B6: Multi-Level Iterative Solvers for Lattice Dirac Operators Improving Algebraic Multigrid for LQCD via AMS & ML

> Marc Alexander Schweitzer 1,2 Stefan Krieg ³ Jaime Fabián Nieto Castellanos ³ (09/2024) Pauline Schauerte ^{1,2} (04/2025)

> > ¹Institut für Numerische Simulation (INS) Rheinische Friedrich-Wilhelms-Universität Bonn

²Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI)

³Jülich Supercomputing Centre (JSC)

September 27, 2024

What is the problem?

- QCD theory is highly non-linear, cannot be solved directly.
- Must be approximated by numerical methods to make predictions.

Lattice QCD in a nutshell

- $\blacksquare \ \mbox{Discretize spacetime, i.e. four dimensional lattice of size $L_x \times L_y \times L_z \times L_t$.}$
- Finite spacetime implies periodic boundary conditions.
- Differential operators discretized by finite differences.
- Consumer of 10+% of public supercomputer cycles.
- Highly optimized on every single HPC platform for the past 30 years.

It's the linear solver, stupid!

 $\mathsf{D}(\mathsf{U},\mathsf{m})\mathsf{z}=\mathsf{b},\quad \mathsf{gauge field } \mathsf{U},\mathsf{mass \ constant \ m}$

Computational Steps of LQCD

Generate an ensemble of gluon field configurations, aka gauge generation

- Hybrid Monte Carlo is the algorithm of choice
- Produced in sequence, with hundreds needed per ensemble
- Strong scaling required per task
- 50-90% of the runtime is in the linear solver
- O(1) solve per linear system
- Analyzing the configurations:
 - Task parallelism, can be farmed out
 - 80-99% of the runtime is in the linear solver
 - Many solves per system, e.g., O(10⁶)

Any substantial improvement in runtime can only be attained by better linear solvers!

Multigrid Methods - the optimal solver for discretized PDEs

marc.alexander.schweitzer@scai.fraunhofer.de

Copyright 2024 Fraunhofer Gesellschaft

Different Flavors of Multigrid Methods

Geometric Multigrid

- Geometric coarsening of grids.
- Classical polynomial interpolation as prolongation.
- May employ complex smoothing schemes to improve robustness.
- Direct solution on coarsest level.

Algebraic Multigrid

- Interpret system matrix as representation of graph.
- Compress and coarsen graph e.g. via agglomeration.
- Employs simple smoothing schemes.
- Construct prolongation from entries of system matrix and/or near kernel information.
- Direct solution on coarsest level.

Typically used as preconditioner in a Krylov method to improve robustness and efficiency.

Different Phases of Multigrid Methods

Setup Phase

- \blacksquare Coarsening of fine grid $\Omega_{\rm f}$ to coarse grid $\Omega_{\rm c}.$
- Construction of P, $R = P^H \& D_c := RDP$.
- Apply recursively.

Solution Phase

- Outer (Flexible) Krylov Method, e.g. (F)GMRES, BiCGstab.
- Cycling schemes V, W or K-cycle.
- Smoother, e.g. block-Gauss-Seidel iteration or GMRES.
- Approximate coarse grid solver, e.g. GMRES, Gauss.
- Huge universe to select the various components in both phases.
- Computational effort in setup phase can differ substantially between different flavors of multigrid.
- Solution phase is essentially universal. Efficiency dominated by matrix-vector-products and coarse grid solution.

Current State of the Art

$\mathsf{DD}\text{-}\alpha\text{-}\mathsf{AMG}$ solver

[Rottmann; Frommer, Kahl, Krieg, Leder, Rottmann]

- Simple geometric agglomeration-based AMG.
- Prolongation based on local coherence assumption.
- Utilize block structure (12 degrees of freedom per lattice site/grid point on the fine grid, coarser grids $2 \times N_{\nu}$ per agglomerate).
- Inexact multi-coloured block-Gauss-Seidel smoother (denoted as SAP).
- K-cycling in solution phase.
- Even-odd preconditioning, i.e. iteration on Schur complement.
- Widely used approach in LQCD with essentially these fixed components.
- No proof that selected components are optimal & robust.

 Implementation needs to be adapted to current architecture for maximal performance.

Goals of the Project

Development of efficient & scalable linear solver for lattice Dirac operators.

Use ML to improve AMG for LQCD

- Determine P by optimizing the spectral radius of the iteration matrix of the two-grid method, ρ(M), as a function of P and A for a fixed smoother. A. Katrutsa et al. (2017) arXiv:1711.03825. D. Greenfeld et al. (2019) arXiv:1902.10248. I. Luz et al. (2020) arXiv:2003.05744
- Use ML to define the C/F splitting (coarsening scheme).

A. Taghibakhshi et al, (2021) arXiv:2106.01854

- Construct smoothers that efficiently pair with standard coarsening.
 R. Huang et al, (2021) arXiv:2102.12071.
- Create a neural network to predict optimal free parameters (for instance ε). P. F. Antonietti, et al, (2021) arXiv:2111.01629. H. Zou et al, (2023) arXiv:2307.09879. M. Caldana, et al, (2024) arXiv:2304.10832

Bring modern multiscale techniques to LQCD

- AMG is designed for much more complex situations that LQCD
- Utilization of structured grid / lattice and upscaling techniques
- Extend algebraic multiscale approach to spacetime lattice and Dirac operator

Aggregation vs. Algebraic Multiscale Coarsening

Aggregates (disjoint) merge all points into single coarse point.

AMS maintains notion of vertex, edge, degrees of freedom (connected).

Aggregation vs. Algebraic Multiscale Prolongation

average convergence rate: inhomogenous 2D Poisson problem

- Trivial prolongation in aggregation AMG, i.e. piecewise constant
- Robustness and scalability: Unsmoothed vs. smoothed aggregation AMG.
- Algebraic AMS interpolation high quality via parallel construction.

Construction Algebraic Multiscale Prolongation

Consider local linear system for single aggregate

$$\begin{pmatrix} A_{II} & A_{IE} & A_{IV} \\ A_{EI} & A_{EE} & A_{EV} \\ A_{VI} & A_{VE} & A_{VV} \end{pmatrix} \begin{pmatrix} x_I \\ x_E \\ x_V \end{pmatrix} = \begin{pmatrix} f_I \\ f_E \\ f_V \end{pmatrix}$$

Direct interpolation of coarse points / vertices allows for

$$\begin{pmatrix} \mathsf{A}_{\mathsf{II}} & \mathsf{A}_{\mathsf{IE}} & \mathsf{A}_{\mathsf{IV}} \\ \mathsf{A}_{\mathsf{EI}} & \mathsf{A}_{\mathsf{EE}} & \mathsf{A}_{\mathsf{EV}} \\ 0 & 0 & \mathbb{I}_{\mathsf{VV}} \end{pmatrix} \begin{pmatrix} \mathsf{u}_{\mathsf{I}} \\ \mathsf{u}_{\mathsf{E}} \\ \mathsf{u}_{\mathsf{V}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \mathsf{u}_{\mathsf{V}}^{\mathsf{c}} \end{pmatrix}$$

Yielding the prolongation operator

$$\mathsf{P} = \mathsf{O} \cdot \mathsf{N} \cdot \left(\begin{array}{c} -\hat{\mathsf{A}}_{\mathsf{II}}^{-1} (\mathsf{A}_{\mathsf{IV}} - \mathsf{A}_{\mathsf{IE}} \mathsf{A}_{\mathsf{EE}}^{-1} \mathsf{A}_{\mathsf{EV}}) \\ -\hat{\mathsf{A}}_{\mathsf{EE}}^{-1} (\mathsf{A}_{\mathsf{EV}} - \mathsf{A}_{\mathsf{EI}} \mathsf{A}_{\mathsf{II}}^{-1} \mathsf{A}_{\mathsf{IV}}) \\ \mathbb{I}_{\mathsf{VV}} \end{array} \right)$$

with
$$\hat{A}_{II}:=A_{II}-A_{IE}A_{EE}^{-1}A_{EI}$$
 and $\hat{A}_{EE}:=A_{EE}-A_{EI}A_{II}^{-1}A_{IV}$

Status & Outlook

Status

Positions recently filled / accepted.

Next Steps

- Evaluate if AMS can be easily realized in DD- α -AMG implementation.
- Evaluate if Dirac operator can be easily realized in our AMG implementations.
- Evaluate AMG components simplified to structured grid input.
- Evaluate AMG components for matrix-free realizations.
- Evaluate performance impact of coarse grid solution.

Long-term Outlook

- Implementation with B02 framework.
- ML optimization of parameters on MSA.

marc.alexander.schweitzer@scai.fraunhofer.de