

Martina Gisti, David J. Luitz, Maxime Debertolis

Computational Quantum Many-Body Physics

Physikalisches Institut , University of Bonn

NumeriQS Retreat

TNs as MB States and Operators

- TN compact representation of states and operators for many-body (MB) systems П
- L-body system: reduce complexity

$$
\sim O(2^L) \implies \sim poly(L)
$$

- efficient approximation states/operators with low entanglement
- TN based algorithms: unitary dynamics at long time scales; ○ system-size larger than ED

Operator acting on L-body system $\hat{O}: \mathcal{H} \to \mathcal{H}$

 \circ \circ \circ \overline{O} \overline{O} \circ \circ \blacksquare 1D: matrix-product-operator (MPO),

$$
\hat{O} = \sum_{\sigma_1, \ldots, \sigma_L} \sum_{\sigma'_1, \ldots, \sigma'_L} \hat{O}^{\sigma_1, \sigma'_1} \ldots \hat{O}^{\sigma_L, \sigma'_L} |\sigma_1, \ldots, \sigma_L\rangle \langle \sigma'_1, \ldots, \sigma'_L
$$

complexity:
$$
\sim L \chi^2 d^2
$$

U(1) Symmetry

• action of $U(1)$: $\mathbb{V} = \bigoplus_{n} \mathbb{V}_{n}$ \mathbb{V}_{n} sub-space

- quantum charge $n \in \mathbb{Z}$,
- \circ symmetry generator $\hat{n} = \sum_n n \; \hat{\Pi}$

 $\hat{\Pi}_n$ projector in V_n

•
$$
\hat{O}: \mathbb{V} \to \mathbb{V}
$$
 charge-preserving $\Leftrightarrow \left[\hat{O}, \hat{n}\right] = 0$
\n
$$
\hat{O} = \bigoplus_{n} \hat{O}^{[n]} \qquad \hat{O}^{[n]} : \mathbb{V}_{n} \to \mathbb{V}_{n}
$$
\n*e.g. spin L-body lattice with total magnetization conserved*

 $\hat{S}^{\textsf{z_tot}} = \sum_{j=1}^L \hat{s}^{\textsf{z}}_j \qquad [\hat{H},\hat{S}^{\textsf{z_tot}}] = 0$

 $\sqrt{2}$ $\overline{}$ $\begin{array}{c|ccccc}\hat{O}^{[1]} & 0 & \cdots & 0 \ \hline 0 & & \cdots & 0 \end{array}$ $\begin{array}{ccc} \vdots & \vdots & \vdots \\ 0 & 0 & \cdots \end{array}$ \setminus \cdot

Operator Charge

 $\hat{\mathcal{O}}: \mathcal{H} \to \mathcal{H}$ maps states with charge \emph{n} into states with \emph{n}'

$$
\hat{\mathcal{O}} = \sum_{i,j} O_{ij} |i,n\rangle \langle j,n'
$$

|

- *vectorized* operator $|\hat{O}\rangle\!\rangle = \sum_{i,j} O_{ij}|i,n\rangle|j,n'\rangle$
- superoperator $\hat{\mathcal{Q}}: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$

$$
\hat{\mathcal{Q}}\,\ket{\hat{\mathcal{O}}}_{\hat{\mathbf{z}}}=q_{\hat{\mathcal{O}}}\,\ket{\hat{\mathcal{O}}}_{\hat{\mathbf{z}}},
$$

Operator Charge

 $\hat{\mathcal{O}}: \mathcal{H} \to \mathcal{H}$ maps states with charge \emph{n} into states with \emph{n}'

$$
\hat{\mathcal{O}} = \sum_{i,j} O_{ij} |i,n\rangle \langle j,n'
$$

|

vectorized operator $|\hat{O}\rangle\!\rangle = \sum_{i,j} O_{ij}|i,n\rangle|j,n'\rangle$

■ superoperator $\hat{\mathcal{Q}}: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$

operator

\n
$$
\hat{Q} \mid \hat{O} \rangle = q_{\hat{O}} \mid \hat{O} \rangle,
$$
\ncharge

\n
$$
Q = \hat{n} \otimes 1 + \alpha \cdot 1 \otimes \hat{n}^T
$$
\n
$$
\underline{q_{\hat{O}} = n + \alpha n'}
$$

Sector Resolution

 \Box $\alpha = -1$ \Box $\alpha = (L+1)$ \Box $\alpha = +1$

block-diagonal operator

unique charge for each block, i.e. $q_{\hat{\mathcal{O}}} = n + (L+1)$ n'; blocks anti-diagonal operators.

6/18 NumeriQS Retreat

Invariance of TNs under U(1) symmetry

charge or flow of conserved quantity

$$
|\sigma_i\rangle \rightarrow |\sigma_i, m_i\rangle
$$
\n
$$
|\sigma'_i\rangle \rightarrow |\sigma'_i, m'_i\rangle
$$
\n
$$
|\sigma'_i\rangle \rightarrow |\sigma'_i, m'_i\rangle
$$
\n
$$
|\sigma'_i\rangle \rightarrow |\sigma_i, q_i\rangle
$$
\n
$$
\downarrow \sigma_1
$$
\n
$$
\downarrow \sigma_2
$$
\n
$$
\downarrow \sigma_1
$$
\n
$$
\downarrow \sigma_2
$$
\n
$$
\downarrow \sigma_1
$$
\n
$$
\downarrow \sigma_2
$$
\n
$$
\downarrow \sigma_1
$$
\n
$$
\downarrow \sigma_2
$$
\n
$$
\downarrow \sigma_1
$$
\n
$$
\downarrow \sigma_2
$$
\n
$$
\downarrow \sigma_1
$$
\n
$$
\downarrow \sigma_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_2
$$
\n
$$
\downarrow \sigma'_1
$$
\n
$$
\downarrow \sigma'_2
$$
\n

- local charge conservation: $q^{}_i = \sum_{j=1}^{i} m^{}_j + \alpha \,$ m $'_j$
- boundary conditions: $q_0 = 0$, $q_L = q_{\hat{\mathcal{O}}}$,

$$
\implies \text{operator charge conservation:} \ \ q_{\hat{\mathcal{O}}} = \sum_{i=1}^{L} m_i + \alpha \ m'_i
$$

OTOC

\circ \circ \overline{O} Ω \circ \overline{O} \circ

■ Out-of-time-ordered correlator (OTOC): standard detector of quantum chaos

$$
\mathcal{C}_{j,j'}(t) = \frac{\text{Tr}\left(\left[\hat{O}_{j},\hat{O}_{j'}(t)\right]^{2}\right)}{2\text{ Tr}\left(\mathbb{I}\right)}
$$

spin $-1/2$ system: $\hat{\sigma}_j^z(t) = \hat{U}(t)^\dagger \hat{\sigma}_j^z \hat{U}(t)$,

$$
C_{j,j'}(t) = 1 - \frac{\text{Tr}\left(\hat{\sigma}^z_{j'}(t)\ \hat{\sigma}^z_j\ \hat{\sigma}^z_{j'}(t)\ \hat{\sigma}^z_j\right)}{\text{Tr}\left(\mathbb{I}\right)}
$$

 \blacksquare U(1) symmetric systems: $\hat{\sigma}_i(t)$ is charge-preserving

UNIVERSITÄT BONN

Projected OTOCs in U(1)-Symmetry Sector

Projected OTOC

10/18 NumeriQS Retreat

t

Projected OTOC

$C_{j,j'}(t)$ $^{[n]}=1-\text{Tr}\left(\left(\hat{\sigma}_{15}^{z}(t)^{[n]}\hat{\sigma}_{j}^{z}[n]\right)^{2}\right)/\mathcal{D}_{n}$

Projected OTOC

 $C_{j,j'}(t)$ $^{[n]}=1-\text{Tr}\left(\left(\hat{\sigma}_{15}^{z}(t)^{[n]}\hat{\sigma}_{j}^{z}[n]\right)^{2}\right)/\mathcal{D}_{n}$

11/18 NumeriQS Retreat

UNIVERSITÄT BONN

Projected OTOC Speed

12/18 NumeriQS Retreat

Summary and Outlook

Implementing symmetry in MPO

Computations of global quatities in symmetry-sector П ◦ reduction of computational cost −→ blockwise operations ◦ dynamics at large times for large system-size

Summary and Outlook

Implementing symmetry in MPO

Computations of global quatities in symmetry-sector П ◦ reduction of computational cost −→ blockwise operations ◦ dynamics at large times for large system-size

■ OTOC projected in sectors

Summary and Outlook

Implementing symmetry in MPO

Computations of global quatities in symmetry-sector П ◦ reduction of computational cost −→ blockwise operations ◦ dynamics at large times for large system-size

■ OTOC projected in sectors

Outlook

- study operator entanglement entropy with symmetry-resolution
- **implement symmetry in higher D lattice**

Thank you!

■ Bipartition of the system into A and B, i.e. $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ \hat{Q} : generator of $U(1)$ symmetry, $\;\hat{Q}=\hat{Q}_A\otimes\mathbb{1}_B+\; \mathbb{1}_A\otimes\hat{Q}_B$ Schmidt decomposition of operator \hat{O} :

$$
\frac{\hat{\mathcal{O}}}{\sqrt{\text{Tr}(\hat{\mathcal{O}}^{\dagger}\hat{\mathcal{O}})}} = \sum_{q_A} \sum_{j} \lambda_j^{(q_A)} \hat{\mathcal{O}}_{A,j}^{(q_A)} \otimes \hat{\mathcal{O}}_{B,j}^{(q_{\hat{\mathcal{O}}}-q_A)}
$$
\nwith\n
$$
\left[\hat{Q}_A, \hat{\mathcal{O}}_{A,j}^{(q_A)}\right]_{\alpha} = q_A \hat{\mathcal{O}}_{A,j}^{(q_A)} \qquad \left[\hat{Q}_B, \hat{\mathcal{O}}_{B,j}^{(q_B)}\right]_{\alpha} = q_B \hat{\mathcal{O}}_{B,j}^{(q_B)} \delta_{q_B, (q_{\hat{\mathcal{O}}}-q_A)}.
$$

^aα-deformed commutator $[\hat{A}, \hat{B}]_{\alpha} = \hat{A} + \alpha \hat{B}$

Operator Entanglement Entropy (OpEE) : indicator of the operator complexity

$$
S(\hat{\mathcal{O}}) = \sum_{q_A} p(q_A) S_{q_A}(\hat{\mathcal{O}}) + \sum_{q_A} -p(q_A) \log (p(q_A))
$$

$$
S_{q_A}(\hat{\mathcal{O}}) = -\sum_{j} \left(\frac{(\lambda_j^{(q_A)})^2}{p(q_A)} \right) \log \left(\frac{(\lambda_j^{(q_A)})^2}{p(q_A)} \right)
$$

$$
p(q_A) = \sum_j (\lambda_j^{(q_A)})^2
$$

interplay between entanglement of a state and symmetries

 2 Rath A, Vitale V, Murciano S, Votto M, Dubail J, Kueng R, Branciard C, Calabrese P and Vermersch B 2023, $16/Entanglement barrier and its symmetry resolution: the _{QdWeffed} experiment, PRX Quantum 4 010318$ UNIVERSITÄT BONN

Symmetry Resolved OpEE

Heisenberg chain with $L = 16$ Trotterised (4-th order) time-evolution operator until time $t=20$. $\quad S(\hat{U}(t)^{[n]})$ for the sectors $n = 1, 2, 4, 8$.

Heisenberg chain with $L = 10$ and $L = 16$ Trotterised (4-th order) time-evolution operator until time $t = 20$. $S(\hat{U}(t)^{[n]})$ for the biggest sector $n=5$ and $n=8$.

Reduction of the computational cost

Projected OTOCs in U(1)-Symmetry Sector $\epsilon_n = 1 - \text{Tr}\left(\left(U^{(n)}_{\text{exact}}\right)^{\dagger} U^{(n)}_{\text{MPO}}\right) / \mathcal{D}_n$

18/18 NumeriQS Retreat