B05 – A novel approach to the baryon spectrum based on stochastic methods

NuMeriQS Retreat, Bonn

October 1, 2024 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich Project members: Ulf-G. Meißner (PL), Deborah Ronchen (PL), Oleh Luniachek (PhD student) ¨

Supported by DFG, NSFC, MKW NRW HPC support by Jülich Supercomputing Centre

Subject of B05: Hadron physics

Strong force:

- Matter fields: quarks (q) (almost free at high energies)
- Observed particles: hadrons (low and medium energies)
	- **Mesons** ($q\bar{q}$ states)
	- **Baryons** (*qqq*, *q*¯*q*¯*q*¯ states)
		- protons, neutrons, ...
		- $(+$ exotic states ...)
- gauge theory: Quantum Chromodynamics (QCD)
- no perturbative QCD at low & medium energies

Experimental tests of strong force at medium energies

 \rightarrow measurements of hadronic cross sections and asymmetries

What are those bumps?

- energy & angular momentum excitations of baryons **(resonances)**?
- **background processes?**
- something else?

source: ELSA; data: ELSA, JLab, MAMI

Member of the Helmholtz Association Cricher 1, 2024 Slide 2 12

Experimental tests of strong force at medium energies

 \rightarrow measurements of hadronic cross sections and asymmetries

What are those bumps?

- energy & angular momentum excitations of baryons **(resonances)**?
- **background processes?**
- something else?

source: ELSA; data: ELSA, JLab, MAMI

Member of the Helmholtz Association Critical Controller 1, 2024 Slide 2 12

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity *J P*

Theoretical predictions of excited hadrons e.g. from relativistic quark models: to a particular shell, we additionally summarized the explicit positions of the excited model states in tables 11, 12,

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000 \sim

⇒ search for resonances/excited states in those partial waves: **poles on the unphysical Riemann sheet**

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity *J P*

Theoretical predictions of excited hadrons ... or lattice calculations (with some limitations):

⇒ search for resonances/excited states in those partial waves: **poles on the unphysical Riemann sheet**

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity *J P*

Theoretical predictions of excited hadrons e.g. from relativistic quark models: to a particular shell, we additionally summarized the explicit positions of the excited model states in tables 11, 12,

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000 \sim

⇒ search for resonances/excited states in those partial waves: **poles on the unphysical Riemann sheet**

Connect experiment $\&$ QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000 \sim

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

 10^5 data points for πN , ηN , KY , $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)
of the Helmholtz Association Member of the Helmholtz Association

Member of the Helmholtz Association **C**orrespond to the suggested values of the 4 112

The light baryon spectrum:

Many open questions

- **nd** Missing resonances?
- **n** Different analyses often not agree on parameters or even existence of a state ϵ

E.g., the Roper resonance $N(1440)1/2^+$: discussed since $>$ 50 years

(Review: e.g. Burket, Roberts Rev.Mod.Phys. 91 (2019). Also: Mai, Meißner, Urbach Phys.Rept. 1001 (2023)

- **n** q^3 quark models: first 1/2 $^-$ state lower than first 1/2 $^+$ state
- **n** lattice QCD: e.g. Lang 2017 Phys. Rev. D 95, 014510

Fig. from PRC 62 025207 (2000) Fig. from PRC 62 025207 (2000)
Member of the Helmholtz Associ

- $\bullet \;\;$ not a standard Breit-Wigner shape \sim each column) in comparison to the experimental spectrum taken from Particle Data Group \sim
- influence by meson-baryon background interaction? each resonance is additionally indicated by stars. The states labeled by 'S' belong to new SAPHIR results [54, 56, 52, 53],see
- effects from nearby thresholds?
- \rightarrow not a simple radial excitation of the nucleon?
- \rightarrow information from photo- and electroproduction! (*Q*² dependence of helicity amplitudes)

(Review: Ramalho & Pena Prog.Part.Nucl.Phys. 136 (2024))

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024)

from the Julich-Bonn-Washington model ¨ Mai et al. EPJ A 59 (2023)

The Roper resonance $\mathcal{N}(1440)1/2^+$:

Prerequisite:

well-defined resonance parameters & uncertainties!

\rightarrow Jülich-Bonn model

- Zero crossing in Re $A_{1/2}$ at smaller Q^2 than in Breit-Wigner determinations or in ANL/OSAKA [Kamano, Few Body Syst. 59, 24 (2018)]
- important for quark models, DSE: meson cloud contributions or radial excitation of the nucleon?

Jülich-Bonn DCC approach for hadronic reactions

The Julich-Bonn DCC approach for ¨ *N*[∗] **and** ∆ **resonances pion-induced reactions EPJ A** 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\langle L'S'p' | T^U_{\mu\nu} | LSp \rangle = \langle L'S'p' | V^U_{\mu\nu} | LSp \rangle +
$$

$$
\sum_{\gamma, L''S''} \int_{0}^{\infty} dq \quad q^2 \quad \langle L'S'p' | V^U_{\mu\gamma} | L''S''q \rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q | T^U_{\gamma\nu} | LSp \rangle
$$

channels ν , μ , γ : m.

The Julich-Bonn DCC approach for ¨ *N*[∗] **and** ∆ **resonances pion-induced reactions EPJ A 49, 44 (2013)**

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

Photoproduction

Photoproduction in a semi-phenomenological approach **EPJA 50, 101 (2015)**

 $T_{\mu\kappa}$: full hadronic *T*-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$
\mathbf{V}_{\mu\gamma}(E,q) = \frac{\gamma}{\sum_{\substack{\mathbf{p} \text{ odd} \\ \mathbf{p}^N_{\mu}}}^{\gamma} \mathbf{V}_{\mathbf{p}^N_{\mu}}} + \frac{\gamma}{N} \sum_{\substack{\mathbf{p}^N_{\mu} \text{ odd} \\ \mathbf{p}^N_{\mu}}}^{\gamma} \frac{\mathbf{V}_{\mathbf{p}^N_{\mu} \text{ odd}}} {\gamma^N_{\mu}} \mathbf{P}^N_{\mu}}^{\gamma} = \frac{\tilde{\gamma}^a_{\mu}(q)}{\mathbf{m}_N} P^N_{\mu}(E) + \sum_{i} \frac{\gamma^a_{\mu,i}(q) P^P_i(E)}{E - m^b_i}
$$

Member of the Helmholtz Association October 1, 2024 Slide 7 1204

Simultaneous fit of pion- & photon-induced reactions

calculate observables from T-matrix, Multipole amplitude M

fit **free parameters** of *T* / *M* to data

 $\sigma = \frac{1}{2} \frac{4\pi}{\rho^2} \sum_{JLS, L'S'} |\tau_{LS}^{J L'S'}|^2$ with $\tau_{\hat{n}} = -\pi \sqrt{\rho_f \rho_i} \tau_{\hat{n}}$

s-channel: resonances (*T P*)

t- and u-channel exchange: "background" (*T NP*)

■ couplings in contact terms: one per partial wave, couplings to πN , ηN , $(\pi \Delta)$, $K\Lambda$, $K\Sigma$

Fit parameters vs. resonance parameters

Quantities of interest (resonance properties) cannot be controlled directly

Workflow:

- fit free model parameters to data \rightarrow Amplitude (*T*-matrix)
- search for poles in $T \rightarrow$ resonance properties as in PDG listings

Resonance uncertainties

- from statistical $&$ systematic uncertainties of exp. data
- from statistical $\&$ systematic uncertainties of the model

 \rightarrow extract uncertainties from **re-fits**

Simultaneous fit of pion- & photon-induced reactions Fitting procedure

JüBo Model:

- numerically expensive but theoretically well-founded formulation
- \sim 900 fit parameters in total, \sim 75,000 data points

 $\frac{1}{2}$ χ^2 minimization with MINUIT, parallelization in energy (\sim 200 - 400 processes)

[JURECA, Jülich Supercomputing Centre, Journal of large-scale research facilities, 2, A62 (2016)]

Disadvantages of using MINUIT:

- inefficient sampling of the parameter space
- cannot fit all parameters simultaneously
- \bullet cannot use parameter uncertainties as given by MINUIT
- re-fits: can obtain a few parameter sets \rightarrow not enough to determine uncertainties of resonance parameters!

Goal of B05: Bayesian parameter estimation with HMC

HMC numerically challenging but rewarding:

- **E** efficiently explore the high-dimensional parameter space (fit all parameters at once)
- \blacksquare determine resonance uncertainties from samples of parameter space (large enough number of samples)
- has never been applied in a complex coupled-channel framework \rightarrow next level of precision for baryon spectroscopy

Advantages in JüBo:

- $\bullet~$ No sign problem: free parameters and χ^2 are real
- $\bullet~$ problem is ergodic: no singularities in χ^2

Work plan:

- Connect JüBo fortran code with HMC libraries (hand-tuned standard HMC)
- First application in a single-channel study, reduced parameter space
- $\bullet~$ coupled-channel fit, extension to $\eta^{\prime}{N}$
- (explore more sophisticated HMC methods)

Summary

N^* and Δ resonance spectrum

- **large amount of new data & many open questions (not only the Roper!)**
- **Prerequisite for a reliable spectrum:**
	- \bullet well defined resonance parameters and extraction procedures
	- well defined uncertainty quantification!

Jülich-Bonn DCC analysis:

- Extraction of the N^* and Δ spectrum in a simultaneous analysis of pion- and **photon-induced reactions** [Eur.Phys.J.A 58 (2022) 229, PRC 109 (2024)]
- **Electroproduction:** *Julich-Bonn-Washington* **approach** [Mai *et al. PRC 103 (2021), PRC 106 (2022),* EPJ A 59 (2023)]
	- Barvon transition form factors [Wang et al. PRL 133 (2024)]
	- Λ^* and Σ^* resonance spectrum: in progress

Goals of B05:

- \blacksquare Bayesian parameter estimation with HMC
- \blacksquare well defined resonance uncertainties

Thank you for you attention!

Appendix

Resonance states

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- **opening of inelastic channels ⇒ branch point** and new Riemann sheet

Resonances: poles in the full *T* -matrix on the unphysical Riemann sheet Pole position E_0 is the same in all channels Re(E_0) = "mass", -2Im(E_0) = "width" $residues \rightarrow branching$ ratios

$\sqrt{3}$ -body π π*N* channel:

- p arameterized effectively as $\pi\Delta$, $\sigma\bar{N}$, $\rho\bar{N}$
- \blacksquare $\pi N/\pi\pi$ subsystems fit the respective phase shifts
- \downarrow branch points move into complex plane

u − *m*²*^N* + *i*

Jülich-Bonn-Washington (JBW) parametrization

M. Mai et al. PRC 103 (2021), PRC 106 (2022), EPJ A 59 (2023)

M. Mai et al. PRC 103 (2021), PRC 106 (2022), EPJ A 59 (2023)
\n
$$
\mathcal{M}_{\mu\gamma^*}(k, W, Q^2) = R_{\ell'}(\lambda, q/q_{\gamma}) \left(V_{\mu\gamma^*}(k, W, Q^2) + \sum_{\kappa} \int_0^{\infty} dp \rho^2 T_{\mu\kappa}(k, p, W) G_{\kappa}(p, W) V_{\kappa\gamma^*}(p, W, Q^2)\right)
$$
\n
$$
\left(\text{Pseudo)-threshold behavior}\atop \text{with meson/photon momenta}\atop \lim_{k\to 0} E_{\ell+1} = t^{\ell} \atop L_{\mu\gamma^*}(k, W, Q^2) = V_{\mu\gamma}^{\text{IUBO}}(k, W) \cdot \hat{F}_D(Q^2).
$$
\n
$$
\left(\text{Siegerts's theorem } \text{Siegerts's theorem } \text{Siegert}(1973)\atop \text{Anald et at least } \text{RHS}(2016)\atop \text{and if at least } \text{RHS}(2016)\atop \text{the first } \text{RHS}(2016)\atop \text{the second } \text{RHS}(2016)\atop
$$

- simultaneous fit to $\pi N, \eta N, K \Lambda$ electroproduction off proton (*W* < 1.8 GeV, Q^2 < 8 GeV²) 0.13 P ... even for a truncated complete electroproduction experiment electroproduction experiment experiment experiment of 0.06
	-
	- $G_{\kappa}(p, W)$

 \rightarrow universal pole positions and residues (fixed in this study)

long-term goal: fit pion-, photo- and electron-induced reactions simultaneously October 1, 2024 **2.** 4. 6. **2. 4. 6. PERSON OCTOBER 1, 2024** Slide 2110 2. 4. 6. **2. Association** October 1, 2024 Slide 2 110 3. 2. 2. **2. Association**

Simultaneous III to π/ν , η/ν , κ/λ κ κ M_3 – λ 0.13\n <th>Re M_3–λ 0.06\n</th>	Re M_3 – λ 0.06\n	
Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, 0.13	Re M_3 – λ 0.06	
Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, 0.11	Re M_3 – λ 0.12	
Car(p, W) 0.13	Re M_3 – λ -0.03	
Car(p, W) 0.14	Im M_3 – λ -0.15	
Study) 0.11	Re M_3 – λ -0.12	
Long-term goal: fit pion-, photo- and electron-induced 0.11	2. 4. 6. 3.16 e 210 2. 4. 6.	JÜLICH 0 ² /GeV ²
Interstituting λ <i>in</i> λ -0.11	3.16 e 210 2. 4. 6.	JÜLICH 0 ² /GeV ²

 $\gamma^* p \to K \Lambda$ at $W=1.7$ GeV

Baryon Transition Form Factors (TFFs)

 $(e.g. 3$ valence quark state, meson cloud contributions, ...) Reviews: e.g. Rev.Mod.Phys. 91 (2019), Prog.Part.Nucl.Phys. 136 (2024)

TFFs from JBW:

- \blacksquare for the first time determined from a coupled-channel study of πN , ηN , and $K\Lambda$ electroproduction (+ constraints from photon & pion-induced reactions!)
- \blacksquare first estimation of TFFs for higher excited states
- **F** from poles, not Breit-Wigner states

Figure from Prog.Part.Nucl.Phys. 136 104097 (2024) \mathcal{L} and Holographic \mathcal{L} model in leading order (LO, leading twist) \mathcal{L}

TFFs defined independently of the hadronic final state as Workman et al. PRC 87 (2013) :

$$
H_h^{l\pm,l}(Q^2) = C_l \sqrt{\frac{p_{\pi N}}{\omega_0} \frac{2\pi (2l+1)z_p}{m_N \widetilde{R}^{l\pm,l}} \widetilde{\mathcal{H}}_h^{l\pm,l}(Q^2)},
$$

 $h = 1/2, 3/2$ helicity, H (= A or S) helicity amplitudes, $\widetilde{\mathcal{H}}$, \widetilde{R} residues, z_p pole position

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JuBo2017 ¨

∆ states:

[ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Tiator et al. PRC94 (2016)]

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024) C

Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JüBo2017

N^* states:

50 0 20 [ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Tiator et al. PRC94 (2016)]

The Hyperon Spectrum: Λ^* and Σ^* resonances

Extension of JüBo to KN scattering: in progress

S. Rawat (preliminary)

■ use *SU*(3) to adapt $πN → X$ model to $\bar{K}N → X$

- apply the same analysis tools (coupled-channel fits, pole search, ...) as for *N*∗*s*
- almost finished: coupled-channel fit to $\bar{K}N \rightarrow \bar{K}N$, $\pi \Lambda$, $\pi \Sigma$

*s***-,** *t***- and** *u***-channel exchanges**

- 21 *s*-channel states (resonances) coupling to π*N*, η*N*, *K*Λ, *K*Σ, π∆, ρ*N*.
- *t* and *u*-channel exchanges ("*background*", coupling constants fixed from SU(3)): m.

Forschungszentrum

Details of the formalism

Polynomials:

$$
P_i^{\mathrm{P}}(E) = \sum_{j=1}^n g_{i,j}^{\mathrm{P}} \left(\frac{E - E_0}{m_N} \right)^j e^{-g_{i,n+1}^{\mathrm{P}}(E - E_0)}
$$

$$
P_{\mu}^{\rm NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{\rm NP} \left(\frac{E - E_0}{m_N} \right)^j e^{-g_{\mu,n+1}^{\rm NP}(E - E_0)}
$$

-
$$
E_0 = 1077
$$
 MeV
\n- $g_{i,j}^P$, $g_{\mu,j}^{NP}$; fit parameter
\n- $e^{-g(E-E_0)}$: appropriate high energy
\nbehavior

$$
-n=3
$$

 $\overline{}$ [back](#page-14-0)

The scattering potential: *s***-channel resonances**

$$
V^{\rm P} = \sum_{i=0}^{n} \frac{\gamma_{\mu;i}^{a} \gamma_{\nu;i}^{c}}{z - m_i^{b}}
$$

- *i*: resonance number per PW
- $\gamma^c_{\nu;i}$ ($\gamma^a_{\mu;i}$): creation (annihilation) vertex function with **bare coupling** *f* (free parameter)
- *z*: center-of-mass energy
- *m b i* : **bare mass** (free parameter)

■ $5/2 < j < 9/2$: correct dependence on *L* (centrifugal barrier)

 $\gamma^{\epsilon}_{\nu;i}$ ($\gamma^{\sigma}_{\mu;i}$) from effective $\cal L$

$$
(\gamma^{a,c})_{\frac{5}{2}} - \qquad = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2} +}
$$

$$
(\gamma^{a,c})_{\frac{7}{2} -} \qquad = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2} -}
$$

$$
(\gamma^{a,c})_{\frac{9}{2} -} \qquad = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2} +}
$$

+
$$
(\gamma^{a,c})_{\frac{5}{2}+} = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}-}
$$

\n-
$$
(\gamma^{a,c})_{\frac{7}{2}+} = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}+}
$$

\n+
$$
(\gamma^{a,c})_{\frac{9}{2}+} = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}-}
$$

\nSilde

■ $J \leq 3/2$:

Interaction potential from effective Lagrangian

J. Wess and B. Zumino, Phys. Rev. **163**, 1727 (1967); U.-G. Meißner, Phys. Rept. **161**, 213 (1988); B. Borasoy and U.-G. Meißner, Int. J. Mod. Phys. A **11**, 5183 (1996).

n consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-\frac{g_{NN\pi}}{m_{\pi}}\Psi\gamma^5\gamma^{\mu}\vec{\tau}\cdot\partial_{\mu}\vec{\pi}\Psi$	$NN\omega$	$-g_{NN\omega}\Psi[\gamma^{\mu}-\frac{\kappa_{\omega}}{2m_{N}}\sigma^{\mu\nu}\partial_{\nu}]\omega_{\mu}\Psi$
$N\Delta \pi$	$\frac{g_{N\Delta\pi}}{m_{\pi}}\,\bar{\Delta}^{\mu}\,\vec{\mathsf{S}}^{\dagger}\,\cdot\,\partial_{\mu}\vec{\pi}\Psi\,\,+\,\,\text{h.c.}$	$\omega \pi \rho$	$\frac{g_{\omega\pi\rho}}{m_{\omega}}\epsilon_{\alpha\beta\mu\nu}\partial^{\alpha}\vec{\rho}^{\beta}\cdot\partial^{\mu}\vec{\pi}\omega^{\nu}$
$\rho \pi \pi$	$-q_{\rho\pi\pi}(\vec{\pi}\times\partial_{\mu}\vec{\pi})\cdot\vec{\rho}^{\mu}$	$N\Delta\rho$	$-i\frac{g_{N\Delta\rho}}{m_{\Omega}}\bar{\Delta}^{\mu}\gamma^{5}\gamma^{\mu}\vec{S}^{\dagger}\cdot \vec{\rho}_{\mu\nu}\Psi$ + h.c.
$NN\rho$	$-g_{NN\rho}\Psi[\gamma^{\mu}-\frac{\kappa_{\rho}}{2m_{N}}\sigma^{\mu\nu}\partial_{\nu}]\vec{\tau}\cdot\vec{\rho}_{\mu}\Psi$	$\rho \rho \rho$	$q_{NN\rho}(\vec{\rho}_{\mu}\times\vec{\rho}_{\nu})\cdot\vec{\rho}^{\mu\nu}$
$NN\sigma$	$-g_{NN\sigma}\bar{\Psi}\Psi\sigma$	$NN\rho\rho$	$-\frac{\kappa_\rho g_{NN\rho}^2}{2m_N}\bar{\Psi}\sigma^{\mu\nu}\vec{\tau}\Psi(\vec{\rho}_\mu\times\vec{\rho}_\nu)$
$\sigma \pi \pi$	$\frac{g_{\sigma\pi\pi}}{2m_{\pi}}\partial_{\mu}\vec{\pi}\cdot\partial^{\mu}\vec{\pi}\sigma$	$\Delta\Delta\pi$	$\frac{g_{\Delta \Delta \pi}}{m_{\pi}} \bar{\Delta}_{\mu} \gamma^5 \gamma^{\nu} \vec{T} \Delta^{\mu} \partial_{\nu} \vec{\pi}$
$\sigma \sigma \sigma$	$-g_{\sigma\sigma\sigma} m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}\left(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\lambda}}\sigma^{\mu\nu}\partial_{\nu}\right)$
			$\cdot \vec{\rho}_{\mu} \cdot \vec{\tau} \Delta^{\tau}$
$NN\rho\pi$	$\frac{g_{NN\pi}}{m_{\pi}} 2g_{NN\rho} \bar{\Psi} \gamma^5 \gamma^{\mu} \vec{\tau} \Psi (\vec{\rho}_{\mu} \times \vec{\pi})$	NNn	$-\frac{g_{NN\eta}}{m_{\pi}}\bar{\Psi}\gamma^5\gamma^{\mu}\partial_{\mu}\eta\Psi$
NNa_1	$-\frac{g_{NN\pi}}{m_{\pi}} m_{a_1} \bar{\Psi} \gamma^5 \gamma^{\mu} \vec{\tau} \Psi \vec{a}_{\mu}$	NNa_0	$g_{NNa_0}m_\pi\,\bar\Psi\vec\tau\Psi\vec a_0$
$q_1 \pi \rho$	$\frac{2g_{\pi a_1 \rho}}{m_{a_1}} [\partial_{\mu} \vec{\pi} \times \vec{a}_{\nu} - \partial_{\nu} \vec{\pi} \times \vec{a}_{\mu}] \cdot [\partial^{\mu} \vec{\rho}^{\nu} - \partial^{\nu} \vec{\rho}^{\mu}]$	$\pi\eta q_0$	$g_{\pi\eta q_0}m_\pi\eta\vec\pi\cdot\vec a_0$
	$+\tfrac{2g_{\pi a_1 \rho}}{2m_{a_1}} [\vec{\pi} \times (\partial_{\mu} \vec{\rho}_{\nu} - \partial_{\nu} \vec{\rho}_{\mu})] \cdot [\partial^{\mu} \vec{a}^{\nu} - \partial^{\nu} \vec{a}^{\mu}]$		

Theorecal constraints of the *S***-matrix**

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity:

discontinuities from *t*-channel exchanges

 \rightarrow Meson exchange from requirements of the *S*-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut → Baryon *u*-channel exchange

