

NOISE IN (PARTICLE) DETECTOR SYSTEMS LECTURE AT RADHARD SCHOOL (MINI WORKSHOP) THESSALONIKI-BONN (DAAD PROGRAM)

SEPTEMBER 30, 2024

NORBERT WERMES PHYSIKALISCHES INSTITUT UNIVERSITÄT BONN

Disclaimer

Noise Detector Systems_30.9.24, N. Wermes 2

❑ Signal fluctuations versus electronic noise

- \Box Noise what do you mean?
- ❑ Physical noise origins
- ❑ Noise in a typical detector readout system

Noise Detector Systems 30.9.24, N. Wermes 33 and the state of the

Signal fluctuations and (electronic) noise

Distinguish

* e.g. from power supplies, digital switching, external RF signals, common grounding

Noise Detector Systems_30.9.24, N. Wermes 5

Why bother?

G.A. Armantrout et al., IEEE Trans. Nucl. Sci. NS-19/1 (1972) 107

Low noise improves the signal-to-noise ratio (narrow signal counts are in fewer bins and thus compete with fewer background counts).

examples from H. Spieler, 2005

Generic detector & R/O scheme: the dominant noise components

The dominant electronic noise of a system is hidden in these parts

Noise Detector Systems $30.9.24$, N. Wermes 7

Signal fluctuations and electronic noise

typical for silicon strip/pixel detectors

Noise Detector Systems_30.9.24, N. Wermes 8

skip

EXAMPLE for **case A** (σ ^B $\ll \sigma$ ²S): Positron Emission Tomography (PET)

 \Rightarrow

$$
\sigma_{1.\,\text{dyn}} = \sqrt{N_{1.\,\text{dyn}}} = \sqrt{2500} \, e^- = 50 \, e^- = 2\% \, N_{1.\,\text{dyn}}
$$
\n
$$
\Rightarrow \qquad \sigma_{\text{signal}} = \sigma_{1.\,\text{dyn}} \times (\text{amplification}) = 5 \times 10^7 e^- \, .
$$
\nNoise Detection Systems_30.9.24, N. Wermes

\n**More Detection Systems_30.9.24, N. Wermes**

\n**2500** $e^- = 50 e^- = 50 e^- = 2\% \, N_{1.\,\text{dyn}}$

Example for **case B** ($\sigma_B \gg \sigma_S$): semiconductor detector

take e.g. 60 keV γ -ray from ²⁴¹Am

$$
N_{e/h} = \frac{E_{\gamma}}{\omega_i} = \frac{60\,000\,\text{eV}}{3.65\,\text{eV}/(\text{e/h})} \approx 16\,500\text{ e/h pairs}.
$$

fluctuations
$$
\sigma_{\text{signal}} = \sqrt{N_{e/h} \cdot F} \qquad (F = \text{Fano factor},
$$

$$
= \sqrt{N_{e/h} \cdot 0.1} = 40 e^{-}.
$$

Relative to signal $\frac{\partial e/h}{N_{e/b}} = 0.2\%$ (compare with 2% for NaI(TI))

Noise in Si detectors ($\propto C_D$) is of order 100 e- (pixels) or 1000 e- (strips) i.e. usually larger than the signal fluctuation.

=> electronic noise determines the (charge) resolution of the system

Noise Detector Systems_30.9.24, N. Wermes 10

Signal Fluctuations

and

Fano Factor

UNIVERSITAT

The general computation of the Fano factor is complicated. We consider here as a simple system a silicon detector for which the discussion can essentially be reduced to two energy loss mechanisms (see also [903]): the generation of electron-hole pairs and lattice excitations (phonon excitations). For the creation of an e/h pair at least the band-gap energy (in silicon $E_G = 1.1$ eV) is needed. For every event, however, the deposited energy is subdivided differently for the generation of e/h pairs or for lattice excitations such that on average the energy of $w_i = 3.65 \text{ eV}$ is needed to create one e/h pair.

Let us assume that in a process a fixed energy E_0 be deposited with every event in a detector, for example the energy of an X-ray or γ quantum from a radioactive source. This energy is available for the creation of N_p phonon excitations and of $N_{e/h}$ electron-hole pairs. We thus have

$$
E_0 = E_i N_{e/h} + E_x N_p, \t\t(17.83)
$$

where E_i and E_x are the (assumed fixed) energies necessary for one individual ionisation and one individual phonon excitation, respectively

simplified approach

only two energy loss mechanisms

1) e/h ionisation 2) phonon exc.

assume also Poissonian statistics

Noise Detector Systems_30.9.24, N. Wermes 12

Fano Factor II

The energy E_0 can split arbitrarily between ionisations or lattice excitations. Since E_0 is fixed, however, and since therefore for every absorbed quantum the same energy is deposited, then in every absorption process a fluctuation of a larger E_0 portion into phonon excitation $(E_x \Delta N_n)$ must be compensated by a correspondingly smaller E_0 portion for ionisation $(E_i(-\Delta N_{e/h}))$ where ΔN_p and $\Delta N_{e/h}$ are the number fluctuations of phonons and e/h pairs for one individual event, respectively:

$$
E_x \,\Delta N_p - E_i \,\Delta N_{e/h} = 0
$$

Averaged over many absorption processes of the energy E_0 therefore yields:

$$
E_x \sigma_p = E_i \sigma_{e/h}
$$
\n
$$
\Rightarrow \frac{E_x \sigma_p = E_i \sigma_{e/h}}{\sigma_{e/h} = \sigma_p \frac{E_x}{E_i} = \sqrt{N_p} \frac{E_x}{E_i}},
$$
\nwith $N_p = \frac{E_0 - E_i N_{e/h}}{E_x}$ from slide 12
\nand with the average number of e/h pairs, $N_{e/h} = \frac{E_0}{\omega_i}$
\n
$$
\sigma_{e/h} = \frac{E_x}{E_i} \sqrt{\frac{E_0}{E_x} - \frac{E_i}{E_x} \frac{E_0}{\omega_i}} = \sqrt{\frac{E_0}{\omega_i}} \cdot \sqrt{\frac{E_x}{E_i} \left(\frac{\omega_i}{E_i} - 1\right)} = \sqrt{\frac{E_0}{\omega_i} \cdot F}
$$
\n
$$
\Rightarrow \sigma_{e/h} = \sqrt{N_{e/h} \cdot F}.
$$

Noise Detector Systems_30.9.24, N. Wermes 13

Result: Energy resolution, i.e. $\sigma_{e/h}$ is in fact smaller than $VN_{e/h}$, since F is typically (e.g. in Si) << 1

Note: E_0 is fixed

!

Si Material Ge $GaAs$ $CdTe$ diamond Ar liq. Ar Fano factor 0.115 0.08 $0.107 - 0.116$ 0.13 0.10 0.10 0.20

For detectors with more and also more complex signal generation processes, as for example scintillators, for which exciton processes also play a role (see section 13.3 on page 515), Fano factors larger than one $(F > 1)$ can even occur [360].

Noise Detector Systems_30.9.24, N. Wermes 14 and the state of the

Fano Factor IV: an example

high-resolution DEPFET sensor (for low-E X-ray imaging, slow shaping)

- $\sigma_n = 1.6 e^{-}$ measured electronic noise ω RT (!) M. Porro et al., IEEE Trans. Nucl. Sci. 53 (2006), 401.
- signal fluctuation ω E₀ = 1 keV X-ray photons

$$
N_{e/h} = \frac{1000 \text{ eV}}{3.65 \text{ eV}} = 275
$$

$$
\sigma_{e/h} = \sqrt{N_{e/h} \cdot F} = \sqrt{275 \cdot 0.115} = 5.7
$$

$$
\Rightarrow \sigma_E = \frac{\sigma_{e/h}}{N_{e/h}} \cdot E_0 = 21 \text{ eV} \Rightarrow \text{FWHM} = \frac{48 \text{ keV}}{48 \text{ keV}}
$$

• noise of 1.6 eV

$$
\Rightarrow \sigma_{E_n} = \frac{1.6}{275} \cdot 1 \,\text{keV} = 6 \,\text{eV} \Rightarrow \text{FWHM} = \boxed{14 \,\text{eV}}
$$

useless to be better than the Fano limit

J. Schmidt et al., Microsc. Microanal. 24 (Suppl 1), 2018, https://doi.org/10.1017/S1431927618004130 N. Meidinger, J. Müller-Seidlitz, Handbook of X-ray and Gamma-ray Astrophysics,

Noise Detector Systems_30.9.24, N. Wermes $\,$ doi:10.1007/978-981-16-4544-0_20-1 $\,$

ELECTRONIC NOISE

Noise ... what?

UNIVERSITÄT

Noise Detector Systems_30.9.24, N. Wermes 18

Quantifying Noise

Noise Detector Systems $30.9.24$, N. Wermes 19

Notice …

filtering, i.e. limiting the Bandwidth by high- (CR) and low-pass (RC) filters

- reduces the noise
- but: yields a slower response

Noise Detector Systems_30.9.24, N. Wermes 20

Noise origins (… a bit tricky in parts)

Noise Detector Systems_30.9.24, N. Wermes

Noise Detector Systems 30.9.24, N. Wermes 22

$$
\left\langle i^2\right\rangle=2q\langle i\rangle df
$$

shot noise number fluctuation

thermal noise velocity fluctuation

$$
\left\langle i^{2}\right\rangle =\text{ const. }1/\mathrm{f}^{\alpha}df\quad \text{ 1/f noise}\quad \ \ \text{ number fluctuation}
$$

skip derivations of noise origins?

origin: thermal (Brownian motion) of charge carriers

Two ways to derive from first principles

- 1. Thermal velocity distribution of carriers \Rightarrow time (or frequency) dependence of induced current \rightarrow difficult derivation
- 2. Application of Planck's law for thermal radiation

("hides" a bit the physics behind a general result of statistical mechanics)

=> yields the spectral density of the radiated power

i.e. the power that can be extracted in thermal equilibrium

$$
\frac{dP}{d\nu} = \frac{h\nu}{\exp\left(\frac{h\nu}{kT}\right) - 1} \qquad \to \text{ (for } h\nu \ll kT\text{)} \qquad = \frac{h\nu}{1 + \frac{h\nu}{kT} - 1} = kT
$$

i.e. at sufficiently low frequencies (\lt THz) is P independent of ν and is always the same amount in a bandwidth interval Δv

 $P = kT \Delta v \rightarrow kT \Delta f$

Noise Detector Systems 30.9.24, N. Wermes 24

The thermal noise formula II

To obtain the thermal noise voltage power spectrum of a resistor, consider an open resistor R_1 which generates a (quadratic) noise voltage $\langle v_1^2 \rangle$.

When both resistors are now short-circuited, the noise voltage $\langle v_1^2 \rangle$ over R₁ causes a voltage v^2 over R₂ yielding a noise power in $R₂$

$$
P_{1\to 2} = \frac{v^2}{R_2} = \frac{\langle v_1^2 \rangle}{R_2} \left(\frac{R_2}{R_1 + R_2}\right)^2 = \frac{\langle v_1^2 \rangle}{4R}
$$

with R_1 and R_2 having equal resistances ($R_1 = R_2 = R$).

In thermal equilibrium R_2 transfers the same noise power to R_1

$$
P_{1\to 2} = P_{2\to 1}
$$

for every frequency portion of the noise.

The power spectrum (density) hence is a function of Δf , R, and of the temperature T.

The factor 4 originates here from two resistors. The result, however, is general as shown in Nyquist's original paper.

Nyquist, H.: Phys. Rev. 32, p. 110 (1928)

Noise Detector Systems $30.9.24$, N. Wermes 25

with $(*)$ $P = kT df$... we get

$$
d\langle v_n^2\rangle=4kTR\,df
$$

and with Ohm's law relating $\langle \mathsf{i_n}^2 \rangle$ and $\langle \mathsf{v_n}^2 \rangle$

$$
d\langle i_n^2\rangle=d\frac{\langle v_n^2\rangle}{R^2}=\frac{4kT}{R}df
$$

Note: Thermal noise is always there (if T>0). It does not need power.

In a 1 kΩ resistor we find a current independent thermal current noise of or a voltage fluctuation over R of $\sqrt{\frac{d\braket{i^2}}{df}} = 4\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$ or $\sqrt{\frac{d\braket{v^2}}{df}} = 4\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

Noise Detector Systems_30.9.24, N. Wermes

Thermal noise in a MOSFET

MOSFET operation characteristics

modern low power IC design usually operates in weak or moderate inversion

origin: excess e⁻ injection into a device when quantisation plays a role (over a barrier, i.e. NOT in a resistor)

… but also in a pn boundary (detector diode)

e/h in depletion zone induce current pulses until recombination (short)

needs a current

1mA (leakage) current yields

the current pulses can be regarded as δ - functions, i.e. all frequencies contribute => white noise

 $\int_{-\infty}^{\infty} i_e(t) dt = e \quad \blacktriangleright \text{ di}_e/\text{df} = e \cdot 2 \qquad \text{because} \qquad \mathcal{L}[i(t)] = \mathcal{I}(s = \sigma + 2\pi i f) = \int_{0}^{\infty} i(t) e^{-st} dt$

for infinitely narrow df the spectral component *k* contributing is one sine wave \rightarrow with mean = 0 and rms = $1/\sqrt{2}$

$$
\Rightarrow \sqrt{\frac{d\langle i_{e,k}^2\rangle}{df}} = \frac{2e}{\sqrt{2}} = \sqrt{2}e
$$

for N electrons of total average current (i) = Ne/t = Ne Δf we get

$$
\frac{\langle i^2 \rangle}{\langle i^2 \rangle} = \sum_{k=1}^N \left(\frac{di_{e,k}}{df}\right)^2 (df)^2 = 2Ne^2(df)^2 = 2e \underbrace{(Nedf)}_{\langle i \rangle = I_0} df = \underbrace{\frac{2eI_0df}{2eI_0df}}_{\text{needs a current}} \sqrt{\frac{\Delta \langle i^2 \rangle}{\Delta f}} = \sqrt{2eI_0} = 18 \frac{\text{pA}}{\sqrt{\text{Hz}}}
$$

1/f noise - I

origin:

- superposition of relaxation processes with different time constants
- appears in many systems (ocean current velocity, music, broad casting, earthquake frequency spectra)
- many papers in literature (all you ever wanted to know) <http://www.nslij-genetics.org/wli/1fnoise/>

east-west component of ocean current velocity

loudness fluctuations spectra of radio broadcasting

pictures from: E. Milotti U Udine

Noise Detector Systems 30.9.24, N. Wermes 30.9.24,

1/f noise - II

Assume a trapping site with relaxation time constant τ which releases electrons according to

$$
N(t) = N_0 e^{-t/\tau} \quad \text{for } t \ge 0, \qquad N(t) = 0 \text{ else}
$$

Fourier transforming this into the frequency domain yields

$$
F(\omega) = \int_{-\infty}^{\infty} N(t) e^{-i\omega t} dt = N_0 \int_0^{\infty} e^{-(1/\tau + i\omega)t} dt = N_0 \frac{1}{1/\tau + i\omega}
$$

For a whole sequence of such relaxation processes occurring at different times t_k

$$
N(t, t_k) = N_0 e^{-\frac{t - t_k}{\tau}} \quad \text{for } t \ge t_k , \qquad N(t, t_k) = 0 \quad \text{else}
$$

 \dots but still with the same trapping time constant τ , one gets

$$
F(\omega) = N_0 \sum_k e^{i\omega t_k} \int_0^\infty e^{-(1/\tau + i\omega)t} dt = \frac{N_0}{1/\tau + i\omega} \sum_k e^{i\omega t_k}
$$

The noise power spectrum then is obtained as

$$
P(\omega) = \lim_{T \to \infty} \frac{1}{T} \left\langle |F(\omega)|^2 \right\rangle = \frac{N_0^2}{(1/\tau)^2 + \omega^2} \lim_{T \to \infty} \frac{1}{T} \left\langle \left| \sum_k e^{i\omega t_k} \right|^2 \right\rangle = \frac{N_0^2}{(1/\tau)^2 + \omega^2} n
$$

Noise Detector Systems_30.9.24, N. Wermes **32.324, N. Wermes** 32

If, in addition, one assumes that the relaxation time constants are different i.e. $\tau \rightarrow \tau_i$ and we integrate/sum over uniformly distributed $\tau_1 < \tau_i < \tau_2$, one finds

$$
P(\omega) = \frac{1}{\frac{1}{\tau_1} - \frac{1}{\tau_2}} \int_{\frac{1}{\tau_2}}^{\frac{1}{\tau_1}} \frac{N_0^2 n}{(\frac{1}{\tau})^2 + \omega^2} d\left(\frac{1}{\tau}\right) = \frac{N_0^2 n}{\omega \left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)} \left[\arctan \frac{1}{\omega \tau_1} - \arctan \frac{1}{\omega \tau_2}\right]
$$

\n
$$
\approx \begin{cases} N_0^2 n & \text{if } 0 < \omega \ll \frac{1}{\tau_1}, \frac{1}{\tau_2} \to \text{const.}, \\ \frac{N_0^2 n \pi}{2\omega \left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)} & \text{if } \frac{1}{\tau_2} \ll \omega \ll \frac{1}{\tau_1} \to \frac{1}{f}, \end{cases} \qquad \text{1/f} \qquad \text{1/f} \qquad (I.23)
$$

Noise Detector Systems_30.9.24, N. Wermes 33

1/f noise - V

spectral density

Noise Detector Systems_30.9.24, N. Wermes 34

1/f noise in a MOSFET

origin

- trapping and release of channel charges in gate oxide
- depends on gate area $A = W \times L$

$$
\frac{d \left\langle v_{1/f}^2 \right\rangle}{df} = K_f \frac{1}{C_{ox}' WL} \; \frac{1}{f}
$$

empirical parametrisation (e.g. PSPICE) $C'_{ox} = \frac{3}{2} \frac{C_{GS}}{WL} \approx \epsilon_0 \epsilon / d$ $K_f^{NMOS} \approx 30 \times 10^{-25}$ J, $K_f^{PMOS} \approx 0.05$ -0.1 \times K_f^{NMOS}

Noise Detector Systems 30.9.24, N. Wermes 35 and the state of the

RTS noise

RTS noise = random telegraph signal noise

also called "burst noise" or "popcorn noise"

Occurs in electronics devices usually related to trapping/detrapping processes. The popping-up nature of individual RTS bursts eventually leads to the 1/f noise spectral density when noise of several traps with (very) different trapping times are superimposed.

Given the low frequency it is difficult to filter out and a nuisance for very low noise devices.

Noise Detector Systems_30.9.24, N. Wermes 36

Fazit: Only three physical noise origins to consider …

thermal fluctuations (Brownian motion) velocity fluctuation

$$
\boldsymbol{\cdot}\left\langle i^2\right\rangle=2q\langle i\rangle df
$$

fluctuations in hopping over a barrier (shot) number fluctuation

(in resistors, transistor channels)

shot noise

(where currents due to barrier crossings appear, e.g. in diodes, NOT in resistors)

$$
\color{blue}\bullet\left\langle i^2\right\rangle=\text{ const. } 1/\mathrm{f}^\alpha df
$$

trap/release fluctuations of carriers number fluctuation

 $1/f$ noise

(whenever trapping occurs, e.g. in (MOS) transistor channels)

Noise Detector Systems 30.9.24, N. Wermes 37 and the state of the

Remember when to care about noise …

❑Even if you are not interested in an energy measurement, remember … thresholds

Noise Detector Systems 30.9.24, N. Wermes 38 38

Noisy circuit elements

(a) Replacement circuit with parallel current noise source.

(b) Replacement circuit with serial voltage noise source.

real (noisy) diode

Noise Detector Systems_30.9.24, N. Wermes **diode and all a**
39

Pop-up questions

- What is the difference between signal fluctuations and (electronic) noise and when do you have to worry particularly about the latter?
	- Signal fluctuations are fluctuating signal heights, whereas electronic noise comes from the amplification and readout electronics. Worry if B >> S.
- What is the Fano factor? When do you need to apply it and what is the resulting effect?
	- A factor to be applied to the simple Poissonian resolution to be expected, when a radiation signal always deposits its complete energy into a detector. For Si: e/h creations and phonon creation are correlated. F improves the resolution. For Si F is about 0.1.
- What does Fano limit mean?
	- Resolution limit due to signal fluctuations only.
- What are the most important electronic noise sources usually to consider in detector readout and what is their origin and dependence?
	- \bullet thermal noise i.e. Brownian motion e.g. in a resistor $\langle i^2 \rangle = 4kT/R$ shot noise (current over barrier): \langle i²> = 2 q \langle l> df 1/f noise (trap-release processes): $\langle i^2 \rangle \propto 1/f$ df
- Which noise sources do appear in a MOSFET?

```
\bullet thermal (R \rightarrow \gamma 1/gm ) and 1/f noise
```


Noise in a typical detector readout system

from: PDG-Review on Low-noise detector readout, N.Wermes (2022&2024), H. Spieler (2013) in S. NAVAS *et al.* (Particle Data Group), Phys.Rev.D. **110**, 030001 (2024), doi 10.1103/PhysRevD.110.030001

Noise Detector Systems 30.9.24, N. Wermes 42

Circuit diagram for equivalent noise analysis

UNIVERSITAT

from: PDG-Review on Low-noise detector readout, N.Wermes (2022&2024), H. Spieler (2013)

Noise Detector Systems_30.9.24, N. Wermes **^{in S. NAVAS** *et al.* **(Particle Data Group), Phys.Rev.D. 110,** 030001 (2024), doi 10.1103/PhysRevD.110.030001 ₄₃}

"parallel current noise can also be described by serial voltage noise"

* contributions assumed uncorrelated, adding in quadrature

$$
\left\langle i_{\text{channel}}^2 \right\rangle = \left\langle (g_m v_{\text{in}})^2 \right\rangle
$$

Noise Detector Systems_30.9.24, N. Wermes 44 and the state of the

let's now use a CSA and compute the noise output voltage …

now $<$ v $_{pa}$ >²

The noise current, flowing through the feedback capacitance C_f , as well as the noise voltage at the preamplifier input, generate a noise voltage behind the preamplifier $\langle v_{pa}^2 \rangle$.

 $\left\langle v_{pa}^{2}\right\rangle =\left\langle v_{in}^{2}\right\rangle \left\langle \frac{\omega C_{D}}{\omega C_{f}}\right\rangle ^{2}$

$$
\left\langle v_{pa}^{2}\right\rangle =\left\langle i_{in}^{2}\right\rangle \left(\frac{1}{\omega C_{f}}\right)^{2}
$$

We then get ...

with coefficients

$$
c_{-2} = \frac{e}{\pi} I_0 \frac{1}{C_f^2} \,, \qquad c_{-1} = K_f \frac{1}{C_{ox}' WL} \frac{C_D^2}{C_f^2} \,, \qquad c_0 = \frac{2kT}{\pi} \frac{1}{\gamma g_m} \frac{C_D^2}{C_f^2}
$$

Noise Detector Systems_30.9.24, N. Wermes

Noise Detector Systems_30.9.24, N. Wermes 47

Shaper function

easiest and often realised

 $M=1$

 $M=2$

 $f^{(1,M)}(t) = \frac{1}{M!} \left(\frac{t}{\tau}\right)^M e^{-t/\tau}$

 $M = 4$

 $M=8$

 $\overline{2}$

 1.0

amplitude / peak

 0.0 'n

very similar to Fourier transform (Laplace better for problems with initial value conditions Fourier better for problems with boundary conditions)

$$
F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt
$$
 $s = \sigma + i\omega$

and the inverse transform

$$
\mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s) e^{st} ds = \begin{cases} f(t) \text{ for } t \ge 0\\ 0 \text{ for } t < 0 \end{cases}
$$

Noise Detector Systems $30.9.24$, N. Wermes 49

Excursion: Laplace Transform II

Noise Detector Systems_30.9.24, N. Wermes 50

very simple example

no differential equation to be solved !

Noise Detector Systems $30.9.24$, N. Wermes 51

Excursion: Laplace Transform IV

CR-RC shaper

$$
v_1(s) = H_1(s) v(s) = \frac{sRC}{1 + sRC} v(s) = \frac{s\tau}{1 + s\tau} v(s),
$$

$$
v_2(s) = H_2(s) v_1(s) = \frac{1}{1 + sRC} v_1(s) = \frac{s\tau}{(1 + s\tau)^2} v(s)
$$

step function

$$
v(t) = V_0 \Theta(t) = \begin{cases} 0, & t \le 0, \\ V_0, & t > 0, \end{cases} \qquad v(s) = V_0 \frac{1}{s} \qquad \Longrightarrow \qquad v_2(s) = \frac{V_0 \tau}{(1 + s\tau)^2}
$$

$$
\bullet \qquad \qquad \bullet \qquad v_2(t) = V_0 \frac{t}{\tau} e^{-t/\tau} \Bigg(\text{Var}(t) \Bigg)
$$

Noise Detector Systems_30.9.24, N. Wermes 52

Shaper transfer function (in \rightarrow out)

Noise Detector Systems $30.9.24$, N. Wermes 53

Shaper transfer function (in \rightarrow out)

in the time domain
\nin the frequency domain
\n
$$
1/s
$$

\n $H(s) = \frac{s\tau}{(1+s\tau)^2} \rightarrow |H(\omega)|^2 = A^2 \left(\frac{\omega\tau}{1+\omega^2\tau^2}\right)^2$
\n $(\text{with } s \rightarrow i\omega)$
\n $(\text{with } s \rightarrow i\omega)$

executing the sum yields

$$
\langle v_{\rm sh}^2 \rangle = \frac{\pi}{4} A^2 \left(c_{-2} \tau + \frac{2}{\pi} c_{-1} + c_0 \frac{1}{\tau} \right)
$$

with

$$
c_{-2} = \frac{e}{\pi} I_0 \frac{1}{C_f^2}, \qquad c_{-1} = K_f \frac{1}{C_{ox}' WL} \frac{C_D^2}{C_f^2}, \qquad c_0 = \frac{2kT}{\pi} \frac{1}{\gamma g_m} \frac{C_D^2}{C_f^2}
$$

Noise Detector Systems_30.9.24, N. Wermes 54

… want to express the noise in units of the signal at the input, i.e. "how many electrons would produce the noise voltage output behind the shaper that I see?"

$$
ENC = \frac{noise \ output \ voltage \ (V)}{output \ voltage \ of \ a \ signal \ of \ 1 e^- \ (V/e^-)}
$$

$$
ENC^2 = \frac{\langle v_{\rm sh}^2 \rangle}{v_{\rm sig}^2}
$$

Noise Detector Systems_30.9.24, N. Wermes 55

Equivalent noise charge

for 1e at the input we get
$$
v_{\text{sig}} = \frac{A}{2.71} \frac{e}{C_f}
$$

\n
$$
\downarrow
$$
\npeak of shape pulse
\n
$$
\implies \text{ENC}^2 (e^{-2}) = \frac{\langle v_{\text{sh}}^2 \rangle}{v_{\text{signal}}^2 (1e^{-})} = \frac{(2.71)^2}{4e^2} \left(eI_d \tau + 2C_D^2 K_f \frac{1}{C_{ox}' WL} + \frac{2kT}{\gamma g_m} \frac{C_D^2}{\tau} \right)
$$
\n
$$
= a_{\text{shot}} \tau + a_{1/f} C_D^2 + a_{\text{therm}} \frac{C_D^2}{\tau}
$$

using
$$
\gamma = 2/3
$$
 and $C'_{ox} = 6 \text{fF}/\mu\text{m}^2$, $K_f = 33 \times 10^{-25} J$
\n
$$
ENC^2 (e^{-2}) = 11 \left(\frac{I_0}{nA} \right) \left(\frac{\tau}{\text{ns}} \right) + 800 \left(\frac{I_0}{WL/(\mu\text{m}^2)} \right) \left(\frac{C_D^2}{100 \text{fF}} \right)^2 + 8600 \left(\frac{I_0}{g_m/\text{m}} \right) \left(\frac{C_D^2}{\tau} \right) \left(\frac{100 \text{fF}}{\text{s}} \right)^2
$$

Noise Detector Systems_30.9.24, N. Wermes 56

RECAP of the dependencies …

- Shot noise, which is parallel current noise to the input, is proportional to the detector leakage current I_0 and increases with the filter time τ , since I_0 is effectively integrated over τ by the CSA-shaper system. While still being frequency independent (white) at the CSA input, $\langle v_{\text{na}}^2 \rangle_{\text{shot}}$ develops a $1/f^2$ dependence behind the preamplifier as described by (17.100) , and a 1/f dependence after the shaper corresponding to a linear dependence on τ .
- Thermal noise in the transistor channel, while still being 'white' behind the preamplifier, is strongly reduced by the bandwidth limitation through the filter, leading to a decrease with $1/\tau$ after the shaper.
- For the $1/f$ noise part in the input transistor channel one would naively expect a larger contribution for large τ values (corresponding to small frequencies). This contribution, however, is cancelled by the bandwidth reduction by about the same Noise factor, such that at the shaper output any τ dependence is no longer present.

Optimal filter time

$$
ENC^2 = a_{\text{shot}}\tau + a_{1/f}C_D^2 + a_{\text{therm}}\frac{C_D^2}{\tau}
$$

there is an optimal shaping time

$$
\tau_{\rm opt} = \left(\frac{a_{\rm therm}}{a_{\rm shot}}\; C_D^2\right)^{1/2} = \left(\frac{4kT}{3\,e I_0 g_m}\; C_D^2\right)^{1/2}
$$

see also: PDG-Review on Low-noise detector readout, N.Wermes (2022&2024), H. Spieler (2013) in S. NAVAS *et al.* (Particle Data Group), Phys.Rev.D. **110**, 030001 (2024), doi 10.1103/PhysRevD.110.030001

Noise Detector Systems_30.9.24, N. Wermes 58 and the state of the

Examples

Pixel detector. As an example featuring small electrodes and correspondingly small small changes input capacitances we choose a silicon pixel detector (section 8.7) with parameters on 26.9.24 $C_D = 200$ fF, $I_0 = 1$ nA, $\tau = 50$ ns, $W = 20$ μ m, $L = 0.5$ μ m, $g_m = 0.5$ mS, where we $(\gamma, C_{ox}, (K_f))$ damage. With (17.110) an equivalent noise charge of

$$
ENC^2 \approx (24 e^{-})^2 (\text{shot}) + (17 e^{-})^2 (1/f) + (25 e^{-})^2 (\text{therm}) \approx (40 e^{-})^2
$$
 (47 e-)

Strip detector. For a typical silicon microstrip detector (see section 8.6.2) after radiation damage one obtains with $C_D = 20 \text{ pF}$, $I_0 = 1 \mu\text{A}$, $\tau = 50 \text{ ns}$, $W = 2000 \mu\text{m}$, L $= 0.4 \,\mu\text{m}, g_m = 5 \,\text{mS}$

$$
ENC^2 \approx (750 e^{-})^2 (\text{shot}) + (200 e^{-})^2 (1/f) + (800 e^{-})^2 (\text{therm}) = (1100 e^{-})^2
$$
 (1400 e⁻)²

Liquid argon calorimeter. As an example of a detector with a large electrode capacitance we take a liquid argon calorimeter cell with typical values as given by the ATLAS electromagnetic calorimeter (see section 15.5.3.2 on page 597) in the central region. With the parameters $C_D = 1.5 \text{ nF}$, $I_0 = \langle 2 \mu A, \tau = 50 \text{ ns}$, $W = 3000 \mu \text{m}$, $L = 0.25 \,\mu\text{m}$, $q_m = 100 \,\text{mS}$, i.e. assuming only a small (negligible) parallel shot noise (leakage current), one obtains:

 $\text{ENC}^2 \approx (1000 e^{-})^2(\text{shot}) + (15000 e^{-})^2(1/\text{f}) + (13500 e^{-})^2(\text{therm}) \approx (20200 e^{-})^2$ $(25000 e₋)²$

Noise Detector Systems_30.9.24, N. Wermes 59

Examples: Noise in pixel/strip/liq.Ar detector (ionisation detector)

Pop-up questions

- What are the most important electronic noise sources in a typical ionisation detector readout and **what do they depend on** in a system with CSA and shaper?
	- shot noise from detector leakage current, thermal & 1/f noise in amplifying transistor channel: shot noise « leakage current depends on τ ; thermal noise ~ 1/gm \times C_D \times 1/ τ ; 1/f noise ~C_D
- What is ENC?
	- equivalent noise charge: refers the obtained noise to a signal of 1e at the input.
- The original f dependencies of thermal, shot and 1/f noise become completely different after CSA and shaper. Why?

Because the transfer functions of CSA and shaper are in parts frequency dependent.

• Why is there an "optimal shaping time"?

O Because thermal noise falls with τ , shot noise rises with τ and 1/f noise is constant.

Noise Detector Systems_30.9.24, N. Wermes 61

Thank you very much for your attention

Norbert Wermes wermes@uni-bonn.de

Noise Detector Systems_30.9.24, N. Wermes

Content of lecture based on …

Particle Data Group Review (2024)

35.9 Low-noise detector readout

Revised November 2021 by N. Wermes (Bonn U.), revised November 2013 by H. Spieler (LBNL).

▪ Kolanoski, H. und Wermes, N. Teilchendetektoren – Grundlagen und Anwendungen (Springer/Spektrum 2016)

Kolanoski, H. and Wermes, N. Particle Detectors – fundamentals and applications (Oxford University Press 2020)

Noise Detector Systems 30.9.24, N. Wermes 63

BACKUP

… what about thermal noise in R-feedback ?

It acts on the preamplifier input in a very similar way as the leakage current shot noise contribution, i.e.

$$
\frac{d\left\langle v_{\text{pa}}^2 \right\rangle}{d\omega} = \frac{eI_0}{\pi \omega^2 C_f^2} \qquad \qquad \frac{\sqrt{2eI_0 + \frac{4kT}{R_f}}}{2} \qquad \qquad \frac{d\left\langle v_{\text{pa}}^2 \right\rangle_{R_f}}{d\omega} = \frac{2kT}{R_f} \frac{1}{\pi \omega^2 C_f^2}
$$

Its magnitude is usually small in comparison to the other contributions, in particular to the leakagecurrent-induced shot noise.

Noise Detector Systems_30.9.24, N. Wermes 65

kT/C noise

- not a fundamental noise, but is thermal noise in the presence of a filtering capacitor (RC)
- the thermal white noise of an RC circuit has a band width of

$$
\Delta f = \frac{1}{2\pi} \int_0^\infty \frac{d\omega}{1 + (\omega RC)^2} = \frac{1}{2\pi} \frac{\pi}{2RC} = \frac{1}{4RC}
$$

$$
\langle v^2 \rangle = 4kTR \; \Delta f = \frac{4kTR}{4RC} = \frac{kT}{C}
$$

• becomes independent of R

Noise Detector Systems $30.9.24$, N. Wermes 66

fresh-up: MOSFET -> NMOS, PMOS, CMOS

- reminder: transistors operate in "inversion"
- NMOS: transistor channel current are electrons
- PMOS: transistor channel current are holes
- CMOS: both transistor types are realised in the same substrate. IMPORTANT for electronic circuits

Nomenclature, a typical detector pulse

Kolanoski, Wermes 2017