BO5 – A novel approach to the baryon spectrum based on stochastic methods

NuMeriQS Retreat, Bonn

October 1, 2024 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich Project members: Ulf-G. Meißner (PL), Deborah Rönchen (PL), Oleh Luniachek (PhD student)

Supported by DFG, NSFC, MKW NRW HPC support by Jülich Supercomputing Centre

Member of the Helmholtz Association

Subject of BO5: Hadron physics

Strong force:

- Matter fields: quarks (q) (almost free at high energies)
- Observed particles: hadrons (low and medium energies)
 - Mesons (qq̄ states)
 - Baryons (qqq, qqq states)
 - \downarrow protons, neutrons, ...
 - (+ exotic states ...)
- gauge theory: Quantum Chromodynamics (QCD)
- no perturbative QCD at low & medium energies

Experimental tests of strong force at medium energies

What are those bumps?

- energy & angular momentum excitations of baryons (resonances)?
- background processes?
- something else?

source: ELSA; data: ELSA, JLab, MAMI

Experimental tests of strong force at medium energies

What are those bumps?

- energy & angular momentum excitations of baryons (resonances)?
- background processes?
- something else?

source: ELSA; data: ELSA, JLab, MAMI

Member of the Helmholtz Association

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity J^P

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

⇒ search for resonances/excited states in those partial waves: poles on the unphysical Riemann sheet

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity $J^{\mathcal{P}}$

Theoretical predictions of excited hadrons ... or lattice calculations (with some limitations):

⇒ search for resonances/excited states in those partial waves: poles on the unphysical Riemann sheet

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity J^P

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

⇒ search for resonances/excited states in those partial waves: poles on the unphysical Riemann sheet

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

 $= 10^5 \text{ data points for } \pi N, \eta N, KY, \pi \pi N \text{ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)} Member of the Helmholtz Association October 1, 2024 Slide 3112$

E (GeV)

The light baryon spectrum:

Many open questions

- Missing resonances?
- Different analyses often not agree on parameters or even existence of a state

E.g., the Roper resonance $N(1440)1/2^+$: discussed since > 50 years

(Review: e.g. Burket, Roberts Rev.Mod.Phys. 91 (2019), Also: Mai, Meißner, Urbach Phys.Rept, 1001 (2023)

- q^3 guark models: first $1/2^-$ state lower than first $1/2^+$ state
- lattice OCD: e.g. Lang 2017 Phys. Rev. D 95, 014510

E (GeV)

Fig. from PRC 62 025207 (2000)

phase shift (degree)

- not a standard Breit-Wigner shape
- influence by meson-baryon background interaction?

150

1000

Iπ 1/2+1/2-P., S.,

- effects from nearby thresholds?
- \rightarrow not a simple radial excitation of the nucleon?
- \rightarrow information from photo- and electroproduction! $(O^2$ dependence of helicity amplitudes)

(Review: Ramalho & Pena Prog.Part.Nucl.Phys. 136 (2024))

Baryon Transition Form Factors

Y.-F. Wang et al. PRL 133 (2024)

from the Jülich-Bonn-Washington model Mai et al. EPJ A 59 (2023)

The Roper resonance $N(1440)1/2^+$:

Prerequisite:

well-defined resonance parameters & uncertainties!

→ Jülich-Bonn model

- Zero crossing in ReA_{1/2} at smaller Q² than in Breit-Wigner determinations or in ANL/OSAKA [Kamano, Few Body Syst. 59, 24 (2018)]
- important for quark models, DSE: meson cloud contributions or radial excitation of the nucleon?

Jülich-Bonn DCC approach for hadronic reactions

The Jülich-Bonn DCC approach for N^* and Δ resonances pion-induced reactions

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{aligned} \langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{aligned}$$

• channels ν , μ , γ :

The Jülich-Bonn DCC approach for N^* and Δ resonances pion-induced reactions ${}_{\rm EPJ\,A\,49,\,44\,(2013)}$

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

Member of the Helmholtz Association

October 1, 2024

Photoproduction

Photoproduction in a semi-phenomenological approach

EPJ A 50, 101 (2015)

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

$T_{\mu\kappa}$: full hadronic *T*-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\gamma}_{N} \underbrace{\mathbf{P}_{\mu}^{NP}}_{\mathbf{P}_{\mu}^{NP}} B + \underbrace{N}_{N} \underbrace{\mathbf{P}_{i}^{P} \qquad \gamma_{\mu}^{*}}_{\mathbf{P}_{i}^{P}} \underbrace{N^{*}, \Delta^{*}}_{B} \qquad = \frac{\tilde{\gamma}_{\mu}^{\sigma}(q)}{m_{N}} P_{\mu}^{\mathsf{NP}}(E) + \sum_{i} \frac{\gamma_{\mu,i}^{\sigma}(q) P_{i}^{\mathsf{P}}(E)}{E - m_{i}^{b}}$$

Simultaneous fit of pion- & photon-induced reactions

calculate observables from T-matrix, Multipole amplitude M

fit free parameters of T/M to data

 $\sigma = \frac{1}{2} \frac{4\pi}{n^2} \sum_{ILS, L'S'} |\tau_{LS}^{IL'S'}|^2$ with $\tau_{fi} = -\pi \sqrt{\rho_f \rho_i} T_f$

s-channel: resonances (T^P)

 $m_{hare} + f_{\pi NN*}$

couplings in contact terms: one per partial wave, couplings to πN , ηN , $(\pi \Delta)$, $K\Lambda$, $K\Sigma$

of the polynomials

Fit parameters vs. resonance parameters

Quantities of interest (resonance properties) cannot be controlled directly

Resonances: poles in the full T-matrix

- on the unphysical Riemann sheet
- Re(E₀) = "mass", -2Im(E₀) = "width" residues→ branching ratios
- NOT fit parameters!

Workflow:

- fit free model parameters to data \rightarrow Amplitude (*T*-matrix)
- search for poles in $T \rightarrow$ resonance properties as in PDG listings

Resonance uncertainties

- from statistical & systematic uncertainties of exp. data
- from statistical & systematic uncertainties of the model

→ extract uncertainties from re-fits

Member of the Helmholtz Association

October 1, 2024

Simultaneous fit of pion- & photon-induced reactions

JüBo Model:

- numerically expensive but theoretically well-founded formulation
- \sim 900 fit parameters in total, \sim 75,000 data points

 $\downarrow \chi^2$ minimization with MINUIT, parallelization in energy (~ 200 - 400 processes)

[JURECA, Jülich Supercomputing Centre, Journal of large-scale research facilities, 2, A62 (2016)]

Disadvantages of using MINUIT:

- inefficient sampling of the parameter space
- cannot fit all parameters simultaneously
- cannot use parameter uncertainties as given by MINUIT
- re-fits: can obtain a few parameter sets → not enough to determine uncertainties of resonance parameters!

Goal of BO5: Bayesian parameter estimation with HMC

HMC numerically challenging but rewarding:

- efficiently explore the high-dimensional parameter space (fit all parameters at once)
- determine resonance uncertainties from samples of parameter space (large enough number of samples)
- has never been applied in a complex coupled-channel framework → next level of precision for baryon spectroscopy

Advantages in JüBo:

- No sign problem: free parameters and χ^2 are real
- problem is ergodic: no singularities in χ^2

Work plan:

- Connect JüBo fortran code with HMC libraries (hand-tuned standard HMC)
- First application in a single-channel study, reduced parameter space
- coupled-channel fit, extension to $\eta' N$
- (explore more sophisticated HMC methods)

Summary

N^* and Δ resonance spectrum

- large amount of new data & many open questions (not only the Roper!)
- Prerequisite for a reliable spectrum:
 - well defined resonance parameters and extraction procedures
 - well defined uncertainty quantification!

Jülich-Bonn DCC analysis:

- **Extraction of the** N^* and Δ spectrum in a simultaneous analysis of pion- and photon-induced reactions [Eur.Phys.J.A 58 (2022) 229, PRC 109 (2024)]
- Electroproduction: Jülich-Bonn-Washington approach [Mai et al. PRC 103 (2021), PRC 106 (2022), EPJ A 59 (2023)]
 - Baryon transition form factors [Wang et al. PRL 133 (2024)]
- Λ^* and Σ^* resonance spectrum: in progress

Goals of BO5:

- Bayesian parameter estimation with HMC
- well defined resonance uncertainties

Thank you for you attention!

Appendix

Resonance states

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- opening of inelastic channels ⇒ branch point and new Riemann sheet

Resonances: poles in the full *T*-matrix • on the unphysical Riemann sheet • Pole position E_0 is the same in all channels • $Re(E_0) = "mass", -2Im(E_0) = "width"$ residues \rightarrow branching ratios

3-body $\pi\pi N$ channel:

- **e** parameterized effectively as $\pi\Delta$, σN , ρN
- $\pi N/\pi\pi$ subsystems fit the respective phase shifts
- \downarrow branch points move into complex plane

Jülich-Bonn-Washington (JBW) parametrization

- simultaneous fit to πN , ηN , $K \Lambda$ electroproduction off proton ($W < 1.8 \text{ GeV}, Q^2 < 8 \text{ GeV}^2$)
- 533 fit parameters, 110.281 data points
- Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, $G_{\kappa}(p, W)$

 \rightarrow universal pole positions and residues (fixed in this study)

Iong-term goal: fit pion-, photo- and electron-induced reactions simultaneously (meter of the teleholit association) (crober 1 2024

$$\gamma^* p \to K \Lambda$$
 at $W = 1.7 \text{ GeV}$

Baryon Transition Form Factors (TFFs)

Q^2 dependence of transition form factors (TFFs): \rightarrow conclusions on the nature of resonances

(e.g. 3 valence quark state, meson cloud contributions, ...) Reviews: e.g. Rev.Mod.Phys. 91 (2019), Prog.Part.Nucl.Phys. 136 (2024)

TFFs from JBW:

- for the first time determined from a coupled-channel study of πN , ηN , and $K\Lambda$ electroproduction (+ constraints from photon & pion-induced reactions!)
- first estimation of TFFs for higher excited states
- from poles, not Breit-Wigner states

Figure from Prog.Part.Nucl.Phys. 136 104097 (2024)

TFFs defined independently of the hadronic final state as Workman et al. PRC 87 (2013) :

$$H_h^{l\pm,l}(Q^2) = C_l \sqrt{\frac{p_{\pi N}}{\omega_0}} \frac{2\pi(2J+1)z_p}{m_N \widetilde{R}^{l\pm,l}} \widetilde{H}_h^{l\pm,l}(Q^2) \,,$$

h = 1/2, 3/2 helicity, \mathcal{H} (= \mathcal{A} or \mathcal{S}) helicity amplitudes, $\widetilde{\mathcal{H}}, \widetilde{R}$ residues, z_p pole position

Baryon Transition Form Factors

Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JüBo2017

 Δ states:

[ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Tiator et al. PRC94 (2016)] Member of the Helmholtz Association October 1, 2024 Slide 4110 **JÜLICH** Forschungszentrum

Baryon Transition Form Factors

Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JüBo2017

N^* states:

JÜLICH Forschungszentrum The Hyperon Spectrum: Λ^* and Σ^* resonances

Extension of JüBo to $\bar{K}N$ scattering: in progress

S. Rawat (preliminary)

use SU(3) to adapt $\pi N \to X$ model to $\overline{K}N \to X$

- apply the same analysis tools (coupled-channel fits, pole search, ...) as for N*s
- almost finished: coupled-channel fit to $\bar{K}N \to \bar{K}N$, $\pi\Lambda$, $\pi\Sigma$

Preliminary results Λ(1405): 1430. – *i*11.19 MeV & 1338. – *i*85.20 MeV

compares well with UChPT e.g. Mai 2015 (sol 4): $1429^{+8}_{-7} - i12^{+2}_{-3}$ MeV & $1325^{+15}_{-15} - i90^{+12}_{-18}$ MeV

s-, t- and u-channel exchanges

- **21** *s*-channel states (resonances) coupling to πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\Delta$, ρN .
- *t* and *u*-channel exchanges ("*background*", coupling constants fixed from SU(3)):

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	ΚΛ	ΚΣ
πN	$N,\Delta,(\pi\pi)_{\sigma},$ $(\pi\pi)_{\rho}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	$\begin{array}{c} \Lambda, \Sigma, \Sigma^*, \\ \mathrm{K}^* \end{array}$
ρΝ		N, Δ, Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	$\Sigma, \Sigma^*, \mathrm{K}^*$
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σN					Ν, σ	-	-
ΚΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

Forschungszentrum

Details of the formalism

Polynomials:

$$P_{i}^{\mathsf{p}}(E) = \sum_{j=1}^{n} g_{i,j}^{\mathsf{p}} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{\rho}(E - E_{0})}$$

$$P_{\mu}^{\rm NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{\rm NP} \left(\frac{E-E_0}{m_N}\right)^j e^{-g_{\mu,n+1}^{\rm NP}(E-E_0)}$$

$$-E_0 = 1077 \text{ MeV}$$

- $g_{i,j}^{\mathsf{P}}, g_{\mu,j}^{\mathsf{NP}}$: fit parameter

- $e^{-g(E-E_0)}$: appropriate high energy behavior

back

The scattering potential: s-channel resonances

$$V^{\mathsf{P}} = \sum_{i=0}^{n} \frac{\gamma^{a}_{\mu;i} \gamma^{c}_{\nu;i}}{z - m^{b}_{i}}$$

- $\gamma_{\nu;i}^{c}$ ($\gamma_{\mu;i}^{a}$): creation (annihilation) vertex function with **bare coupling** *f* (free parameter)
- z: center-of-mass energy
- m_i^b: bare mass (free parameter)

Vertex	\mathcal{L}_{int}
$N^{*}(S_{11})N\pi$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^*} \gamma^{\mu} \vec{\tau} \partial_{\mu} \vec{\pi} \Psi + \text{h.c.}$
$N^*(S_{11})N\eta$	$rac{f}{m_\pi} ar{\Psi}_{N^*} \gamma^\mu \partial_\mu \eta \Psi + ext{h.c.}$
$N^*(S_{11})N\rho$	$f ar{\Psi}_{N^*} \gamma^5 \gamma^\mu ec{ au} ec{ ho}_\mu \Psi \; + \; { m h.c.}$
$N^*(S_{11})\Delta\pi$	$\frac{f}{m_\pi} \bar{\Psi}_{N^*} \gamma^5 \vec{S} \partial_\mu \vec{\pi} \Delta^\mu + \text{h.c.}$

■ 5/2 ≤ J ≤ 9/2: correct dependence on L (centrifugal barrier)

 $\gamma_{\nu;i}^{c} (\gamma_{\mu;i}^{a})$ from effective \mathcal{L}

$$\begin{split} \left(\gamma^{a,c}\right)_{\frac{5}{2}-} &= \frac{k}{M} \left(\gamma^{a,c}\right)_{\frac{3}{2}+} \\ \left(\gamma^{a,c}\right)_{\frac{7}{2}-} &= \frac{k^2}{M^2} \left(\gamma^{a,c}\right)_{\frac{3}{2}-} \\ \left(\gamma^{a,c}\right)_{\frac{9}{2}-} &= \frac{k^3}{M^3} \left(\gamma^{a,c}\right)_{\frac{3}{2}+} \end{split}$$

$$(\gamma^{a,c})_{\frac{5}{2}} + = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}} -$$

$$(\gamma^{a,c})_{\frac{7}{2}} + = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}} +$$

$$(\gamma^{a,c})_{\frac{9}{2}} + = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}} -$$
Silde 8110

 $J \le 3/2$:

October 1, 2024

Interaction potential from effective Lagrangian

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U.-G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U.-G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-rac{g_{NN\pi}}{m_\pi}\Psi\gamma^5\gamma^\muec au\cdot\partial_\muec \pi\Psi$	NNω	$-g_{NN\omega} \bar{\Psi} [\gamma^{\mu} - rac{\kappa_{\omega}}{2m_N} \sigma^{\mu u} \partial_{ u}] \omega_{\mu} \Psi$
$N\Delta\pi$	$rac{g_{N\Delta\pi}}{m_{\pi}}ar{\Delta}^{\mu}ec{S}^{\dagger}\cdot\partial_{\mu}ec{\pi}\Psi~+$ h.c.	$\omega \pi \rho$	$rac{g_{\omega\pi ho}}{m_{\omega}}\epsilon_{lphaeta\mu u}\partial^{lpha}ec{ ho}^{eta}\cdot\partial^{\mu}ec{\pi}\omega^{ u}$
$\rho\pi\pi$	$-g_{ ho\pi\pi}(ec{\pi} imes\partial_\muec{\pi})\cdotec{ ho}^\mu$	$N\Delta\rho$	$-i\frac{g_{N\Delta\rho}}{m_{\rho}}\bar{\Delta}^{\mu}\gamma^{5}\gamma^{\mu}\vec{S}^{\dagger}\cdot\vec{\rho}_{\mu\nu}\Psi + \text{h.c.}$
$NN\rho$	$-g_{NN ho}\Psi[\gamma^{\mu}-rac{\kappa_{ ho}}{2m_{N}}\sigma^{\mu u}\partial_{ u}]ec{ au}\cdotec{ ho}_{\mu}\Psi$	ρρρ	$g_{NN ho}(ec{ ho}_{\mu} imesec{ ho}_{ u})\cdotec{ ho}^{\mu u}$
ΝΝσ	$-g_{NN\sigma}ar{\Psi}\Psi\sigma$	ΝΝρρ	$\frac{\kappa_{\rho}g_{NN\rho}^{2}}{2m_{N}}\bar{\Psi}\sigma^{\mu\nu}\vec{\tau}\Psi(\vec{\rho}_{\mu}\times\vec{\rho}_{\nu})$
$\sigma\pi\pi$	$rac{g_{\sigma\pi\pi}}{2m_{\pi}}\partial_{\mu}ec{\pi}\cdot\partial^{\mu}ec{\pi}\sigma$	$\Delta\Delta\pi$	$\frac{g_{\Delta\Delta\pi}}{m_{\pi}} \bar{\Delta}_{\mu} \gamma^5 \gamma^{\nu} \vec{T} \Delta^{\mu} \partial_{\nu} \vec{\pi}$
$\sigma\sigma\sigma$	$-g_{\sigma\sigma\sigma}m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\Delta}}\sigma^{\mu\nu}\partial_{\nu})$
			$\cdot ec{ ho}_{\mu} \cdot ec{T} \Delta^{ au}$
$NN ho\pi$	$\tfrac{g_{NN\pi}}{m_{\pi}} 2g_{NN\rho} \bar{\Psi} \gamma^5 \gamma^{\mu} \vec{\tau} \Psi(\vec{\rho}_{\mu} \times \vec{\pi})$	$NN\eta$	$-rac{g_{NN\eta}}{m_\pi}ar{\Psi}\gamma^5\gamma^\mu\partial_\mu\eta\Psi$
NNa ₁	$-rac{g_{NN\pi}}{m_{\pi}}m_{a_1}ar{\Psi}\gamma^5\gamma^\muec{ au}\Psiec{a}_\mu$	NNa ₀	$g_{NNa_0} m_\pi \bar{\Psi} \vec{\tau} \Psi \vec{a_0}$
$a_1 \pi \rho$	$-\frac{2g\pi a_1\rho}{m_{a_1}}[\partial_\mu\vec{\pi}\times\vec{a}_\nu-\partial_\nu\vec{\pi}\times\vec{a}_\mu]\cdot[\partial^\mu\vec{\rho}^\nu-\partial^\nu\vec{\rho}^\mu]$	$\pi\eta a_0$	$g_{\pi\eta a_0} m_\pi \eta ec \pi \cdot ec a_0$
	$+\frac{2g_{\pi a_1}\rho}{2m_{a_1}}[\vec{\pi}\times(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})]\cdot[\partial^{\mu}\vec{a}^{\nu}-\partial^{\nu}\vec{a}^{\mu}]$		

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity: discontinuities from t-channel exchanges
 - → Meson exchange from requirements of the *S*-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange

