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What is the problem?

B QCD theory is highly non-linear, cannot be solved directly.

B Must be approximated by numerical methods to make predictions.

Lattice QCD in a nutshell

B Discretize spacetime, i.e. four dimensional lattice of size Lx x Ly x Lz x Lt.
B Finite spacetime implies periodic boundary conditions.

u Differential operators discretized by finite differences.

Consumer of 10+% of public supercomputer cycles.

Highly optimized on every single HPC platform for the past 30 years.
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It's the linear solver, stupid!

D(U,m)z=b, gauge field U, mass constant m

Computational Steps of LQCD

B Generate an ensemble of gluon field configurations, aka gauge generation
Hybrid Monte Carlo is the algorithm of choice
Produced in sequence, with hundreds needed per ensemble
Strong scaling required per task
50— 90% of the runtime is in the linear solver
O(1) solve per linear system

B Analyzing the configurations:

Task parallelism, can be farmed out
80 —99% of the runtime is in the linear solver
Many solves per system, e.g., O(10°)

Any substantial improvement in runtime can only be attained by better linear solvers!

= Fraunhofer

SCAI

\



Multigrid Methods - the optimal solver for discretized PDEs
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Different Flavors of Multigrid Methods

Geometric Multigrid

Geometric coarsening of grids.
Classical polynomial interpolation as prolongation.

May employ complex smoothing schemes to improve robustness.

Direct solution on coarsest level.

Algebraic Multigrid

B Interpret system matrix as representation of graph.
® Compress and coarsen graph e.g. via agglomeration.
B Employs simple smoothing schemes.

® Construct prolongation from entries of system matrix and/or near kernel
information.

B Direct solution on coarsest level.

Typically used as preconditioner in a Krylov method to improve robustness and efficiency.
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Different Phases of Multigrid Methods

Setup Phase

Coarsening of fine grid ¢ to coarse grid €)c.
Construction of P, R = P" & D. := RDP.
Apply recursively.

Solution Phase

Outer (Flexible) Krylov Method, e.g. (F)GMRES, BiCGstab.
Cycling schemes V, W or K-cycle.

Smoother, e.g. block-Gauss-Seidel iteration or GMRES.
Approximate coarse grid solver, e.g. GMRES, Gauss.

Huge universe to select the various components in both phases.
Computational effort in setup phase can differ substantially between
different flavors of multigrid.

Solution phase is essentially universal. Efficiency dominated by
matrix-vector-products and coarse grid solution.
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Current State of the Art

DD—Q—AMG SOlVer [Rottmann; Frommer, Kahl, Krieg, Leder, Rottmann]

Simple geometric agglomeration-based AMG.
Prolongation based on local coherence assumption.

Utilize block structure (12 degrees of freedom per lattice site/grid point on
the fine grid, coarser grids 2 X N, per agglomerate).

Inexact multi-coloured block-Gauss-Seidel smoother (denoted as SAP).
K-cycling in solution phase.

Even-odd preconditioning, i.e. iteration on Schur complement.

Widely used approach in LQCD with essentially these
fixed components. ,

[

No proof that selected components are optimal &
robust.

ARG

-

Implementation needs to be adapted to current
architecture for maximal performance.
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Goals of the Project

Development of efficient & scalable linear solver for lattice Dirac operators.

Use ML to improve AMG for LQCD

B Determine P by optimizing the spectral radius of the iteration matrix of the
two-grid method, p(M), as a function of P and A for a fixed smoother. A. Katrutsa et
al, (2017) arXiv:1711.03825. D. Greenfeld et al, (2019) arXiv:1902.10248. |. Luz et al, (2020) arXiv:2003.05744

B Use ML to define the C/F splitting (coarsening scheme).
A. Taghibakhshi et al, (2021) arXiv:2106.01854

B Construct smoothers that efficiently pair with standard coarsening.
R. Huang et al, (2021) arXiv:2102.12071.

B Create a neural network to predict optimal free parameters (for instance ).
P. F. Antonietti, et al, (2021) arXiv:2111.01629. H. Zou et al, (2023) arXiv:2307.09879. M. Caldana, et al, (2024)
arXiv:2304.10832

Bring modern multiscale techniques to LQCD

B AMG is designed for much more complex situations that LQCD
B Utilization of structured grid / lattice and upscaling techniques

B Extend algebraic multiscale approach to spacetime lattice and Dirac operator
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Aggregation vs. Algebraic Multiscale Coarsening

B Aggregates (disjoint) merge all points into single coarse point.

B AMS maintains notion of vertex, edge, .... degrees of freedom (connected).
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Aggregation vs. Algebraic Multiscale Prolongation

average convergence rate: inhomogenous 2D Poisson problem
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® Trivial prolongation in aggregation AMG, i.e.

piecewise constant

B Robustness and scalability: Unsmoothed vs. smoothed

aggregation AMG.

® Algebraic AMS interpolation high quality via parallel

construction.
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Construction Algebraic Multiscale Prolongation

B Consider local linear system for single aggregate
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® Direct interpolation of coarse points / vertices allows for
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B Yielding the prolongation operator
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Status & Outlook

Positions recently filled / accepted.

Next Steps

B Evaluate if AMS can be easily realized in DD-a-AMG implementation.

B Evaluate if Dirac operator can be easily realized in our AMG
implementations.

B Evaluate AMG components simplified to structured grid input.
B Evaluate AMG components for matrix-free realizations.

B Evaluate performance impact of coarse grid solution.

Long-term Outlook

B [mplementation with BO2 framework.

B ML optimization of parameters on MSA.
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