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Motivation

= Goal: Development and application of modelling and simulation techniques,
which allow a better understanding of phase transition in material science
= Phase diagrams, condensed phase processes, ... —
= Materials properties are encoded in the N (Higher Order Saddle Point)
Transition Structure
Born-Oppenheimer Potential Energy Surface (PES) (1st Order Saddle Point)
= Task: Analyse PES associated with phase transitions T
and interfaces (Local Minimum)
= To this end we need just to:
= Sample PES where necessary E
= Evaluate PES at sampling points
= Challenges:
= PES is high-dimensional (3x number atoms)
= For each point PES is given by solution of

high-dimensional SE (3x number electrons)

Product
(Global Minimum)

Keith, John A., et al.

Rz "arXiv:2102.06321 (2021).
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Motivation

= Problem: Conventional AIMD (Ab Initio Molecular Dynamics) methods have

= The project aims to address these challenges by further develop and apply:
= Hybrid Monte Carlo (HMC) algorithm (Efficient Sampling)
= Machine Learning (ML) based force field models (Efficient Evaluation)

= Simulation of application relevant processes (Efficient Analysis)

I Efficiently simulate and analyse the high-dimensional potential energy surface (PES)
associated with phase transition and interfaces.
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Hybrid Monte Carlo

1
= One update step of the HMC combines the following three steps:
1. Draw the conjugate momenta p from a standard normal distribution.

2. Integrate Hamilton’s equations of motion

numerically using a symplectic integration scheme (reversible and area preserving) starting
from p, q to obtain new p’ and q'.

3. Accept or reject the proposal q' with probability
Pace = min{1 + exp(—(H(',q") = H(»,9))}

\
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= Advantages compared to @ MMC ) Prokhorenko, S., Kalke,
a . . i . . .
: 1.0f ] 1.0F K., Nahas, Y., & Bellaiche,
Metropolis Monte Carlo (MMC) L (2018). Large scale
hybrid Monte Carlo
a 5t | A
(a) s ¥, ns 1o L % o simulations for structure
(‘)W - " and property prediction.
¥ = 0.0 | = 0.0 npj Computational
u/u ~01 U/to Materials, 4(1), 80.
~02| -0.5] 1 =05
-1.0
~1.0k 4 : . ] ~1.0k : A - .
i 10 -05 00 05 1.0 -10 -05 00 05 1.0
= Potential advantages compared to MD x x

= Explore configuration space more efficiently in case of complex PES with many local minima

= Capability to take larger leaps in configuration space
= Mitigate the constraints on time steps (which are often present for MD to resolve fast motion)
= Global Updates

= Faster Convergence
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First Proof-of-Concept Study

» Lennard-Jones Liquids

= Melting- and solidification curves 20
with and without random defects — Melting N=500
| — Solidif. N=500
— Melting N=475
2r Solidif. N=475
> |
> et
S 30
—
b}
©
(a
-35
Alizadeh, V., Garofalo, M., Urbach, C,,
& Kirchner, B. (2024). A Hybrid Monte
Carlo study of argon solidification. | | ,
-4pnL— I TR L1 T - !

l | 1 l | L
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Temperature / K

Zeitschrift fur Naturforschung B, 79(4),
283-291.
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= Small Molecules
= MD has problems to sample conformational space :
due to large barriers
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Kirchner, B., Blasius, J., Esser, L., &°%
%00 Reckien, W. (2021). Advanced Theory
B and Simulations, 4(4), 2000223.
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First Test Systems
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Electronic Structure Methods

= Ab initio and first principle methods are quite accurate but involve to much computational cost

complete theory

quantum electrodynamics /
relativistic (e.g. Dirac Eq.) /-

=1/
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small | | HF/DZ |MP2/DZ D2
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.g HF/TZ | MP2/TZ Tz FCI/TZ
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low Correlation method high
Wavefunction Based Methods
Seite 8 01.10.2024 © Fraunhofer SCAI

J ’ Chemical

accuracy
/ e.g. RPA or
s "double-hybrids”
f & Rung 5
f ybrid (or hyper)-GGA: f e.g. hybrid: B3LYP, PBEO,
&8 HSE06, wB97X,
5.8 g: Rung 4 or hyper: BMK, M06-2X
- e.g. TPSS, MO6L
5 & Rung 3
/ adds dependence on f ¢ g. PBE, BLYP, PW91
a density gradient
he 2 LDA:
/ d’”::’ on local / Keith, John A., et al.
Rung 1/ — "arXiv:2102.06321 (2021).
Hartree World/

(no correlation)

DFT Based Methods
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Predictive Surrogate Models

= Development of an efficient surrogate model A
= Based on ab initio reference data

= Supervised learning = CCsD(T)

= Goal: Get ab initio accuracy for

low computational cost

= Exploit generated data €| DFT

= Challenge: Extrapolation/Multi-Element 7Yy MP2

= Active learning (error estimators)

= (Physics) Informed Machine Learning (PINN) HE

= Transfer Learning Computational Cost

ML

CISD

Accuracy

>

N N2 N3 N4 N> N® N’ N
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Predictive Models: Linearvs Non-Linear

A

= argmin L(f(x;),y;)+AR(f,0
= Linear (Kernel) Methods f fegp(e) [Z (f Cxi), yi) (f,0)
= Linear Regression

= Kernel Ridge Regression

450

= Support Vector Machines -
= Gaussian Process Approximation mgzgi f(x) = Y% c;b;(x)
= Pros: iogl‘ , )
Convex loss, numerical (linear) %1 f(xj) = i Cibi(xp) = X K (x, x;) = y;

solvers
Error/variance estimators,
Uncertainty Quantification

_ 1
mCmIIXC —ylI* + 5}\”)’”2

Universal Approximator K(x;,x) = (x; x)P (polynomial kernel)

" Cons: K(x;,x) = exp(—i(x- — x)?) (Gaussian kernel)
Large number of DOFs to reach l 202
accuracy
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Predictive Models: Linear vs Non-Linear

Battaglia, Peter W., et al. "Relational inductive biases, deep learning,

— and graph networks." arXiv preprint arXiv:1806.01261 (2018).
. Dense Convolution Recurrent
= Artificial Neural Networks (ANN)
1 S T
= Convolutional Networks == Ve — Ve ( }—
= Recurrent Networks < s 0
P e Q =
o 2
= Pros: Z ®
. . . . T N
Can describe complex non-linear correlations with N T—

potentially low number of DOFs
Universal Approximator

= Cons:
No rigorous error estimators
Non-convex highly oscillating loss 1™
Usually a large dataset for training * 2
is needed .

E=WTX+b

E=wW]f(WIX + b)

E =W (W, fi(W{'X + b)) + by) + b3)
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Machine Learning Interaction Potentials

= On-site Decomposition of Born-Oppenheimer PES

= On-site decomposition:
" E(x) = XN, V(Dxy)

= With atomic environments:
= Dxy == {x; — xk}lsiSN,0<|xi—xj|SRcut

= More general: E := E.., + Egisp + Ectec + Emi

= Learn the function V which maps an atomic environment to R

= Note: the atomic environment is a set and hence V: R%*3 - R has to be permutation invariant
L V(xn(l), ...,xn(d)) =V(xq,...,xq), VT € Sy

= Further properties:
= Rotation invariance: V(Qx4, ...,Qx4) = V(xq, ...,x4),VQ € 0(3)
= Smoothness: if a neighbouring atom crosses the R.,,; border of the environment
= Completeness/Uniqueness

\
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Moment Tensor based Interaction Potentials (MTP)

= Moment Tensor Based Linear Regression Approach
= For a system k with reference energy and forces

(k) k
M VaeaCaBa (D ))=E<">

d k k
X.
J

= With L2 regularization that leads to linear system
= Basis is generated be contractions of Moment Tensors:

Muv Dx(k) zfuv(|ru| Zi, 1) v Qv 1ij

Iul

u |n‘tr0d uced by Shapeev 201 6 [Alexander V Shapeev. Multiscall Modeling & Simulation 14.3 (2016), pp. 1153-1173]
= Span permutation and rotational invariant multivariate polynomials and are complete.
* fuv (., Z;, Z;) is often expanded in spectral basis and the DOFs are (non-linear) optimized (a priori)
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RMSE (eV/A)

Moment Tensor based Interaction Potentials

= Silicon dataset!

0.158

0.1

0.0631 [

Seite 14
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- 1) Bartok, Albert P, et al. "Machine learning a general-purpose interatomic potential for
30.09.2024 © FraunholerSCAL gjlicon." Physical Review X 8.4 (2018): 041048,

DFT

39.9

152.1
58.9
/2.8

= Comparison with Classical IP

RMSE (eV/A)
0.06
0.19
0.45

= Elastic Properties

MTP
36.9
145.2
57.8
71.2
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Moment Tensor based Interaction Potentials

= Benchmark Study by Zuo et al (J. Behler, G. Csanyi, A. Shapeev, A. Thompson) on datasets for
Mo (and Li, Ni, Cu, Si, Ge)

20+
) o sl  GAP sl MTP ——
@) O Jmax = 3 — 6 6} Training error
o O O/ E 4f at
9 ; O 9o ——
> 10 O ® hidden layers [16, 16] © 2 2f Test error
o @ d o o 2 0 2000 4000 °0 400 800
é : . O Jnx=3 W E
o O max ~ g} | NNP st SNAP s qSNAP
. ® < 6} 6 6
= | ¢ wmP \ S
. at 4t 4t
© @ NNP /Q v @ -
—— - - 2t 2t 2t
" | O SNAP - F b L , J ,
I_Q_) ® qSNAp  20Polynomialpowers 0 500 10001500 0 100 200 O 2000 4000
2 —— I, ... ] # of degrees of freedom
-6 -5 -4 -3 -2
10 10 . 10 10 10 Zuo, Yunxing, et al. "Performance and cost assessment of machine
Computat|ona| cost S/(MD Step . atom) learning interatomic potentials.” The Journal of Physical Chemistry A

124.4 (2020): 731-745.
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Moment Tensor based Interaction Potentials

= Active learning workflows: https://docs.quantumatk.com/tutorials/mtp hfo2/mtp hfo2.html (HfO2)
= Application of our MTP engine/indicators in collaboration with Synopsys (former QuantumWise)

load in scripter and apply crystal random
° E — displacements template and run —

— load in scripter and apply active learning -
template - edit calculator, MTP settings and run ﬁ

- _J

\
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https://docs.quantumatk.com/tutorials/mtp_hfo2/mtp_hfo2.html

Moment Tensor based Interaction Potentials

= Active learning workflows: https://docs.quantumatk.com/tutorials/mtp hfo2/mtp hfo2.html (Hf-O)
= Application of our MTP engine/indicators in collaboration with Synopsys (former QuantumWise)

MTP fit (eV)

MTP fit (eV)
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Moment Tensor based Interaction Potentials

= Summary for MTP
= Successful application in particular for semi-conductor materials
= Training workflows for given data sets
= Active learning workflows (together with Geometry Optimization, MD and NEB)

= Pre-Trained MTPs for bulk and interfaces: (about 35, e.g.: Ta, Fe, Co, Mg, W, O for MRAM)
= Challenges and Problems for MTP

= Choice of hyperparameters (cutoff etc.) !
= Torsional interaction problem: Convolutional MTP < 08
= Remark: MTP can also be used for tensorial properties =
(dipole moments, etc. ...) g 0.6 - i
L
~ § . w
'kt A I ( P, g 0.4 |
F o
o o I l_rx] [ .r'_!..-l
] I L L 4 6 8 10 12
= ] 9 &

Cutoff Radius (A)

Schitt, Kristof T., Oliver T. Unke, and Michael Gastegger. "Equivariant message passing for the —
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Graph Convolution Neural Networks

= Message Passing Graph Convolution Neural Networks (MPGCNN)

= Remark: ANNs on sets
= Permutation invariance -
representation:
* f({xy, o xnd) = WXL P (X))
P:R™ > R, ¢: R? - R™
= Optimal bound for m known for
d=1.(i.,e.m=n)

Attributes

@ Update Functions Pooling/Average
LY - =/ e /
€. = d) (Ek: Vires Vs 1_1) €, =P (Ei)
! v = -/ el !
vV, = (Eij\ri;ll) e =p ( -‘)
o 1 (_I —f —/ — V—rU V.Ir
(a) Edge update (b) Node update (¢) Global update u = (‘i) €5V, l_l) ( )

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, =
Seite 19 30.09.2024 © Fraunhofer SCAI and graph networks." arXiv preprint arXiv:1806.01261 (2018).  Fraunhofer
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Schitt, Kristof T., Oliver T. Unke , and Michael Gastegger .

E q U iva ri a nt G ra p h CO nVOI uti O n N e u ra I N etWO rks Equivariant message passing for the prediction of tensorial

properties and molecular spectra.” arXiv preprint
arXiv:2102.03150 (2021).

Features Distances Angles Directions

= MPGCNN based interaction potentials: e ( é
. . ' P
= A Zoo of Multi-Layer based Graph Convolution T
. . - * Message M a Z 175 1 Qjik Z TJ
NNs have been published in the recent years. [ :] l r:v| ciomi | i i, Il
R . ¥ iTLg Wi 2

= Some use also charges equilibrium approaches [ H Srciaors | OUND OUNT) oW

¥ esolve change -

O el ] ves

Resolve change yes "
of a1

= E-MPGCNN ANN based interaction potentials = MT based E-MPGCNN interaction potentials

= Group equivariance = Use Moment Tensors for node features
= f:V - W function between vector spaces (atomic environment features) and
= TY, T} group representations of decomposition into steerable features via
g € G onV and W, respectively (generalized) Clebsch-Gordan
= f is G-equivariance: f(TVx) = TV f(x) transformation for node/edge update to

= Use rotational equivariant update function construct SO(3)-equivarant layers

= E.g.: MACE, ANINet, AIIegro, Rick Oerder, Master Thesis, University of Duesseldorf, 2022

\
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Applications and Validation
Some selected issues

= Simulation of the crystallization process of different rare gas systems.
= How does brute force calculation compare to the seed method?
= How is the influence of the system size and how is the temperature effect.
= How large does the seed need to be in order to facilitate crystallization?
= Does the structure of the seed influence the outcome of the crystal structure ?
= Analysis of the structure and mechanism of crystallisation.
= Do particles aggregate by adding individuals or is it a collective mechanism.
= Implementation of analysis methods to determine the order and other relevant quantities.
= Data generation
= Use of an adapted and improved form of the HMC code to more complicated systems.
= E.g. simulation of CO2, water, alcohols and ionic liquids, i.e. more realistic systems.

\
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First Application

= Realistic Nanoporous Carbon-Based Supercapacitor
= Fully polarizable potential model is necessary

Bacon, C., Simon, P., Salanne, M., &
Serva, A. (2024). Simulating the

\ charging mechanism of a realistic
\\ nanoporous carbon-based

. supercapacitor using a fully polarizable
model. Energy Storage Materials, 69,

103415.

\
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Hybrid Monte Carlo

Some selected issues

= Preconditioning

= Multiple timescale integration

= Higher-order and force-gradient integration schemes
= Bayesian inference

= Un-adjusted HMC

= Combine the HMC approach with newly developed
active learning strategies for multi-fidelity ML based PES/FF

\
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ML-Based Force Fields

Some selected issues

= A multi-fidelity ML model, i.e. a hierarchy of MTP models of varying accuracy and associated costs.
= ML-FF models by following the idea of physics-informed networks

= Enhancement to predict atomic and molecular tensor properties, like e.g. dipole and quadrupole
moments, based on equivariant approaches.

= Development of error indicators suitable for active learning approaches within MD and HMC

= Further development of the ML based FFs to deal with combinations of many different element types,
by making use of feature embedding and transfer learning techniques.

= Combination of various data sources

= Improvement and further development of the hierarchy of ML-FF models and data generation
workflows by following the idea of sparse grids.

= Pairwise Training (Preprint: C. Holzer, R. Oerder, S. Grimme, J. Hamaekers DOI:10.26434/chemrxiv-2024-tm991)

\
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Summary

= Methods
Hybrid / Hamilton Monte Carlo Method
Machine-Learning Interaction Potentials
Simulation of processes associated to phase transitions
= Goal: Development of new approaches and workflows to analyse and simulate long time atomistic processes of
innovative functional materials for energy storage and harvesting.
= Create efficient HMC-based simulation techniques designed for phase transitions and interfaces in energy
storage and harvesting materials, capable of handling reactive processes, nucleation, and melting.
= Develop a hierarchy of ML-based (linear and/or non-linear) reactive and polarisable force fields,
with multi-fidelity capabilities.
= Validate, apply and analyse the methods in the design of materials for energy storage and harvesting
= One Challenge: Bring it all together

= Next Steps
Implementation aspects: C++/KOKKOS - torchscript (ML potentials) wrapper
Identify more relevant applications
Datasets

\
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Multiscale Modelling and Simulation
Macro-scale effects based on molecular physics and chemistry
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Summary and Outlook

= MIL Based Interaction Potentials

Seem to work well for some applications - Linear vs Non-Linear
Physical-Informed ML & Parametrized NNs ?

Remark on Physical-Informed ML

Prediction of properties of glass based on its composition and making use of physical features

) Conve»ntional,ﬂL:lG )
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Maier, G., H., J., Martilotti, D. S., & Ziebarth, B. (2023).
Predicting Properties of Oxide Glasses Using Informed Neural
Networks. arXiv preprint arXiv:2308.09492.
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Summary and Outlook

= ML Based Interaction Potentials
Seem to work well for some applications - Linear vs Non-Linear
Physical-Informed ML & Parametrized NNs ?
Remark on Parametrized NNs

Determine a parametrized model based on data Oeltz, D., H, J., & Pilz, K. F. (2023). Parameterized Neural
Networks for Finance. arXiv preprint arXiv:2304.08883.

f(x;a,b,c)

® trainingsdata
2.5 1 21|----- target /;‘
~—— single-task network = task 0
2.0 4 1 —— multi-task network 2.0
1.5 1 3.54
1.0 1 - °] 3.01
0.5 4 1 |
- 2.51
0.0 1
-0.51 7 P d 2.0
-1.0 1 __,,/"// 1.5 )
-1.00 -0.75 -0.50 -0.25 obo 025 050 0.75 i e SN
=1.00 =0.75 =0.50 025 0.00 025 0.50 0.75 100 1.01 = __— ———
Test: training of a parametrized function for V|sc05|ty temperature curves for glasses e
We determined a model which seems to work to some extend better than KNOWN Coriverivurion +urco v s wor, vi 1)
First test for pair interaction functions are to some extend promising
—
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Hybrid/Hamiltonian Monte Carlo

. Prokhorenko, S., Kalke, K., Nahas, Y., & Bellaiche, L. (2018).
- Advantages compared to MEthpOlIS Monte Carlo (M MC) Large scale hybrid Monte Carlo simulations for structure and

property prediction. npj Computational Materials, 4(1), 80.
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