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PHYSICS OF AI

regular

1. Learning and generalization

goals:
- optimal parameters / architectures?

- implicit bias 

   * why are deep networks (transformers) good architectures; are there better ones?

   * understand abilities and limitations of particular architectures

- sample efficiency:
   * how much data required to reach desired performance→ energy demand

2. Link between biological and artificial neuronal networks

goals:
- understand qualitative similarities and differences

- identify features of biological networks that are essential for efficiency

- propose biologically-inspired paradigms of computation

a b

Canatar et al. (2021)
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1. FROM BAYESIAN INFERENCE TO PHYSICS OF AI

2. FROM DEEP TO RECURRENT BIOLOGICAL NETWORKS 



1. FROM BAYESIAN INFERENCE TO PHYSICS OF AI



SUPERVISED LEARNING AS BAYESIAN INFERENCE

Training data

Model

Prior

Posterior (Bayes’ law)



APPLICATION TO DEEP NETWORK

parameters

prior ensemble of networks posterior ensemblesingle network

only requires mapping by network

weight posterior = equilibrium distribution
of noisy gradient descent
with weight regularization



different input 
data points
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distribution of 
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APPLICATION TO DEEP NETWORK: PRIOR OF OUTPUTS



GAUSSIAN PROCESS THEORY OF LEARNING

Williams et al. (1998)
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MEANING OF THE GAUSSIAN KERNEL: SIMILARITY
input kernel

CIFAR-10 dataset



SETTING: DEEP NETWORK

network mapping

output

training data

inputs

outputs / labels

width = N

# training samples = P

y



BAYESIAN INFERENCE: PRIOR OF OUTPUT

network prior

enforce 
network 
equations for 
all L layers 
and all 
samples α

expectation 
over prior of 
weights



PRIOR: CONTINUOUS SUPERPOSITION OF GAUSSIANS

“fluctuating” kernel

dominates 
integral in the 
limit of
large width N

dot product over neurons
neurons within layer identical

data term

action

field theory

Fischer et al. 2024 (ICML)



NEURAL NETWORK GAUSSIAN PROCESS (NNGP)

Williams (1998), Lee et al. (2018)

forward mapping of intermediate kernels

output kernel

independent of targets

input kernel

finite

width

depth L
learning reduced to 
Gaussian process 
regression



WHY GO FURTHER?
Lazy learning versus feature learning

There are two regimes in the theory of neural networks:

● lazy learning (Chizat et al., 2019)
→ neural network Gaussian process (NNGP) (Neal 1994; Williams 1998; Lee et al., 2018)

● equivalent to random feature regression (Mei et al., 2022)
→ neural tangent kernel (NTK) (Jacot et al., 2018)

● equivalent to linearization in weights

● feature learning
→network parameters adapt to task and network learns features of task

→networks typically show better performance (Geiger et al., 2020)
● related works:

     Naveh & Ringel 2021; Zavatone-Veth, …, Pehlevan (2021);
     Li & Sompolinsky, 2021; Hanin & Zlokapa, 2023; Seroussi et al., 2023;
     Pacelli et al., 2023; Cui et al., 2023



FEATURE LEARNING

data term net prior

Proportional limit -> feature learning

width

# data points



GAUSSIAN PROCESS THEORY OF LEARNING

Fischer et al. 2024 (ICML)

Williams et al. 1998

approximate as 
Gaussian



MNIST – CLASSIFICATION BETWEEN 0’S AND 3’S
Numerical evaluation of theory
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vs

optimal alignment

0

3

layers

Target

Fischer et al. 2024 (ICML)



INTERIM SUMMARY
● Bayesian networks: prior is superposition of Gaussians

intermediate layers’ kernels appear as order parameters

● exact expressions for the Bayesian MAP kernels in the 
proportional limit N, P → ∞ from saddle point of action

● kernel adaptation in non-linear networks
discrepancy signal aligns kernel with target

● tradeoff between critical fluctuations and output scale
shifts optimal adaptation towards smaller variance in weights
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target

Fischer, Lindner et al. ICML 2024ICML 

arxiv 2405.10761



2. FROM DEEP ARTIFICIAL TO BIOLOGICAL NETWORKS 



a b

DEEP AND RECURRENT NETWORKS

deep network

same W
between each pair of time points
= “layers”

different W(l)

between each pair of layers

recurrent network



COMPARISON OF AI AND BIOLOGICAL NETWORKS
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EQUIVALENCE OF DEEP AND RECURRENT NETWORKS

in

in

shared weights
(recurrent network)

independent weights
(deep network)

layer or time layer or time

layer index / time index

Segadlo et al., Unified field theory for deep and recurrent networks J Stat Mech, 2022

correlations at same time a=b correlations at different times a != b

same NNGP, same 
computational  abilities
in the limit width N →  



BIOLOGICAL NETWORKS: BINARY INTERACTION

Page 24

binary, all-or-nothing signal

Binary neurons

1

0



PATTERN SEPARATION
Differences between artificial (continuous rate) and biological (binary) networks
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Binary Rate

Time Time

coupling g

coupling g

biological recurrent network artificial recurrent network

common mean-field
theory for both
architectures
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Keup et al., Transient chaotic dimensionality expansion PRX, 2021



PATTERN SEPARATION
Inter-class distance increases compared to intra-class distance
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optimal signal after 
2 ln(2) ~ 1.5 activations 
per neuron



COMPARISON TO THE LIVING (MOUSE) BRAIN

parallel neuropixel recordings in the bahaving mouse
  (collaboration Simon Musall, RWTH)

different stimuli
  - visual
  - tactile



CONSTRAINING A RECURRENT NETWORK MODEL

R, both angles ϴ:
  - uniquely define parameters of random binary
    network model

optimally trained readout w
  - prediction of separability

→ assess what a downstream neuron may decode

stimulus separability



OPTIMAL PROCESSING TIME FOR HARD TASKS

optimal 
processing 
time

task difficulty
= correlation between
classes



ADVANTAGE OF SPARSE CODING: EXTENSIVE 
INFORMATION GROWTH

crowding of neural space
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SUMMARY II

● deep and recurrent networks:
identical large N theory, identical processing capabilities

● continuous vs discrete (spiking) communication
discrete communication results in stereotypical
optimal processing time

● signals in the brain
optimal transient processing
nearly extensive information transfer by sparse activity

a b

https://lists.fz-juelich.de/mailman/listinfo/phys4ml
New mailing list on Physics of AI











- learning as Bayesian inference
   - linear regression
   - generalization to networks, selection of networks

- figure for networks (Javed’s poster)

- large N field theory for deep networks

- NNGP theory of networks
    Intuition for the kernel: transformation of similarities
    CIFAR 10 images
    NNGP kernels as function of depths

- feature learning: taking into account data term
- inclusion of data variability (Javed)

- equivalence of deep and recurrent networks
   - intuition
   - justification from large large N limit

- effect of gain function (smooth vs soft) on network properties
- transient dimensionality expansion

- verification in biological data



OUTLOOK
Community
- collaborations

   John Paul Strachan (networking PhD)
    Michael Kraemer (physics, RWTH)
    Zohar Ringel (physics, Hebrew University)
    Alex Alemi (google)

- Phys4ML mailing list
  - https://lists.fz-juelich.de/mailman/listinfo/phys4ml
  - 150 members

Funding
- past funding
  - BMBF project “Renormalized flows” 2020-2023
    2.5 Mio Euro total / ~1 Mio Euro to Juelich / RWTH
  - RWTH ERS project (400 kEuro / 1 year)

- application for DFG Research Unit
   Lenka Zdeborova (Lausanne)
   Bernd Rosenow (Leipzig)
   Claudius Gros (Frankfurt)
   Caterina De Bacco (Tuebingen)
   Peter Sollich (Goettingen)
   Michael Kraemer (RWTH)
   Zohar Ringel (Hebrew U)

Opportunities for Juelich
 - strong in:

* physics (using methods from there), connection to RWTH
* computational neuroscience (paradigms of neuronal computation)

          * neuromorphic computing (propose new paradigms)
          * numerical techniques (HPC)

 - complimentary to industrial empirical / applied research on methods
 - requires strong theoreticians and long-term commitment
   to develop coherent theory

Other activities
- Bocconi University

Marc Mezard builds up computational sciences
 
- DPG conference 2023
   - organized physics meets ML, ~400 attendends

- special issues
  2020 J Phys A Machine learning and statistical physics

https://iopscience.iop.org/article/10.1088/1751-8121/abca75
  
  2024 PNAS  Machine learning meets physics: A two-way street
  https://www.pnas.org/toc/pnas/current
 



THEORY OF LEARNING AND INFERENCE
IN DEEP NETWORKS

Goals:
- understand learning and generalization
- prediction of optimal parameters
- implicit bias
- generalization beyond training data-set
  (transfer learning, important for foundation models)



FEATURE LEARNING THEORY

thermodynamic limit:

theory

finite-size:

tools:
- large deviation theory
- perturbation expansion 

tools:
- field theory
- fluctuation expansion around NNGP

proportional limit

forward mapping

backward mapping



EXPLAINABLE AI

- use of INN for
  unsupervised
  learning of data statistics

- extraction of theory:
  build up of interactions
  in hierarchical manner

Merger et al., Learning interacting theories from data, Phys Rev X, 2023
press release, radio interview



LARGE-N FIELD THEORY

large N limit



Slides of oxford talk follow here



LEARNING IN NEURAL NETWORKS
Motivation
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There are two regimes in the theory of neural networks:

● lazy learning (Chizat et al., 2019)
→ neural network Gaussian process (NNGP) (Neal 1994; Williams 1998; Lee et al., 2018)

● equivalent to random feature regression (Mei et al., 2022)
→ neural tangent kernel (NTK) (Jacot et al., 2018)

● equivalent to linearization in weights

● feature learning
→network parameters adapt to task and network learns features of task

→networks typically show better performance (Geiger et al., 2020)
● related works:

     Naveh & Ringel 2021; Zavatone-Veth, …, Pehlevan (2021);
     Li & Sompolinsky, 2021; Hanin & Zlokapa, 2023; Seroussi et al., 2023;
     Pacelli et al., 2023; Cui et al., 2023



HOW TO GO FROM NNGP TO FEATURE LEARNING?

1. Recover NNGP for width  N →       , P = const. from a large deviation principle

2. Minimal extension of this approach to the proportional limit N, P →        to obtain feature learning

3. Expose relation to networks at finite N: optimal adaptation

target / labels?



neurons decouple, quadratic

suggest concentration of auxiliary variables C for large N
given C: neurons decouple, preactivations i.i.d. Gaussian

INTERMEDIATE KERNELS: NATURAL ORDER PARAMETERS

qualitatively similar approaches: Sompolinsky & Zippelius (1982) (spin glasses)
      Schuecker et al.. (2016, 2018), Crisanti et al. (2018) (cont.-time RNNs)



LARGE DEVIATION APPROACH
scaling form of cumulant-generating function, limit exists

Gärtner-Ellis theorem (e.g., Touchette 2009)

supremum condition: forward propagation of kernel

independent of N

non-Gaussian measure

rate function



MAXIMUM A POSTERIORI (MAP) ESTIMATE OF KERNELS

data term net prior

from Rasmussen & Williams (2006)

Bayes



MAP ESTIMATE OF KERNELS

data term net prior

finite

NNGP
from sup condition:

Recovering the NNGP



MAP ESTIMATE OF KERNELS

output discrepancy:

back propagation:

Proportional limit -> feature learning

“error signal”



PAIR OF FORWARD-BACKWARD EQUATIONS

similar structure as in Seroussi & Ringel 2023 Nat. Comm.

forward equation backward equation

initial cond. final cond.



SPECIAL CASE: DEEP LINEAR NETWORK

forward mapping

consistent with Yang, …, Aitchison (2023)

backward mapping
rank one correction
towards target

consistent with Li & Sompolinsky (2021)



GENERAL CASE: NON-LINEAR DEEP NETWORK
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perturbative treatment

width
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NNGPperturbative

full theory

check against numerics (linear case)



KERNEL ADAPTATION FOR XOR TASK
Numerical evaluation
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Refinetti et al., ICML 2021

Input TargetFeature-corrected kernels

layers CKA = cosine similarity



MNIST – CLASSIFICATION BETWEEN 0’S AND 3’S
Numerical evaluation
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there is no constraint on the input data

vs

optimal alignment



OUTPUT SCALING ENHANCES FEATURE LEARNING
Downscaling of output layer increases corrections of kernels
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dependence on output scale



FLUCTUATIONS LEAD TO FEATURE LEARNING

flexible

rigid

prior



WHAT ABOUT FINITE N?

so far:

theory

now:

tools:
- large deviation theory
- perturbation expansion 

tools:
- field theory
- fluctuation expansion around NNGP

numerics

proportional limit



FLUCTUATION CORRECTIONS
network prior, keeping auxiliary field

fluctuations around NNGP

fluctuation expansion (Gaussian fluctuations around NNGP)

linear system of equations



FLUCTUATION CORRECTIONS

so far:

theory

now:

tools:
- large deviation theory
- perturbation expansion 

tools:
- field theory
- fluctuation expansion around NNGP

proportional limit

linearized forward mapping

same form of backward mapping



FEATURE LEARNING CLOSE TO CRITICALITY
Interplay between backward response function and error signal in output layer
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Schoenholz et al. 2017
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divergence at transition to chaos
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