band-gap energy (in silicon $E_G = 1.1 \text{ eV}$) is needed. For every event, however, the deposited energy is subdivided differently for the generation of e/h pairs or for lattice excitations such that on average the energy of $w_i = 3.65 \text{ eV}$ is needed to create one e/h pair.

Let us assume that in a process a fixed energy E_0 be deposited with every event in a detector, for example the energy of an X-ray or γ quantum from a radioactive source. This energy is available for the creation of N_p phonon excitations and of $N_{e/h}$ electron-hole pairs. We thus have

$$E_0 = E_i N_{e/h} + E_x N_p , \qquad (17.83)$$

where E_i and E_x are the (assumed fixed) energies necessary for one individual ionisation and one individual phonon excitation, respectively simplified approach

only two energy loss mechanisms

1) e/h ionisation
 2) phonon exc.

assume also Poissonian statistics

Noise Detector Systems_30.9.24, N. Wermes

Fano Factor II

The energy E_0 can split arbitrarily between ionisations or lattice excitations. Since E_0 is fixed, however, and since therefore for every absorbed quantum the same energy is deposited, then in every absorption process a fluctuation of a larger E_0 portion into phonon excitation $(E_x \Delta N_p)$ must be compensated by a correspondingly smaller E_0 portion for ionisation $(E_i (-\Delta N_{e/h}))$, where ΔN_p and $\Delta N_{e/h}$ are the number fluctuations of phonons and e/h pairs for one individual event, respectively:

$$E_x \,\Delta N_p - E_i \,\Delta N_{e/h} = 0$$

Averaged over many absorption processes of the energy E_0 therefore yields:

Noise Detector Systems_30.9.24, N. Wermes

Result: Energy resolution, i.e. $\sigma_{e/h}$ is in fact smaller than $VN_{e/h}$, since F is typically (e.g. in Si) << 1

Note: E_0 is fixed

Material Si Ge GaAs CdTe diamond liq. Ar Ar Fano factor 0.080.107 - 0.1160.1150.130.100.100.20

For detectors with more and also more complex signal generation processes, as for example scintillators, for which exciton processes also play a role (see section 13.3 on page 515), Fano factors larger than one (F > 1) can even occur [360].

Noise Detector Systems_30.9.24, N. Wermes

15

Fano Factor IV: an example

high-resolution DEPFET sensor (for low-E X-ray imaging, slow shaping)

- measured electronic noise @ RT (!) $\sigma_n = 1.6 e^-$ M. Porro et al., IEEE Trans. Nucl. Sci. 53 (2006), 401.
- signal fluctuation @ $E_0 = 1$ keV X-ray photons

$$N_{e/h} = \frac{1000 \text{ eV}}{3.65 \text{ eV}} = 275$$

$$\sigma_{e/h} = \sqrt{N_{e/h} \cdot F} = \sqrt{275 \cdot 0.115} = 5.7$$

$$\Rightarrow \sigma_E = \frac{\sigma_{e/h}}{N_{e/h}} \cdot E_0 = 21 \text{ eV} \Rightarrow \text{FWHM} = 48 \text{ keV}$$

• noise of 1.6 eV

$$\Rightarrow \sigma_{E_n} = \frac{1.6}{275} \cdot 1 \, \mathrm{keV} = 6 \, \mathrm{eV} \Rightarrow \mathrm{FWHM} = \boxed{14 \, \mathrm{eV}}$$

useless to be better than the Fano limit

J. Schmidt et al., Microsc. Microanal. 24 (Suppl 1), 2018, https://doi.org/10.1017/S1431927618004130 N. Meidinger, J. Müller-Seidlitz, Handbook of X-ray and Gamma-ray Astrophysics,

Noise Detector Systems_30.9.24, N. Wermes doi:10.1007/978-981-16-4544-0_20-1

ELECTRONIC NOISE

Noise ... what?

Noise Detector Systems_30.9.24, N. Wermes

Quantifying Noise

Noise Detector Systems_30.9.24, N. Wermes

Notice

filtering, i.e. limiting the Bandwidth by high- (CR) and low-pass (RC) filters

- reduces the noise
- but: yields a slower response

Noise Detector Systems_30.9.24, N. Wermes

Noise origins (... a bit tricky in parts)

Noise Detector Systems_30.9.24, N. Wermes

• Brownian motion (thermal)

Noise Detector Systems_30.9.24, N. Wermes

$$\left\langle i^2 \right\rangle = 2q \langle i \rangle df$$

shot noise number fluctuation

thermal noise velocity fluctuation

$$\langle i^2 \rangle = \text{ const. } 1/\mathrm{f}^{\alpha} df$$
 1/f noise

skip derivations of noise origins?

origin: thermal (Brownian motion) of charge carriers

Two ways to derive from first principles

- Thermal velocity distribution of carriers
 => time (or frequency) dependence of induced current → <u>difficult</u> derivation
- 2. Application of Planck's law for thermal radiation

("hides" a bit the physics behind a general result of statistical mechanics)

=> yields the spectral density of the radiated power

i.e. the power that can be extracted in thermal equilibrium

$$\frac{dP}{d\nu} = \frac{h\nu}{\exp\left(\frac{h\nu}{kT}\right) - 1} \qquad \rightarrow \text{ (for } h\nu \ll kT\text{)} \qquad = \frac{h\nu}{1 + \frac{h\nu}{kT} - 1} = kT$$

i.e. at sufficiently low frequencies (< THz) is P independent of ν and is always the same amount in a bandwidth interval $\Delta \nu$

 $P = kT \Delta \nu \rightarrow kT \Delta f \quad (*)$

Noise Detector Systems_30.9.24, N. Wermes

The thermal noise formula II

UNIVERSITÄT BONN

To obtain the thermal noise voltage power spectrum of a resistor, consider an open resistor R_1 which generates a (quadratic) noise voltage $\langle v_1^2 \rangle$.

When both resistors are now short-circuited, the noise voltage $\langle v_1{}^2\rangle$ over R_1 causes a voltage v^2 over R_2 yielding a noise power in R_2

$$P_{1\to 2} = \frac{v^2}{R_2} = \frac{\langle v_1^2 \rangle}{R_2} \left(\frac{R_2}{R_1 + R_2}\right)^2 = \frac{\langle v_1^2 \rangle}{4R}$$

with R_1 and R_2 having equal resistances ($R_1 = R_2 = R$).

In thermal equilibrium R₂ transfers the same noise power to R₁

$$P_{1\to 2} = P_{2\to 1}$$

for every frequency portion of the noise.

The power <u>spectrum</u> (density) hence is a function of Δf , R, and of the temperature T.

The factor 4 originates here from two resistors. The result, however, is general as shown in Nyquist's original paper.

Nyquist, H.: Phys. Rev. 32, p. 110 (1928)

Noise Detector Systems_30.9.24, N. Wermes

with (*) $P = kT df \dots we get$

$$d\langle v_n^2\rangle = 4kTR\,df$$

and with Ohm's law relating $\langle i_n{}^2\rangle$ and $\langle v_n{}^2\rangle$

$$d\langle i_n^2\rangle = d\frac{\langle v_n^2\rangle}{R^2} = \frac{4kT}{R}df$$

Note: Thermal noise is always there (if T>0). It does not need power.

In a 1 k Ω resistor we find a current independent thermal current noise of or a voltage fluctuation over R of $\sqrt{\frac{d\langle i^2 \rangle}{df}} = 4 \frac{\text{pA}}{\sqrt{\text{Hz}}}$ or $\sqrt{\frac{d\langle v^2 \rangle}{df}} = 4 \frac{\text{nV}}{\sqrt{\text{Hz}}}$

Noise Detector Systems_30.9.24, N. Wermes

Thermal noise in a MOSFET

MOSFET operation characteristics

modern low power IC design usually operates in weak or moderate inversion

origin: excess e- injection into a device when quantisation plays a role (over a barrier, i.e. NOT in a resistor)

... but also in a pn boundary (detector diode)

e/h in depletion zone induce current pulses until recombination (short)

the current pulses can be regarded as δ - functions,
 i.e. all frequencies contribute => white noise

 $\int_{-\infty}^{\infty} i_e(t)dt = e \quad \Rightarrow \quad \operatorname{di}_e/\operatorname{df} = e \cdot 2 \qquad \text{because} \qquad \mathcal{L}[i(t)] = \mathcal{I}(s = \sigma + 2\pi i f) = \int_0^{\infty} i(t)e^{-st} \, dt$

• for infinitely narrow df the spectral component k contributing is one sine wave with mean = 0 and rms = 1/V2 $\sqrt{d\langle i_e^2 k \rangle} = 2e$

$$\Rightarrow \sqrt{\frac{a\langle i_{e,k}^2\rangle}{df}} = \frac{2e}{\sqrt{2}} = \sqrt{2}e$$

• for N electrons of total average current $\langle i \rangle = Ne/t = Ne \Delta f$ we get

$$\boxed{\langle i^2 \rangle} = \sum_{k=1}^{N} \left(\frac{di_{e,k}}{df}\right)^2 (df)^2 = 2Ne^2 (df)^2 = 2e \underbrace{(Nedf)}_{\langle i \rangle = I_0} df = \underbrace{2eI_0 df}_{\int \Delta f} = \sqrt{2eI_0} = 18 \frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$$

1mA (leakage) current yields

needs a current

Noise Detector Systems_30.9.24, N. Wermes

1/f noise - I

<u>origin:</u>

- <u>superposition of relaxation processes</u> with different time constants
- appears in many systems (ocean current velocity, music, broad casting, earthquake frequency spectra)
- many papers in literature (all you ever wanted to know) http://www.nslij-genetics.org/wli/1fnoise/

east-west component of ocean current velocity

Noise Detector Systems_30.9.24, N. Wermes

U Udine

1/f noise - II

Assume a trapping site with relaxation time constant au which releases electrons according to

$$N(t) = N_0 e^{-t/\tau}$$
 for $t \ge 0$, $N(t) = 0$ else

Fourier transforming this into the frequency domain yields

$$F(\omega) = \int_{-\infty}^{\infty} N(t) \mathrm{e}^{-i\omega t} \, dt = N_0 \int_0^{\infty} \mathrm{e}^{-(1/\tau + i\omega)t} \, dt = N_0 \frac{1}{1/\tau + i\omega}$$

For a whole sequence of such relaxation processes occurring at different times t_k

$$N(t,t_k) = N_0 e^{-\frac{t-t_k}{\tau}} \text{ for } t \ge t_k , \qquad N(t,t_k) = 0 \text{ else}$$

... but still with the same trapping time constant au, one gets

$$F(\omega) = N_0 \sum_k e^{i\omega t_k} \int_0^\infty e^{-(1/\tau + i\omega)t} dt = \frac{N_0}{1/\tau + i\omega} \sum_k e^{i\omega t_k}$$

The noise power spectrum then is obtained as

$$P(\omega) = \lim_{T \to \infty} \frac{1}{T} \left\langle |F(\omega)|^2 \right\rangle = \frac{N_0^2}{(1/\tau)^2 + \omega^2} \lim_{T \to \infty} \frac{1}{T} \left\langle \left| \sum_k e^{i\omega t_k} \right|^2 \right\rangle = \frac{N_0^2}{(1/\tau)^2 + \omega^2} n$$

where **n** is the average rate of trapping/relaxation processes

If, in addition, one assumes that the relaxation time constants are different i.e. $\tau \rightarrow \tau_i$ and we integrate/sum over uniformly distributed $\tau_1 < \tau_i < \tau_2$, one finds

$$P(\omega) = \frac{1}{\frac{1}{\tau_1} - \frac{1}{\tau_2}} \int_{\frac{1}{\tau_2}}^{\frac{1}{\tau_1}} \frac{N_0^2 n}{\left(\frac{1}{\tau}\right)^2 + \omega^2} d\left(\frac{1}{\tau}\right) = \frac{N_0^2 n}{\omega\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)} \begin{bmatrix} \arctan\frac{1}{\omega\tau_1} - \arctan\frac{1}{\omega\tau_2} \end{bmatrix}$$

$$\approx \begin{cases} N_0^2 n & \text{if } 0 < \omega \ll \frac{1}{\tau_1}, \frac{1}{\tau_2} \to \text{ const.}, \\ \frac{N_0^2 n \pi}{2\omega\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)} & \text{if } \frac{1}{\tau_2} \ll \omega \ll \frac{1}{\tau_1} \to \frac{1}{f}, \\ \frac{N_0^2 n}{\omega^2} & \text{if } \frac{1}{\tau_1}, \frac{1}{\tau_2} \ll \omega \to \frac{1}{f^2}. \end{cases}$$
(I.23)

Noise Detector Systems_30.9.24, N. Wermes

1/f noise - V

spectral density

Noise Detector Systems_30.9.24, N. Wermes

1/f noise in a MOSFET

origin

- trapping and release of channel charges in gate oxide
- depends on gate area A = W × L

$$\frac{d\left\langle v_{1/f}^{2}\right\rangle}{df} = K_{f} \frac{1}{C_{ox}'WL} \frac{1}{f}$$

empirical <u>parametrisation</u> (e.g. PSPICE) $C'_{ox} = \frac{3}{2} \frac{C_{GS}}{WL} \approx \epsilon_0 \epsilon / d$ $K_f^{\text{NMOS}} \approx 30 \times 10^{-25} \text{ J}, K_f^{\text{PMOS}} \approx 0.05 - 0.1 \times K_f^{\text{NMOS}}$

RTS noise

RTS noise = random telegraph signal noise

also called "burst noise" or "popcorn noise"

Occurs in electronics devices usually related to trapping/detrapping processes. The popping-up nature of individual RTS bursts eventually leads to the 1/f noise spectral density when noise of several traps with (very) different trapping times are superimposed.

Given the low frequency it is <u>difficult to filter out</u> and a nuisance for very low noise devices.

Noise Detector Systems_30.9.24, N. Wermes

Fazit: Only three physical noise origins to consider ...

thermal fluctuations (Brownian motion) velocity fluctuation

$$\cdot \left\langle i^2 \right\rangle = 2q \langle i \rangle df$$

fluctuations in hopping over a barrier (shot) number fluctuation

thermal noise

(in resistors, transistor channels)

shot noise

(where currents due to barrier crossings appear, e.g. in diodes, NOT in resistors)

•
$$\langle i^2 \rangle = \text{ const. } 1/\mathrm{f}^{\alpha} df$$

trap/release fluctuations of carriers number fluctuation 1/f noise

(whenever trapping occurs, e.g. in (MOS) transistor channels)

Noise Detector Systems_30.9.24, N. Wermes

Remember when to care about noise ...

Even if you are not interested in an energy measurement, remember ... thresholds

Noise Detector Systems_30.9.24, N. Wermes

Noisy circuit elements

(a) Replacement circuit with parallel current noise source.

(b) Replacement circuit with serial voltage noise source.

real (noisy) diode

noise current source

Noise Detector Systems_30.9.24, N. Wermes

Pop-up questions

- What is the difference between signal fluctuations and (electronic) noise and when do you have to worry particularly about the latter?
 - Signal fluctuations are fluctuating signal heights, whereas electronic noise comes from the amplification and readout electronics. Worry if B >> S.
- What is the Fano factor? When do you need to apply it and what is the resulting effect?
 - A factor to be applied to the simple Poissonian resolution to be expected, when a radiation signal always deposits its complete energy into a detector. For Si: e/h creations and phonon creation are correlated. F improves the resolution. For Si F is about 0.1.
- What does Fano limit mean?
 - Resolution limit due to signal fluctuations only.
- What are the most important electronic noise sources usually to consider in detector readout and what is their origin and dependence?
 - thermal noise i.e. Brownian motion e.g. in a resistor $\langle i^2 \rangle = 4kT/R$ shot noise (current over barrier): $\langle i^2 \rangle = 2 q \langle l \rangle df$ 1/f noise (trap-release processes): $\langle i^2 \rangle \propto 1/f df$
- Which noise sources do appear in a MOSFET?
 - thermal (R -> γ 1/gm) and 1/f noise

Noise in a typical detector readout system

from: PDG-Review on Low-noise detector readout, N.Wermes (2022&2024), H. Spieler (2013) in S. NAVAS *et al.* (Particle Data Group), Phys.Rev.D. **110**, 030001 (2024), doi 10.1103/PhysRevD.110.030001

Noise Detector Systems_30.9.24, N. Wermes

42

Circuit diagram for equivalent noise analysis

UNIVERSITÄT BONN

from: PDG-Review on Low-noise detector readout, N.Wermes (2022&2024), H. Spieler (2013)

Noise Detector Systems_30.9.24, N. Wermes

in S. NAVAS et al. (Particle Data Group), Phys.Rev.D. 110, 030001 (2024), doi 10.1103/PhysRevD.110.03000143

"parallel current noise can also be described by serial voltage noise"

* contributions assumed uncorrelated, adding in quadrature

$$\left\langle i_{\rm channel}^2 \right\rangle = \left\langle (g_m v_{\rm in})^2 \right\rangle$$

Noise Detector Systems_30.9.24, N. Wermes

let's now use a CSA and compute the noise output voltage ...

now <v_{pa}>²

The noise current, flowing through the feedback capacitance C_f , as well as the noise voltage at the preamplifier input, generate a noise voltage behind the preamplifier $\langle v_{pa}^2 \rangle$.

 $\left\langle v_{pa}^2 \right\rangle = \left\langle v_{in}^2 \right\rangle \left(\frac{\omega C_D}{\omega C_F}\right)^2$

$$\left\langle v_{pa}^{2}\right\rangle = \left\langle i_{in}^{2}\right\rangle \, \left(\frac{1}{\omega C_{f}}\right)^{2}$$

 $\omega = 2\pi f$ $C_d \to C_D = C_{in}^{tot}$

Noise Detector Systems_30.9.24, N. Wermes

We then get ...

with coefficients

$$c_{-2} = \frac{e}{\pi} I_0 \frac{1}{C_f^2}, \qquad c_{-1} = K_f \frac{1}{C'_{\text{ox}} WL} \frac{C_D^2}{C_f^2}, \qquad c_0 = \frac{2kT}{\pi} \frac{1}{\gamma g_m} \frac{C_D^2}{C_f^2}$$

Noise Detector Systems_30.9.24, N. Wermes

UNIVERSITÄT BONN

Noise Detector Systems_30.9.24, N. Wermes

Shaper function

consequences for noise BW limitation => lower noise at the expense of loosing speed

Noise Detector Systems_30.9.24, N. Wermes

very similar to Fourier transform (Laplace better for problems with initial value conditions Fourier better for problems with boundary conditions)

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt \qquad s = \sigma + i\omega$$

and the inverse transform

$$\mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} F(s) \mathrm{e}^{st} ds = \begin{cases} f(t) \text{ for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

Noise Detector Systems_30.9.24, N. Wermes

Excursion: Laplace Transform II

Operation	Time domain	Frequency domain
or function	$f(t) = \mathcal{L}^{-1}[F(s)]$	$F(s) = \mathcal{L}[f(t)]$
linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$
convolution	$\int_0^\infty f(t-t')g(t')dt'$	F(s)G(s)
<i>n</i> th derivative	$\frac{d^n}{dt^n}f(t)$	$s^n F(s)$
time integration	$\int_0^t f(t) dt$	$\frac{1}{s}F(s)$
scaling of t	f(at)	$\frac{1}{a}F(\frac{s}{a})$
time shift	$f(t-t_0)$	$e^{-st_0}F(s)$
damping	$e^{-s_0 t} f(t)$	$F(s+s_0)$
multiplication	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
δ function	$\delta(t)$	1
derivative of the δ function	$rac{d^n}{dt^n}\delta(t)$	s^n
step function	$\Theta(t)$	$\frac{1}{s}$
falling exponential	e^{-at}	$\frac{1}{s+a}$
rising exponential	$1 - e^{-at}$	$\frac{a}{s(s+a)}$
power function	t^n	$\frac{n!}{s^{n+1}}$

Noise Detector Systems_30.9.24, N. Wermes

very simple example

no differential equation to be solved !

Noise Detector Systems_30.9.24, N. Wermes

Excursion: Laplace Transform IV

CR-RC shaper

$$v_1(s) = H_1(s) v(s) = \frac{sRC}{1+sRC} v(s) = \frac{s\tau}{1+s\tau} v(s),$$

$$v_2(s) = H_2(s) v_1(s) = \frac{1}{1+sRC} v_1(s) = \frac{s\tau}{(1+s\tau)^2} v(s)$$

step function

$$\int v(t) = V_0 \Theta(t) = \begin{cases} 0 , t \le 0, \\ V_0, t > 0, \end{cases}$$

$$v(s) = V_0 \frac{1}{s} \qquad \swarrow \qquad v_2(s) = \frac{V_0 \tau}{(1 + s\tau)^2}$$

$$\int \mathcal{L}^{-1} \qquad \swarrow \qquad v_2(t) = V_0 \frac{t}{\tau} e^{-t/\tau}$$

Noise Detector Systems_30.9.24, N. Wermes

Shaper transfer function (in \rightarrow out)

Noise Detector Systems_30.9.24, N. Wermes

Shaper transfer function (in \rightarrow out)

in the time domain
in the time domain
in the frequency domain

$$1/s$$

 $H(s) = \frac{s\tau}{(1+s\tau)^2} \rightarrow |H(\omega)|^2 = A^2 \left(\frac{\omega\tau}{1+\omega^2\tau^2}\right)^2$
(with $s \rightarrow i\omega$)

executing the sum yields

$$\langle v_{\rm sh}^2 \rangle = \frac{\pi}{4} A^2 \left(c_{-2} \tau + \frac{2}{\pi} c_{-1} + c_0 \frac{1}{\tau} \right)$$

with

$$c_{-2} = \frac{e}{\pi} I_0 \frac{1}{C_f^2}, \qquad c_{-1} = K_f \frac{1}{C'_{\text{ox}} WL} \frac{C_D^2}{C_f^2}, \qquad c_0 = \frac{2kT}{\pi} \frac{1}{\gamma g_m} \frac{C_D^2}{C_f^2}$$

Noise Detector Systems_30.9.24, N. Wermes

... want to express the noise in units of the signal at the input, i.e. "how many electrons would produce the noise voltage output behind the shaper that I see?"

$$ENC = \frac{\text{noise output voltage (V)}}{\text{output voltage of a signal of } 1 \, e^- \, (V/e^-)}$$

$$\mathrm{ENC}^2 = \frac{\langle v_{\mathrm{sh}}^2 \rangle}{v_{\mathrm{sig}}^2}$$

Noise Detector Systems_30.9.24, N. Wermes

Equivalent noise charge

for 1e at the input we get
$$v_{\text{sig}} = \frac{A}{2.71} \frac{e}{C_f}$$
peak of shaper pulse
$$\implies \text{ENC}^2 (e^{-2}) = \frac{\langle v_{\text{sh}}^2 \rangle}{v_{\text{signal}}^2 (1e^{-})} = \frac{(2.71)^2}{4e^2} \left(eI_d \tau + 2C_D^2 K_f \frac{1}{C'_{ox} WL} + \frac{2kT}{\gamma g_m} \frac{C_D^2}{\tau} \right)$$

$$= a_{\text{shot}} \tau + a_{1/f} C_D^2 + a_{\text{therm}} \frac{C_D^2}{\tau}$$

using
$$\gamma = 2/3$$
 and $C'_{ox} = 6 \text{fF}/\mu\text{m}^2, K_f = 33 \times 10^{-25} J$

$$ENC^2 (e^{-2}) = 11 \underbrace{I_0}_{\text{nA}} \underbrace{\tau}_{\text{ns}} + 800 \frac{1}{WL/(\mu\text{m}^2)} \underbrace{C_D^2}_{(100 \text{ fF})^2} + 8600 \frac{1}{g_m/\text{mS}} \underbrace{C_D^2/(100 \text{ fF})^2}_{\tau/\text{ns}}$$

Noise Detector Systems_30.9.24, N. Wermes

RECAP of the dependencies ...

- Shot noise, which is parallel current noise to the input, is proportional to the detector leakage current I_0 and increases with the filter time τ , since I_0 is effectively integrated over τ by the CSA-shaper system. While still being frequency independent (white) at the CSA input, $\langle v_{pa}^2 \rangle_{\text{shot}}$ develops a $1/f^2$ dependence behind the preamplifier as described by (17.100), and a 1/f dependence after the shaper corresponding to a linear dependence on τ .
- Thermal noise in the transistor channel, while still being 'white' behind the preamplifier, is strongly reduced by the bandwidth limitation through the filter, leading to a decrease with $1/\tau$ after the shaper.
- For the 1/f noise part in the input transistor channel one would naively expect a larger contribution for large τ values (corresponding to small frequencies). This contribution, however, is cancelled by the bandwidth reduction by about the same factor, such that at the shaper output any τ dependence is no longer present.

Optimal filter time

$$\mathrm{ENC}^2 = a_{\mathrm{shot}} \,\tau + a_{1/\mathrm{f}} \, C_D^2 + a_{\mathrm{therm}} \, \frac{C_D^2}{\tau}$$

there is an optimal shaping time

$$\tau_{\rm opt} = \left(\frac{a_{\rm therm}}{a_{\rm shot}} C_D^2\right)^{1/2} = \left(\frac{4kT}{3 eI_0 g_m} C_D^2\right)^{1/2}$$

see also: PDG-Review on Low-noise detector readout, N.Wermes (2022&2024), H. Spieler (2013) in S. NAVAS *et al.* (Particle Data Group), Phys.Rev.D. **110**, 030001 (2024), doi 10.1103/PhysRevD.110.030001

Noise Detector Systems_30.9.24, N. Wermes

Examples

UNIVERSITÄT BONN

Pixel detector. As an example featuring small electrodes and correspondingly small input capacitances we choose a silicon pixel detector (section 8.7) with parameters $C_D = 200 \,\mathrm{fF}, I_0 = 1 \,\mathrm{nA}, \tau = 50 \,\mathrm{ns}, W = 20 \,\mathrm{\mu m}, L = 0.5 \,\mathrm{\mu m}, g_m = 0.5 \,\mathrm{mS},$ where we assumed a typical leakage current before the detector received substantial radiation $(\gamma, C_{\mathrm{ox}}, (K_{\mathrm{f}})) \,\mathrm{damage}$. With (17.110) an equivalent noise charge of

$$\text{ENC}^2 \approx (24 \, e^-)^2 (\text{shot}) + (17 \, e^-)^2 (1/\text{f}) + (25 \, e^-)^2 (\text{therm}) \approx (40 \, e^-)^2 \longrightarrow (47 \, \text{e}^-)^2$$

Strip detector. For a typical silicon microstrip detector (see section 8.6.2) after radiation damage one obtains with $C_D = 20 \text{ pF}$, $I_0 = 1 \text{ }\mu\text{A}$, $\tau = 50 \text{ ns}$, $W = 2000 \text{ }\mu\text{m}$, $L = 0.4 \text{ }\mu\text{m}$, $g_m = 5 \text{ mS}$:

$$ENC^{2} \approx (750 \, e^{-})^{2} (\text{shot}) + (200 \, e^{-})^{2} (1/\text{f}) + (800 \, e^{-})^{2} (\text{therm}) = (1100 \, e^{-})^{2}. \longrightarrow (1400 \, e^{-})^{2}$$

Liquid argon calorimeter. As an example of a detector with a large electrode capacitance we take a liquid argon calorimeter cell with typical values as given by the ATLAS electromagnetic calorimeter (see section 15.5.3.2 on page 597) in the central region. With the parameters $C_D = 1.5 \,\mathrm{nF}$, $I_0 = \langle 2 \,\mu \mathrm{A}, \tau = 50 \,\mathrm{ns}, W = 3000 \,\mu\mathrm{m},$ $L = 0.25 \,\mu\mathrm{m}, g_m = 100 \,\mathrm{mS}$, i.e. assuming only a small (negligible) parallel shot noise (leakage current), one obtains:

 $ENC^{2} \approx (1000 \, e^{-})^{2} (\text{shot}) + (15000 \, e^{-})^{2} (1/\text{f}) + (13500 \, e^{-})^{2} (\text{therm}) \approx (20200 \, e^{-})^{2}. \longrightarrow (25000 \, e^{-})^{2}$

Noise Detector Systems_30.9.24, N. Wermes

Examples: Noise in pixel/strip/liq.Ar detector (ionisation detector)

Pop-up questions

- What are the most important electronic noise sources in a typical ionisation detector readout and what do they depend on in a system with CSA and shaper?
 - shot noise from detector leakage current, thermal & 1/f noise in amplifying transistor channel: shot noise \propto leakage current depends on τ ; thermal noise $\sim 1/\text{gm} \times \text{C}_{\text{D}} \times 1/\tau$; 1/f noise $\sim \text{C}_{\text{D}}$
- What is ENC?
 - equivalent noise charge: refers the obtained noise to a signal of 1e at the input.
- The original f dependencies of thermal, shot and 1/f noise become completely different after CSA and shaper. Why?

• Because the transfer functions of CSA and shaper are in parts frequency dependent.

Why is there an "optimal shaping time"?

• Because thermal noise falls with τ , shot noise rises with τ and 1/f noise is constant.

Noise Detector Systems_30.9.24, N. Wermes

Thank you very much for your attention

Norbert Wermes wermes@uni-bonn.de

Noise Detector Systems_30.9.24, N. Wermes

Particle Data Group Review (2024)

35.9 Low-noise detector readout

Revised November 2021 by N. Wermes (Bonn U.), revised November 2013 by H. Spieler (LBNL).

 Kolanoski, H. und Wermes, N. Teilchendetektoren – Grundlagen und Anwendungen (Springer/Spektrum 2016)

 Kolanoski, H. and Wermes, N. Particle Detectors – fundamentals and applications (Oxford University Press 2020)

Noise Detector Systems_30.9.24, N. Wermes

BACKUP

... what about thermal noise in R-feedback ?

It acts on the preamplifier input in a very similar way as the leakage current shot noise contribution, i.e.

$$\frac{d\left\langle v_{\rm pa}^2\right\rangle}{d\omega} = \frac{eI_0}{\pi\omega^2 C_f^2} \qquad \boxed{2eI_0 \to \frac{4kT}{R_f}} \qquad \qquad \frac{d\left\langle v_{\rm pa}^2\right\rangle_{R_f}}{d\omega} = \frac{2kT}{R_f} \frac{1}{\pi\omega^2 C_f^2}$$

Its magnitude is usually small in comparison to the other contributions, in particular to the leakage-current-induced shot noise.

Noise Detector Systems_30.9.24, N. Wermes

kT/C noise

- not a fundamental noise, but is thermal noise in the presence of a filtering capacitor (RC)
- the thermal white noise of an RC circuit has a band width of

$$\Delta f = \frac{1}{2\pi} \int_0^\infty \frac{d\omega}{1 + (\omega RC)^2} = \frac{1}{2\pi} \frac{\pi}{2RC} = \frac{1}{4RC}$$

UNIVERSITÄT

$$\langle v^2 \rangle = 4kTR \ \Delta f = \frac{4kTR}{4RC} = \frac{kT}{C}$$

• becomes independent of R

Noise Detector Systems_30.9.24, N. Wermes

fresh-up: MOSFET -> NMOS, PMOS, CMOS

- reminder: transistors operate in "inversion"
- NMOS: transistor channel current are electrons
- PMOS: transistor channel current are holes
- CMOS: both transistor types are realised in the same substrate. IMPORTANT for electronic circuits

Noise Detector Systems_30.9.24, N. Wermes

Nomenclature, a typical detector pulse

Kolanoski, Wermes 2017

Noise Detector Systems_30.9.24, N. Wermes