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TNs as MB States and Operators

TN compact representation of states and operators for many-body (MB) systems

L-body system: reduce complexity

∼ O
(
2L
)

=⇒ ∼ poly
(
L
)

efficient approximation states/operators with low entanglement

TN based algorithms: ◦ unitary dynamics at long time scales;
TN based algorithms: ◦ system-size larger than ED

MPS

PEPS

TTN
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Matrix Product Operator

Operator acting on L-body system Ô : H → H

1D: matrix-product-operator (MPO),

Ô =
∑

σ1,...,σL

∑
σ′
1,...,σ

′
L

Ôσ1,σ
′
1 . . . ÔσL,σ

′
L |σ1, . . . , σL⟩⟨σ′

1, . . . , σ
′
L|

complexity: ∼ L χ2d2
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U(1) Symmetry

• action of U(1): V =
⊕

n Vn Vn sub-space

◦ quantum charge n ∈ Z,
◦ symmetry generator n̂ =

∑
n n Π̂n, Π̂n projector in Vn

• Ô : V → V charge-preserving ⇔
[
Ô, n̂

]
= 0

Ô =
⊕
n

Ô [n] Ô [n] : Vn → Vn


Ô[1] 0 · · · 0
0 · · · 0

.

.

.

.

.

. Ô[n]
.
.
.

0 0 · · ·
. . .


e.g. spin L-body lattice with total magnetization conserved

Ŝz tot =
∑L

j=1 ŝ
z
j [Ĥ, Ŝz tot] = 0
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Operator Charge

Ô : H → H maps states with charge n into states with n′

Ô =
∑
i,j

Oij |i , n⟩⟨j , n′|

vectorized operator |Ô⟩⟩ =∑i,j Oij |i , n⟩|j , n′⟩

superoperator Q̂ : H⊗H → H⊗H

Q̂ |Ô⟩⟩ = qÔ |Ô⟩⟩,

Q = n̂ ⊗ 1 + α 1⊗ n̂T

qÔ = n + αn′
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Operator Charge

Ô : H → H maps states with charge n into states with n′
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Oij |i , n⟩⟨j , n′|
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superoperator Q̂ : H⊗H → H⊗H

Q̂ |Ô⟩⟩ = qÔ |Ô⟩⟩,
operator
charge

n̂|n⟩ = n|n⟩

Q = n̂ ⊗ 1 + α 1⊗ n̂T

qÔ = n + αn′
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Sector Resolution

qÔ = n + αn′

□ α = −1

□ α = (L+ 1)

□ α = +1

- block-diagonal operator

- unique charge for each block, i.e. qÔ = n + (L+ 1) n′;

- blocks anti-diagonal operators.
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Invariance of TNs under U(1) symmetry

charge or flow of conserved quantity

|σi ⟩ → |σi ,mi ⟩ |σ′
i ⟩ → |σ′

i ,m
′
i ⟩ |ai ⟩ → |ai , qi ⟩

local charge conservation: qi =
∑i

j=1 mj + α m′
j

boundary conditions: q0 = 0, qL = qÔ,

=⇒ operator charge conservation: qÔ =
∑L

i=1 mi + α m′
i
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OTOC

Out-of-time-ordered correlator (OTOC): standard detector of quantum chaos

Cj,j′(t) =
Tr
(
[Ôj , Ôj′(t)]

2
)

2 Tr (I)

spin−1/2 system: σ̂z
j (t) = Û(t)†σ̂z

j Û(t),

Cj,j′(t) = 1−
Tr
(
σ̂z
j′(t) σ̂

z
j σ̂z

j′(t) σ̂
z
j

)
Tr (I)

U(1) symmetric systems: σ̂j(t) is charge-preserving

Û(t) = e−i Ĥt
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Projected OTOCs in U(1)-Symmetry Sector

charge-preserving MPO
α = −1
q
Ô

= 0

Cj,j′(t) = 1−
Tr
((

σ̂z
j′(t) σ̂

z
j

)2)
D

Dn = Tr
(
I[n]

)
, Ci,j (t) =

∑
n

Dn

Tr (I)
·Ci,j (t)

[n]

sector-projected MPO
α = L+ 1

q
Ô

= n + (L+ 1)n

Cj,j′(t)
[n] = 1−

Tr
((

σ̂z
j′(t)

[n] σ̂z
j
[n]
)2)

Dn

Dn = Tr
(
I[n]

)
, Cj,j′ (t) =

∑
n

Dn

Tr (I)
· Cj,j′ (t)

[n]
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Projected OTOC

Cj,j′ (t)
[n] = 1− Tr

((
σ̂z
15(t)

[n] σ̂z
j
[n]
)2)

/Dn
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L = 50 spin chain, open boundary conditions, H =
∑L

i=1
1
2

(
σ+
i σ−

i+1 + σ−
i σ+

i+1

)
+ σz

i σ
z
i+1.

Trotterized (4-th order) time-evolution operator with dt = 0.005.
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Projected OTOC
Cj,j′ (t)

[n] = 1− Tr
((

σ̂z
15(t)

[n] σ̂z
j
[n]
)2)

/Dn
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Projected OTOC
Cj,j′ (t)

[n] = 1− Tr
((

σ̂z
15(t)

[n] σ̂z
j
[n]
)2)

/Dn
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Projected OTOC Speed

Propagation Speed of OTOC
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Summary and Outlook

Implementing symmetry in MPO

Computations of global quatities in symmetry-sector
◦ reduction of computational cost −→ blockwise operations
◦ dynamics at large times for large system-size

OTOC projected in sectors
◦ significant information lies on the biggest sector

Outlook

study operator entanglement entropy with symmetry-resolution

implement symmetry in higher D lattice
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Thank you!

14/18 NumeriQS Retreat



Symmetry Resolved OpEE

Bipartition of the system into A and B , i.e. H = HA ⊗HB

Q̂: generator of U(1) symmetry, Q̂ = Q̂A ⊗ 1B + 1A ⊗ Q̂B

Schmidt decomposition of operator Ô:

Ô√
Tr(Ô†Ô)

=
∑
qA

∑
j

λ
(qA)
j Ô(qA)

A,j ⊗ Ô(qÔ−qA)

B,j

with

[
Q̂A, Ô

(qA)
A,j

]
α

= qAÔ(qA)
A,j

[
Q̂B , Ô

(qB )
B,j

]
α

= qB Ô(qB )
B,j δqB ,(qÔ−qA)

.a

aα-deformed commutator [Â, B̂]α = Â+ αB̂
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Symmetry Resolved OpEE

Operator Entanglement Entropy (OpEE) : indicator of the operator complexity

S(Ô) =
∑
qA

p(qA)SqA
(Ô) +

∑
qA

−p(qA) log (p(qA))

SqA
(Ô) = −

∑
j

(
(λ

(qA)
j )2

p(qA)

)
log

(
(λ

(qA)
j )2

p(qA)

) p(qA) =
∑

j(λ
(qA)
j )2

interplay between entanglement of a state and symmetries

2Rath A, Vitale V, Murciano S, Votto M, Dubail J, Kueng R, Branciard C, Calabrese P and Vermersch B 2023,
Entanglement barrier and its symmetry resolution: theory and experiment, PRX Quantum 4 01031816/18 NumeriQS Retreat



Symmetry Resolved OpEE
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Reduction of the computational cost

Projected OTOCs in U(1)-Symmetry Sector

ϵn = 1− Tr

((
U

(n)
exact

)†
U

(n)
MPO

)
/Dn
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