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Summary

Aim of Project A05

Deeper understanding of Molecular Systems

evolution of conformations over time

efficient use of computational resources enabling the investigation of
more complex chemical problems

integrated Ab Initio Molecular Dynamics (AIMD) simulations and
data analysis
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Summary

Summary of Project A05

Approach

run multiple AIMD simulations simultaneously and use novel
(temporal) graph algorithms to exchange trajectories to lead the
simulation

develop analysis tools improving quality, efficiency, and scalability

utilize the Modular Supercomputing Architecture (MSA) to match
diverse workflow requirements
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State of the Art and Preliminary Work

State of the Art

AIMD simulations

enable study of structure formation effects in complex chemical
systems, and vibrational spectroscopy such as Infrared, Raman,
Vibrational Circular Dichroism (VCD)

Challenges: optimal performance and scalability on large HPC
systems
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State of the Art and Preliminary Work

State of the Art

Graphs

so far static structural formations and transition graphs used

Challenges: lack time evolution information and struggle to recognize
similar conformations

S. Bougueroua et al. 2018, Pietrucci et al. 2011
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State of the Art and Preliminary Work

State of the Art

High Performance Computing

AIMD simulations with standard parameters

Challenges: efficiently use heterogeneous HPC systems by considering
thread parallelism, memory management, and communication
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State of the Art and Preliminary Work

Preliminary Work: Scaling studies of AIMD with
MSA
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MSA connects clusters with unique hardware configurations to meet
user needs

scaling studies on HPC systems at Jülich Supercomputing Centre

S. Taherivardanjani, et int., and E. Suarez, B. Kirchner, Benchmarking the
Computational Costs and Quality of Vibrational Spectra from Ab Initio Simulations,
Advanced Theory and Simulations, vol. 5, 2021 8 / 17



State of the Art and Preliminary Work

Preliminary Work: AIMD

trajectory analysis

radical Voronoi tessellation for domain analysis and vibrational
spectra calculation

group atoms into subsets based on their local neighborhood

M. Brehm et int., and B. Kirchner: Domain Analysis in Nanostructured Liquids: A
Post-Molecular Dynamics Study at the Example of Ionic Liquids, ChemPhysChem,
vol. 16 (15), 2015
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State of the Art and Preliminary Work

Preliminary Work: Temporal Graphs
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represent dynamic processes (since edges have a time stamp)

new similarity measures and ML approach leading to improved
classification rates

broad experience in graph analysis and optimisation with applications
in cheminformatics and theoretical physics

L. Oettershagen, et int., and P. Mutzel: Classifying Dissemination Processes in
Temporal Graphs, Big Data, vol. 8 (5), 2020
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Goals and Methods

Goals and Approach

AIMD: improve capabilities and performance of AIMD simulation
and analysis of molecular vibrational spectroscopy

Graphs: develop novel analysis methods and tools for dynamic
processes based on temporal graphs

HPC: improve MSA via co-design and adapt algorithms and codes to
heterogeneous and modular supercomputing platforms
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(Temporal) Graph Analysis

Temporal Graph Analysis

Definition (Temporal Graph)

temporal graph GT = (V ,ET ) has temporal edges
eT = (u, v , te , λe) ∈ ET , where u, v ∈ V , te ∈ N and λe ∈ N.

Each edge eT is present at time te .

Traversal of edge eT needs time λe .
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Two temporal graphs GT = (V ,ET ) with λe = 1 for all e ∈ E
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(Temporal) Graph Analysis

Temporal Paths and Walks

Temporal paths in a temporal graph GT = (V ,ET ) with temporal
edges eT = (u, v , te , λe) ∈ ET , respect the time

Find: minimum duration paths, earliest arrival paths, shortest paths

Problem: subpaths of optimal paths not optimal
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(Temporal) Graph Analysis
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(Temporal) Graph Analysis

Applications
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Temporal networks can be used to transfer information about dynamic
processes to the network itself

Dissemination processes

dissemination of fake news in social networks

dissemination of infectious diseases

modelling of dynamic processes in biological networks

brain dynamics (e.g. from fMRI data)

dynamics in chemical structure formation
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(Temporal) Graph Analysis

Back to our Structure Formation Problem

Temporal Graph Analysis allows us:

take the time evolution information into account

from temporal graph similarity → guide the simulations during the
runs
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Current Status

Current Status

Staff situation

Katrin Drysch (started on October 1st)

cooperation with Ingo Scholtes (Univ. Würzburg)

cooperation planned with Stefan Kesselheim (FZJ)

Ongoing Work

process flow by Estela and Barbara

joined Master thesis supervised by Barbara and Petra

study temporal graph isomorphism based on De Brujn graphs
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Role within the CRC

Role of A05 within the CRC

A05

A01

A02

A03
B02

C01

C02

C03

graph algorithms and graph learning with A01

numerical methods for quantum chemistry with A03

techniques of HPC and MSA optimisations with A02 and B02

generalizations of used Delaunay trinangulation with C01

link to Z02 for benchmarking and testing on HPC and MSA systems
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