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What is the problem?

■ QCD theory is highly non-linear, cannot be solved directly.
■ Must be approximated by numerical methods to make predictions.

Lattice QCD in a nutshell
■ Discretize spacetime, i.e. four dimensional lattice of size Lx × Ly × Lz × Lt.
■ Finite spacetime implies periodic boundary conditions.
■ Differential operators discretized by finite differences.

■ Consumer of 10+% of public supercomputer cycles.
■ Highly optimized on every single HPC platform for the past 30 years.
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It’s the linear solver, stupid!

D(U, m)z = b, gauge field U, mass constant m

Computational Steps of LQCD
■ Generate an ensemble of gluon field configurations, aka gauge generation

■ Hybrid Monte Carlo is the algorithm of choice
■ Produced in sequence, with hundreds needed per ensemble
■ Strong scaling required per task
■ 50 – 90% of the runtime is in the linear solver
■ O(1) solve per linear system

■ Analyzing the configurations:
■ Task parallelism, can be farmed out
■ 80 – 99% of the runtime is in the linear solver
■ Many solves per system, e.g., O(106)

Any substantial improvement in runtime can only be attained by better linear solvers!
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Multigrid Methods - the optimal solver for discretized PDEs
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Different Flavors of Multigrid Methods

Geometric Multigrid
■ Geometric coarsening of grids.
■ Classical polynomial interpolation as prolongation.
■ May employ complex smoothing schemes to improve robustness.
■ Direct solution on coarsest level.

Algebraic Multigrid
■ Interpret system matrix as representation of graph.
■ Compress and coarsen graph e.g. via agglomeration.
■ Employs simple smoothing schemes.
■ Construct prolongation from entries of system matrix and/or near kernel

information.
■ Direct solution on coarsest level.

Typically used as preconditioner in a Krylov method to improve robustness and efficiency.
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Different Phases of Multigrid Methods

Setup Phase
■ Coarsening of fine grid Ωf to coarse grid Ωc.
■ Construction of P, R = PH & Dc := RDP.
■ Apply recursively.

Solution Phase
■ Outer (Flexible) Krylov Method, e.g. (F)GMRES, BiCGstab.
■ Cycling schemes V, W or K-cycle.
■ Smoother, e.g. block-Gauss-Seidel iteration or GMRES.
■ Approximate coarse grid solver, e.g. GMRES, Gauss.

■ Huge universe to select the various components in both phases.
■ Computational effort in setup phase can differ substantially between

different flavors of multigrid.
■ Solution phase is essentially universal. Efficiency dominated by

matrix-vector-products and coarse grid solution.
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Current State of the Art

DD-α-AMG solver [Rottmann; Frommer, Kahl, Krieg, Leder, Rottmann]

■ Simple geometric agglomeration-based AMG.
■ Prolongation based on local coherence assumption.
■ Utilize block structure (12 degrees of freedom per lattice site/grid point on

the fine grid, coarser grids 2× Nν per agglomerate).
■ Inexact multi-coloured block-Gauss-Seidel smoother (denoted as SAP).
■ K-cycling in solution phase.
■ Even-odd preconditioning, i.e. iteration on Schur complement.

■ Widely used approach in LQCD with essentially these
fixed components.

■ No proof that selected components are optimal &
robust.

■ Implementation needs to be adapted to current
architecture for maximal performance.
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Goals of the Project
Development of efficient & scalable linear solver for lattice Dirac operators.

Use ML to improve AMG for LQCD
■ Determine P by optimizing the spectral radius of the iteration matrix of the

two-grid method, ρ(M), as a function of P and A for a fixed smoother. A. Katrutsa et
al, (2017) arXiv:1711.03825. D. Greenfeld et al, (2019) arXiv:1902.10248. I. Luz et al, (2020) arXiv:2003.05744

■ Use ML to define the C/F splitting (coarsening scheme).
A. Taghibakhshi et al, (2021) arXiv:2106.01854

■ Construct smoothers that efficiently pair with standard coarsening.
R. Huang et al, (2021) arXiv:2102.12071.

■ Create a neural network to predict optimal free parameters (for instance ϵ).
P. F. Antonietti, et al, (2021) arXiv:2111.01629. H. Zou et al, (2023) arXiv:2307.09879. M. Caldana, et al, (2024)
arXiv:2304.10832

Bring modern multiscale techniques to LQCD
■ AMG is designed for much more complex situations that LQCD
■ Utilization of structured grid / lattice and upscaling techniques
■ Extend algebraic multiscale approach to spacetime lattice and Dirac operator
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Aggregation vs. Algebraic Multiscale Coarsening

■ Aggregates (disjoint) merge all points into single coarse point.
■ AMS maintains notion of vertex, edge, .... degrees of freedom (connected).
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Aggregation vs. Algebraic Multiscale Prolongation

■ Trivial prolongation in aggregation AMG, i.e.
piecewise constant

■ Robustness and scalability: Unsmoothed vs. smoothed
aggregation AMG.

■ Algebraic AMS interpolation high quality via parallel
construction.
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Construction Algebraic Multiscale Prolongation

■ Consider local linear system for single aggregate AII AIE AIV
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■ Direct interpolation of coarse points / vertices allows for AII AIE AIV
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■ Yielding the prolongation operator

P = O · N ·
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with ÂII := AII – AIEA–1

EEAEI and ÂEE := AEE – AEIA–1
II AIV
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Status & Outlook

Status
Positions recently filled / accepted.

Next Steps
■ Evaluate if AMS can be easily realized in DD-α-AMG implementation.
■ Evaluate if Dirac operator can be easily realized in our AMG

implementations.
■ Evaluate AMG components simplified to structured grid input.
■ Evaluate AMG components for matrix-free realizations.
■ Evaluate performance impact of coarse grid solution.

Long-term Outlook
■ Implementation with B02 framework.
■ ML optimization of parameters on MSA.
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