PHYSICS OF AI FROM ARTIFICIAL TO CORTICAL NETWORKS

MORITZ HELIAS

THEORETICAL NEUROSCIENCE (IAS-6) FACULTY OF PHYSICS, RWTH AACHEN UNIVERSITY

2024-10-02 CRC NUMERIQS BONN

Member of the Helmholtz Association

PHYSICS OF AI

1. Learning and generalization

goals:

- optimal parameters / architectures?
- implicit bias
	- * why are deep networks (transformers) good architectures; are there better ones?
- **chaotic** * understand abilities and limitations of particular architectures
- sample efficiency:

* how much data required to reach desired performance→ energy demand

regular 2. Link between biological and artificial neuronal networks

goals:

- understand qualitative similarities and differences
- identify features of biological networks that are essential for efficiency
- propose biologically-inspired paradigms of computation

PHYSICS APPROACH TO NEURONAL NETWORKS

Nestler, Keup, Dahmen, Gilson, Rauhut, Helias (2020) *NeurIPS*

Merger, Rene, Fischer, Dahmen, Helias (2023) *Phys Rev X* Fischer, Lindner, Dahmen, Ringel, Kraemer, Helias (2024) *ICML*

Fischer*,* Keup, Rene, Layer, Dahmen, Helias (2022) *Phys Rev Res* Tiberi, Stapmann, Kuehn, Dahmen, Luu, Helias *(2022) Phys Rev Lett*

Keup, Kuehn, Dahmen, Helias (2021) *Phys Rev X*

Epping, Rene, Helias, Schaub (2024) *NeurIPS*

Dahmen, Gruen, Diesmann, Helias (2019) *PNAS* Senk et al. (2020) *Phys Rev Res* Layer et al. (2022) *Elife* Dahmen et al. (2024) *PRX Life*

1. FROM BAYESIAN INFERENCE TO PHYSICS OF AI

2. FROM DEEP TO RECURRENT BIOLOGICAL NETWORKS

Member of the Helmholtz Association

1. FROM BAYESIAN INFERENCE TO PHYSICS OF AI

SUPERVISED LEARNING AS BAYESIAN INFERENCE

Training data

 $\mathcal{D} = \{(x_\alpha, y_\alpha)\}_{1 \leq \alpha \leq P}$

Model

 $y_{\alpha}=w\cdot x_{\alpha}$ $\rightarrow p(y|x,w)$

Prior

 $w \sim p_{\text{prior}}^w$

Posterior (Bayes' law)

$$
p_{\text{posterior}}^w(w) = \frac{p(y|X, w) p_{\text{prior}}(w)}{p(y)}
$$

APPLICATION TO DEEP NETWORK

single network **prior ensemble of networks** posterior ensemble $\mathcal{D} = (X, Y)$ $p(\Theta)$

only requires mapping by network

 $\Theta, X \mapsto y$

weight posterior = equilibrium distribution of **noisy gradient descent** with weight regularization Ω

$$
\frac{\partial}{\partial t}\Theta = -\nabla_{\Theta}\left[\mathcal{L} + \|\Theta\|^2\right] + \text{noise}
$$

APPLICATION TO DEEP NETWORK: PRIOR OF OUTPUTS

GAUSSIAN PROCESS THEORY OF LEARNING

MEANING OF THE GAUSSIAN KERNEL: SIMILARITY

Eat с ÷ **IC BAR** $\frac{1}{2}$ \mathbf{p} 帷 冷 497 E R. M n ŃШ $\mathcal{I}^{\mathcal{I}}$ -ó

CIFAR-10 dataset

SETTING: DEEP NETWORK

network mapping $h_{\alpha}^{(0)} = W^{(0)} x_{\alpha}$ $h_{\alpha}^{(l)} = W^{(l)} \phi \big(h_{\alpha}^{(l-1)} \big)$

$$
h\in\mathbb{R}^N\quad\text{width}=\mathsf{N}
$$

output

$$
y_\alpha = h_\alpha^{(L)}
$$

training data

$$
\mathcal{D} = \{(x_{\alpha}, y_{\alpha})\}_{1 \le \alpha \le P}
$$

inputs $X \in \mathbb{R}^{P \times D}$
outputs / labels $Y \in \mathbb{R}^{P}$ # training samples = P

Member of the Helmholtz Association

BAYESIAN INFERENCE: PRIOR OF OUTPUT

$$
h_{\alpha}^{(0)} = W^{(0)} x_{\alpha} \qquad \longrightarrow \qquad C^{(XX)} = \frac{g_0}{D} X X^{\mathsf{T}}
$$

Member of the Helmholtz Association

PRIOR: CONTINUOUS SUPERPOSITION OF GAUSSIANS

Member of the Helmholtz Association

neurons within layer identical

NEURAL NETWORK GAUSSIAN PROCESS (NNGP)

Forschungszentrum

WHY GO FURTHER?

Lazy learning versus feature learning

There are two regimes in the theory of neural networks:

- lazy learning (Chizat et al., 2019)
	- \rightarrow neural network Gaussian process (NNGP) (Neal 1994; Williams 1998; Lee et al., 2018)
		- equivalent to random feature regression (Mei et al., 2022)
	- \rightarrow neural tangent kernel (NTK) (Jacot et al., 2018)
		- equivalent to linearization in weights

● **feature learning**

- \rightarrow network parameters adapt to task and network learns features of task
- \rightarrow networks typically show better performance (Geiger et al., 2020)
- related works:

 Naveh & Ringel 2021; Zavatone-Veth, …, Pehlevan (2021); Li & Sompolinsky, 2021; Hanin & Zlokapa, 2023; Seroussi et al., 2023; Pacelli et al., 2023; Cui et al., 2023

GAUSSIAN PROCESS THEORY OF LEARNING

Williams et al. 1998

RWTHAA

MNIST – CLASSIFICATION BETWEEN 0'S AND 3'S

Member of the Helmholtz Association

Forschungszentrum

INTERIM SUMMARY

- **Bayesian networks: prior is superposition of Gaussians** intermediate layers' kernels appear as order parameters
- **exact expressions for the Bayesian MAP kernels** in the proportional limit N, $P \rightarrow \infty$ from saddle point of action
- **kernel adaptation in non-linear networks** discrepancy signal aligns kernel with target
- **tradeoff between critical fluctuations and output scale** shifts optimal adaptation towards smaller variance in weights

Fischer, Lindner et al. ICML 2024 arxiv 2405.10761

Member of the Helmholtz Association

 $l=1$

2. FROM DEEP ARTIFICIAL TO BIOLOGICAL NETWORKS

DEEP AND RECURRENT NETWORKS

COMPARISON OF AI AND BIOLOGICAL NETWORKS

RWTHA!

Forschungszentrum

Segadlo et al., Unified field theory for deep and recurrent networks J Stat Mech, 2022

BIOLOGICAL NETWORKS: BINARY INTERACTION

time t (ms)

PATTERN SEPARATION

Differences between artificial (continuous rate) and biological (binary) networks

COMPARISON TO THE LIVING (MOUSE) BRAIN

parallel neuropixel recordings in the bahaving mouse (collaboration Simon Musall, RWTH)

different stimuli

- visual
- tactile

CONSTRAINING A RECURRENT NETWORK MODEL

R, both angles ϴ:

 - uniquely define parameters of random binary network model

optimally trained readout w

- prediction of separability
- \rightarrow assess what a downstream neuron may decode

OPTIMAL PROCESSING TIME FOR HARD TASKS

Forschungszentrum

ADVANTAGE OF SPARSE CODING: EXTENSIVE INFORMATION GROWTH

crowding of neural space

Member of the Helmholtz Association

ACKNOWLEDGMENTS

Dr. Tobias

Kühn

Dr. Christian Keup

Javed Lindner Kirsten Fischer

Fischer, Lindner et al. Critical feature learning in deep networks ICML 2024, arxiv 2405.10761

Keup, Kühn et al., Transient chaotic dimensionality expansion PRX, 2021

Segadlo et al., Unified field theory for deep and recurrent networks J Stat Mech, 2022

Schutzeichel et al. 2024 in prep. **Collaborations:**

- Michael Krämer (RWTH)
- Zohar Ringel (HUJI, IL)
- Simon Musall (RWTH)

Federal Ministry of Education and Research

SUMMARY II

- deep and recurrent networks: identical large N theory, identical processing capabilities
- **continuous vs discrete (spiking) communication** discrete communication results in stereotypical optimal processing time
- **signals in the brain** optimal transient processing nearly extensive information transfer by sparse activity

New mailing list on Physics of AI

https://lists.fz-juelich.de/mailman/listinfo/phys4ml

Member of the Helmholtz Association

 \boldsymbol{A}

 $\operatorname{stimulus}$ 1

stimulus

 \overline{R}

50

trial \boldsymbol{k}

 $\frac{1}{10^{-2}}$

 $\mathcal{X} _N$

 x_3

 $100\,$

- learning as Bayesian inference
	- linear regression
	- generalization to networks, selection of networks
- figure for networks (Javed's poster)
- large N field theory for deep networks
- NNGP theory of networks Intuition for the kernel: transformation of similarities CIFAR 10 images NNGP kernels as function of depths
- feature learning: taking into account data term
- inclusion of data variability (Javed)
- equivalence of deep and recurrent networks
	- intuition
	- justification from large large N limit

- effect of gain function (smooth vs soft) on network properties Member transient dimensionality expansion

OUTLOOK

Community

- collaborations

 John Paul Strachan (networking PhD) Michael Kraemer (physics, RWTH) Zohar Ringel (physics, Hebrew University) Alex Alemi (google)

- Phys4ML mailing list

- https://lists.fz-juelich.de/mailman/listinfo/phys4ml
- 150 members

Funding

- **- past funding**
- BMBF project "Renormalized flows" 2020-2023 2.5 Mio Euro total / ~1 Mio Euro to Juelich / RWTH
- RWTH ERS project (400 kEuro / 1 year)

- application for DFG Research Unit

 Lenka Zdeborova (Lausanne) Bernd Rosenow (Leipzig) Claudius Gros (Frankfurt) Caterina De Bacco (Tuebingen) Peter Sollich (Goettingen) Michael Kraemer (RWTH) Zohar Ringel (Hebrew U)

Other activities

- Bocconi University Marc Mezard builds up computational sciences

- DPG conference 2023

- organized physics meets ML, ~400 attendends

- special issues

2020 J Phys A Machine learning and statistical physics https://iopscience.iop.org/article/10.1088/1751-8121/abca75

 2024 PNAS Machine learning meets physics: A two-way street https://www.pnas.org/toc/pnas/current

Opportunities for Juelich

- strong in:
	- * physics (using methods from there), connection to RWTH
	- * computational neuroscience (paradigms of neuronal computation)
	- * neuromorphic computing (propose new paradigms)
	- * numerical techniques (HPC)
- complimentary to industrial **empirical / applied research** on methods
- requires strong theoreticians and long-term commitment to develop coherent theory

THEORY OF LEARNING AND INFERENCE IN DEEP NETWORKS

Goals:

- understand learning and generalization
- prediction of optimal parameters
- implicit bias
- generalization beyond training data-set
- (transfer learning, important for foundation models)

FEATURE LEARNING THEORY

proportional limit

theory

thermodynamic limit:

$$
\begin{array}{ccc}\nN & \longrightarrow & \infty \\
P = \alpha N & \longrightarrow & \infty\n\end{array}
$$

tools:

- large deviation theory
- perturbation expansion $P \ll N$

finite-size:

$$
N = \text{finite}
$$

$P = \text{finite}$

tools:

- field theory
- fluctuation expansion around NNGP

forward mapping

 $C^{(l-1)} \mapsto C^{(l)}$

backward mapping

 $\tilde{C}^{(l+1)} \mapsto \tilde{C}^{(l)}$

EXPLAINABLE AI

- use of INN for unsupervised learning of data statistics
- extraction of theory: build up of interactions in hierarchical manner

Merger et al., Learning interacting theories from data, Phys Rev X, 2023 press release, radio interview

Member of the Helmholtz Association

LARGE-N FIELD THEORY

joint distribution of outputs for training set $\mathcal{L}_{\mathcal{A}}$

$$
p(\boldsymbol{Y}|\boldsymbol{X}) = \Big\langle \prod_{\alpha=1}^D \delta[y_\alpha - \Psi(\theta, x_\alpha)] \Big\rangle_{\theta \sim N}
$$

disorder average, auxiliary variable C enforced by \tilde{C} $\mathcal{L}_{\mathcal{A}}$

 $\boldsymbol{Y} | \boldsymbol{X} \sim \langle N(0, C) \rangle_{C, \tilde{C}}$

distribution of $(C, \tilde{C}) \sim \exp(S(C, \tilde{C}))$ \mathbf{m} $S(C,\tilde{C}) = N \Big| - \tilde{C}^{\mathrm{T}} C + \Omega(\tilde{C} | C) \Big|$

$$
\Omega(\tilde{C} | C) = \sum_{l=1}^{L+1} \ln \left\{ e^{\tilde{C}_{\alpha\beta}^{(l)} g^2 \phi_{\alpha}^{(l-1)} \phi_{\beta}^{(l-1)}} \right\}_{h^{(l-1)} \sim N(0, C^{(l-1)})}
$$

+ $\tilde{C}_{\alpha\beta}^{(0)} \frac{g_0^2}{N_{\text{in}}} \sum_{i=1}^{N_{\text{in}}} x_{i,\alpha} x_{i,\beta}$

large N limit

Slides of oxford talk follow here

LEARNING IN NEURAL NETWORKS

Motivation

There are two regimes in the theory of neural networks:

- lazy learning (Chizat et al., 2019)
	- \rightarrow neural network Gaussian process (NNGP) (Neal 1994; Williams 1998; Lee et al., 2018)
		- equivalent to random feature regression (Mei et al., 2022)
	- \rightarrow neural tangent kernel (NTK) (Jacot et al., 2018)
		- equivalent to linearization in weights

● **feature learning**

- \rightarrow network parameters adapt to task and network learns features of task
- \rightarrow networks typically show better performance (Geiger et al., 2020)
- related works:

 Naveh & Ringel 2021; Zavatone-Veth, …, Pehlevan (2021); Li & Sompolinsky, 2021; Hanin & Zlokapa, 2023; Seroussi et al., 2023; Pacelli et al., 2023; Cui et al., 2023

HOW TO GO FROM NNGP TO FEATURE LEARNING?

1. Recover NNGP for width $N \to \infty$, P = const. from a large deviation principle

- 2. Minimal extension of this approach to the proportional limit N, P $\rightarrow \infty$ to obtain feature learning
- 3. Expose relation to networks at finite N: optimal adaptation

INTERMEDIATE KERNELS: NATURAL ORDER PARAMETERS

$$
\prod_{\alpha i} \delta \left[-h_{\alpha i} + \sum_{j} W_{ij} \phi_{\alpha j} \right] = \prod_{\alpha i} \int_{-i\infty}^{i\infty} \frac{d\tilde{h}_{\alpha i}}{2\pi i} \exp \left(\tilde{h}_{\alpha i} \left[-h_{\alpha i} + \sum_{j} W_{ij} \phi_{\alpha j} \right] \right)
$$
\nneurons decouple, quadratic\n
$$
\left\langle \exp \left(\sum_{\alpha i} \tilde{h}_{\alpha i}^{(l)} W_{ij}^{(l)} \phi_{\alpha j}^{(l-1)} \right) \right\rangle_{W^{(l)}} = \exp \left(\frac{1}{2} \sum_{\alpha \beta} \sum_{i} \tilde{h}_{\alpha i}^{(l)} \tilde{h}_{\beta i}^{(l)} \frac{g_l}{N} \sum_{j} \phi_{\alpha j}^{(l-1)} \phi_{\beta j}^{(l-1)} \right)
$$
\nsuggest concentration of auxiliary variables C for large N given C: neurons decouple, preactivations i.i.d. Gaussian\n
$$
h_{\alpha i}^{(l)} | C^{(l)} \text{ i.i.d. in } i \mathcal{N}(0, C^{(l)})
$$

qualitatively similar approaches: Sompolinsky & Zippelius (1982) (spin glasses) Schuecker et al.. (2016, 2018), Crisanti et al. (2018) (cont.-time RNNs)

LARGE DEVIATION APPROACH

scaling form of cumulant-generating function, limit exists

$$
\lim_{N \to \infty} N^{-1} \mathcal{W}(N K | C^{(l-1)}) = \lambda(K | C^{(l-1)}) \equiv \ln \left\langle \exp \left(g_l \phi^{(l-1)T} K \phi^{(l-1)} \right)_{\mathcal{N}(0, C^{(l-1)})} \right\rangle
$$

independent of N

Gärtner-Ellis theorem (e.g., Touchette 2009)

$$
-\ln p \left(C^{(l)} | C^{(l-1)} \right) \stackrel{\bigstar}{\simeq} \sup_K \underbrace{N \left[\text{tr} K^\mathsf{T} C^{(l)} - \lambda \left(K | C^{(l-1)} \right) \right]}_{=: \Gamma \left(C^{(l)} | C^{(l-1)} \right) \qquad \text{rate function}
$$

supremum condition: **forward propagation of kernel** $C^{(l-1)} \mapsto C^{(l)}$

non-Gaussian measure

$$
C^{(l)} = \lambda' \left(K^{(l)} | C^{(l-1)} \right)
$$

= $g_l \left\langle \phi^{(l-1)} \phi^{(l-1)T} \right\rangle_{\mathcal{P}}$ $\left\langle \dots \right\rangle_{\mathcal{P}} \propto \left\langle \dots \exp \left(g_l \frac{\phi^{(l-1)T} K^{(l)} \phi^{(l-1)}}{\phi^{(l-1)}} \right) \right\rangle_{\mathcal{N}(0, C^{(l-1)})}$

Member of the Helmholtz Association

MAXIMUM A POSTERIORI (MAP) ESTIMATE OF KERNELS

MAP ESTIMATE OF KERNELS data term net prior finite **NNGP** from sup condition: **Recovering the NNGP**

Member of the Helmholtz Association

$$
\tilde{C}^{(L)} = \mathcal{S}'_{\mathcal{D}}(C^{(L)}) \stackrel{\text{MAP}}{\simeq} \frac{1}{2\kappa^2} \langle (y - h^{(L)}) (y - h^{(L)})^{\mathsf{T}} \rangle - \frac{1}{2\kappa} \mathbb{I}
$$
\n"error signal"

back propagation: $1 \leq l < L$

$$
0 \stackrel{!}{=} \frac{\partial \mathcal{S}(C)}{\partial C^{(1 \le l < L)}} = -\underbrace{\Gamma'(C^{(l)}|C^{(l-1)})}_{\tilde{C}^{(l)}} - \underbrace{\frac{\partial \Gamma(C^{(l+1)}|C^{(l)})}{\partial C^{(l)}}}_{\simeq -\frac{\partial}{\partial C^{(l)}} \ln p(C^{(l+1)}|C^{(l)})}
$$

Member of the Helmholtz Association

 $\tilde{C}^{(l+1)} \mapsto \tilde{C}^{(l)}$

PAIR OF FORWARD-BACKWARD EQUATIONS

$$
C^{(l+1)} = g_l \langle \phi^{(l)} \phi^{(l)\mathsf{T}} \rangle_{\mathcal{P}_l}
$$

$$
\langle \ldots \rangle_{\mathcal{P}_l} \propto \langle \ldots \exp \left(\frac{g_{l+1}}{N} \phi^{(l)\mathsf{T}} \tilde{C}^{(l+1)} \phi^{(l)} \right) \rangle_{\mathcal{N}(0, C^{(l)})}
$$

similar structure as in Seroussi & Ringel 2023 Nat. Comm.

Member of the Helmholtz Association

forward equation backward equation

 $\tilde{C}^{(l)} = \frac{\partial}{\partial C^{(l)}} \, \ln p(C^{(l+1)}|C^{(l)})$

SPECIAL CASE: DEEP LINEAR NETWORK

$$
h_{\alpha}^{(L)} = \left\{ \prod_{l=0}^{L} W^{(l)} \right\} x_{\alpha}
$$

$$
\Gamma(C^{(l)}|C^{(l-1)}) = \text{KL}(\mathcal{N}(0,C^{(l)}) \mid \mid \mathcal{N}(0,g_l C^{(l-1)}))
$$

consistent with Yang, …, Aitchison (2023)

consistent with Li & Sompolinsky (2021)

GENERAL CASE: NON-LINEAR DEEP NETWORK

perturbative treatment

\n
$$
\langle \ldots \rangle_{\mathcal{P}} \propto \Big\langle \ldots \exp\big(\frac{g}{N} \phi^{\mathsf{T}} \tilde{C} \phi \big) \Big\rangle_{\mathcal{N}(0, C)}
$$
\n
$$
\simeq \Big\langle \ldots \big[1 + \frac{g}{N} \phi^{\mathsf{T}} \tilde{C} \phi \big] + \mathcal{O}(N^{-2}) \Big\rangle_{\mathcal{N}(0, C)}
$$

$$
C_{\alpha\beta}^{(l+1)} = g_{l+1} \left\langle \phi_{\alpha}^{(l)} \phi_{\beta}^{(l)} \right\rangle_{\mathcal{N}(0,C^{(l)})} + \frac{g_{l+1}^2}{N} \sum_{\gamma,\delta} V_{\alpha\beta,\gamma\delta}^{(l)} \tilde{C}_{\gamma\delta}^{(l+1)} + \mathcal{O}(N^{-2})
$$
\n
$$
V_{\alpha\beta,\gamma\delta}^{(l)} := \left\langle \phi_{\alpha}^{(l)} \phi_{\beta}^{(l)} , \phi_{\gamma}^{(l)} \phi_{\delta}^{(l)} \right\rangle_{\mathcal{N}(0,C^{(l)})}^{C}
$$
\n
$$
\tilde{C}_{\alpha\beta}^{(l)} = \mathcal{G}_{\alpha\beta} \tilde{C}_{\alpha\beta}^{(l+1)} + \delta_{\alpha\beta} \sum_{\gamma} \mathcal{H}_{\gamma\alpha} \tilde{C}_{\gamma\alpha}^{(l+1)} + \mathcal{O}(\tilde{C}^2)
$$
\n
$$
= \underbrace{\begin{array}{c}\text{inturbative}\\ \text{int theory}\end{array}}_{\text{full theory}\end{array}
$$
\n
$$
= \underbrace{\begin{array}{c}\text{inturbative}\\ \text{intology}\end{array}}_{\text{200}\end{array}
$$
\n
$$
= \underbrace{\begin{array}{c}\text{int}(l+1)\\ \text{intology}\end{array}}_{\text{200}\end{array}
$$

KERNEL ADAPTATION FOR XOR TASK

Member of the Helmholtz Association

Page 54

MNIST – CLASSIFICATION BETWEEN 0'S AND 3'S

Numerical evaluation

there is no constraint on the input data

OUTPUT SCALING ENHANCES FEATURE LEARNING

Downscaling of output layer increases corrections of kernels

dependence on output scale

$$
\tilde{C}^{(L)} \stackrel{\text{MAP}}{\simeq} \frac{1}{2\kappa^2} \langle (y - h_{\alpha}^{(L)} / \sqrt{\gamma_0}) (y - h^{(L)} / \sqrt{\gamma_0})^{\mathsf{T}} \rangle - \frac{1}{2\kappa} \mathbb{I}
$$

$$
\stackrel{\gamma_0 \to \infty}{\to} \frac{1}{2\kappa^2} (yy^{\mathsf{T}} - \kappa \mathbb{I})
$$

Page 56

FLUCTUATIONS LEAD TO FEATURE LEARNING

WHAT ABOUT FINITE N?

numerics

$$
N = \text{finite}
$$

$$
P = \text{finite}
$$

Member of the Helmholtz Association

FLUCTUATION CORRECTIONS

network prior, keeping auxiliary field

$$
(C, \tilde{C}) \sim \exp\left(\mathcal{S}(C, \tilde{C}) + \mathcal{S}_{D}(C^{(L)}|Y)\right)
$$

$$
\mathcal{S}(C, \tilde{C}) := -\text{tr}\,\tilde{C}^{\mathsf{T}}C + \mathcal{W}(\tilde{C}|C)
$$

fluctuations around NNGP

$$
C = C_{\text{NNGP}}^* + \delta C
$$

$$
\tilde{C} = 0 + \delta \tilde{C}
$$

fluctuation expansion (Gaussian fluctuations around NNGP)

$$
(\delta C, \delta \tilde{C}) \sim \exp\left(\frac{1}{2} (\delta C, \delta \tilde{C})^{\mathsf{T}} \mathcal{S}^{(2)} \left(\delta C, \delta \tilde{C}\right) + \mathcal{S}_{\mathcal{D}}^{(1)\mathsf{T}} \delta C^{(L)}\right)
$$

linear system of equations

$$
\[\mathcal{S}^{(2)} \left(\begin{array}{c} \delta C \\ \delta \tilde{C} \end{array} \right) \]^{(l)} + \left(\begin{array}{c} \mathcal{S}_{\text{D}}^{(1)} \\ 0 \end{array} \right) \delta_{l\,L} = 0
$$

FLUCTUATION CORRECTIONS

FEATURE LEARNING CLOSE TO CRITICALITY

Interplay between backward response function and error signal in output layer

Forschungszentrum