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® Particle physics today 1s driven by
the LHC.

® Collides protons at high energies.

= Gives us access to physics
at new energy scales!

® Some technical details:

= (Center-of-mass energy: 13.6 TeV

= (Circumference: 27 km.

= 4 interaction points where the
beams collide.
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® Biggest success of the LHC in 2012:
The discovery of the Higgs boson.

= Are there other, unexpected, new
particles?

® So far no signs of new physics.

| ® In the absence of signals of new physics, we
. & are entering a new era of precision physics!

= Precise experimental measurements.

= Precise theoretical predictions.
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® [ha quantum theory, we can
predict probabilities.

Proba ~ | A|?

= A = scattering amplitude
= probability amplitude for a ’

certain scattering to occur.

® In collider experiments, the observable 1s the (differential)
cross section do.

= (Corresponds (roughly) to the probability to find a certain

final state 1n a certain region of a detector, normalised to the
mitial flux.



® sati

NUMERICIS
ij OCD factorisation ¢ )
® The ‘master tormula’ for LHC observables:

_ 1 , _
o> B =Y [ oo ENBED D - §
%]

Parton Distribution Functions Partonic cross section
non-perturbative; computable in perturbation theory
describe structure of the proton as collisions between quarks and gluons

- d&N/dPS\AF

A = scattering amplitude
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® In general we do not know how to compute amplitudes exactly.

= Perturbation theory: as = coupling constant ~ 0.118

A=AY +a, AWM 42 A@ 4

® Precision increases with the number
of terms.

= How many terms needed?



The need for precision L
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® In general we do not know how to compute amplitudes exactly.

= Perturbation theory: «; = coupling constant ~ 0.118

A=A9 1 a, AV 1 a2 A3
LO NLO NNLO
~ 10% ~ 1%

® Precision increases with the number

of terms.

= How many terms needed?

® To reach 1%, need next-to-next-to-

leading order (NNLO) precision.
= [s this needed?
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= Perturbation theory: a, =

140
A:A(O) _l_OésA(l) —|—Oé§./4(2) + .., 1207
LO NLO NNLO 0
~ 10% ~ 1%
® Precision increases with the number
of terms.
= How many terms needed?
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® In general we do not know how to compute amplitudes exactly.

coupling constant ~ 0.118
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® To reach 1%, need next-to-next-to- 0.95 L

leading order (NNLO) precision.

= |5 this needed?

gg - H— WW*

added to all predictions ~  veeeenens LO
: O'/UNLgﬂi S
T8 Vs [TeV] 13 14

[ Gehrmann, Grazzini, Kallweit, Maierhofer, von

Manteuffel, Pozzorini, Rathlev, Tancredi (2014)]
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The need for precision
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® In general we do not know how to compute amplitudes exactly.

= Perturbation theory: a, =

140
A:A(O) _l_OésA(l) —|—Oé§./4(2) + .., 1207
LO NLO NNLO 0
~ 10% ~ 1%
® Precision increases with the number
of terms.
= How many terms needed?

coupling constant ~ 0.118

olpb] [

80

60 |

20

1.15
1.1 Fr
1.05 F
1.00 |
® To reach 1%, need next-to-next-to- 0.95 L

leading order (NNLO) precision.

= |5 this needed?

40

pp > WFW~—+X

gg - H—=> WW*  cocmeees NLO
added to all predictions =~ -wrereeeens LO
: O'/O'NLOJ" B - S
7 8 V3 [TeV] 13 14

[ Gehrmann, Grazzini, Kallweit, Maierhofer, von

Manteuffel, Pozzorini, Rathlev, Tancredi (2014)]
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® A™receives contributions from Feynman diagrams with L loops.

q g ——\VVWW\ \V\VWW\/ VW
— Y —|— % Y —|— Y —|— .
q g ——\\WW\ é/\/\/\/\,

= Fach diagram translates 1into an analytic formula.
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Perturbation Theory (NUMERIQS)

oy

L . . . . o
o A )recelves contributions from Feynman dlagrams with L loops.

q g ——\VVWW\ \VVWW\ \VVWW\
— Y —|— % —|— 4 —|—
q g —<—\\WW/

= Fach diagram translates 1into an analytic formula.

® Quantum mechanics: We have to sum over all unobserved

quantum numbers.

= Integrate over loop momentum k.

4. St
/dk .

WWv = | |oop: usually doable.

<

= 2 loops: some 2 — 2 or 3.

= 3 loops: some 2 — 1 or 2.
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® Feynman integrals typically diverge, and need to be regulated.
® Most common scheme: Dimensional regularisation.

= Perform computation 1n arbitrary dimensions D.

= Take the limit D — 4 at the very end.

. . 1
= Divergences show up as poles in TV
= Result i1s a Laurent series:
a_9 a_—_1
= — - ap +ai €+ ... D=4—¢
€ €

= The a; are functions of momenta and masses of the particles.



Feynman integrals (NUMERIQIS)

Analytic Numerical




Feynman integrals (NUMERIQIS)

Analytic Numerical

* [f we can obtain analytic
expressions for the Laurent
coefthcients, the problem 1s
solved!




* [f we can obtain analytic
expressions for the Laurent
coefthcients, the problem 1s

solved!

 Feynman integrals must be
complicated transcendental
functions, depending on

Feynman

Analytic

Inte grals (NUMERICIS)

many variables.

e Mathematically: Periods of
(very complicated, singular)

algebraic varieties.

DIFFERENTIATION

TRY APPLYING

CHAIN POLER
RULE RULE

PRODUCT
QUOTIENT RULE
ETC

INTEGRATION

NTEGRATION SUBSTH

TRY APPLYING

By PARTS

[|© xkcd.com]

WHAT THE HECK IS A
BESSEL FUNCTION??



http://xkcd.com

Analytic

* [f we can obtain analytic
expressions for the Laurent
coefthcients, the problem 1s
solved!

 Feynman integrals must be
complicated transcendental
functions, depending on
many variables.

e Mathematically: Periods of
(very complicated, singular)
algebraic varieties.

Feynman

Inte grals (NUMERICIS)

Numerical

* Advantage: form of functions
and number of variables
irrelevant.



Feynman

Analytic

* [f we can obtain analytic
expressions for the Laurent
coefthcients, the problem 1s
solved!

 Feynman integrals must be
complicated transcendental
functions, depending on
many variables.

e Mathematically: Periods of
(very complicated, singular)

algebraic varieties.

Inte grals (NUMERICIS)

Numerical

* Advantage: form of functions
and number of variables
irrelevant.

* Problem: Divergences and
regularisation!

® There are algorithms that
provide integrands for the
[Laurent coefthicients.

® These algorithms are typically

not very efhicient.



Project B04 (NUMERIGS)

® Goal of Project B04: Development of novel purely numerical
approaches for Feynman integrals!

® Important questions we will address:

= (Can one identify a ‘basis’ of Feynman integrals such that
most of the complicated integrals are finite?

= (Can we develop an ethcient numerical algorithm to
integrate those integrals?



Feynman integrals (NUMERIQIS)

/ ey Polynomlal
ro (DPDy -

P ropagator D — — qZ Real positive number (mass)

Scalar product: v? = vg — (v% + U% + ... U%_l)

= Singularities lie on quadrics: hyperbolas and ellipsoids.

® The integral over ko can be done using residues. [Feynman; Catani, Rodrigo, ...
= [ntegrand more complicated.
= Fewer integrations left.

= (Can use MC methods to do remaining integrations (fintegral

converges).
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® Important observation: After kg integration, all singularities lie

on elliPSOidS. [ Capatti, Hirschi, Kermanschah,
Pelloni, Ruyl]

= Ellipsoids are compact.

® There are quadrature methods that can be applied to such
integrals!

= Possible advantage: Exponential convergence!

® Goal of B04:

= Develop and implement a quadrature algorithm for
Feynman integrals!
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® hp interpolation in 1D

= Using a geometric mesh,

Geometric mesh

domain 1s subdivided such

o=20.5
IOZZZO
|| = 0"

that all domain elements not

bordering the singularity

have (exponential) p-scaling.

= FElements bordering

singularity have general h-

o o Va nY Vany
o O U O

T4 fg ToX1X9T1T2 fg T4
|

scaling, which 1s exponential ..

. —0.8 —6.6 —04 —-0.2 (l) 0.2 0‘.4 0.6 0[8 1
with respect to mesh size n.

[Shide by B. Kovad&i¢]
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® hp-quadrature for ellipsoidal singularities

= Domain 1s partitioned such 2
that the diameter of each

[ | ]

V)
<

element 1s proportional to

%
distance from singularity. §E
%

MANY
- Employ quadratures of

orders scaling with respect to
the volume of each element.

////%%%’%L/%L/%LHL/%LF///////A/
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- Regularize singular elements

using Dufty transformations. 1

) N//
b
i N\

[Shide by B. Kovad&i¢]
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® Numerical methods can only be used if integral converges.

/Dde @

Dy D, ---D,

® It s possible to choose the numerator polynomials so that many

of the most complicated integrals are finite! [Gambut, I;OSOW?]NOViChkOV,

® Goal of B04:

= Develop and implement an algorithm to render most
complicated (basis) integrals finite.
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® Work on Project B04 has started!

= We have implemented a general algorithm to perform the
residue integration.

= We have identified a simple example of a finite integrals,
and we are implementing a quadrature algorithm.

= We are implementing the algorithm to choose the
numerators.

® [inal goal: divide et imperal

= [ind a basis of integrals where:
- divergent integrals are ‘easy’: can be done analytically.

- ‘complicated’ integrals are finite: needs ethicient numerical
algorithms.
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® l.eading order (LO):

—>—{VWWW\ VW ——

]
Y ] Y
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® l.eading order (LO): ® Next-to-LO (NLO):

——hWwwanwi—— AT —
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® l.eading order (LO): ® Next-to-LO (NLO):
i e ——
Virtual Real

Individually divergent, but sum 1s finite.
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® Icading order (LO): ® Next-to-LO (NLO):
i g —— i
Virtual Real

Individually divergent, but sum 1s finite.

® Next-to-next-to-LO (NNLO):

“WWL— MAVWWWWL— > :
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® [oop integrations:

= | loop: usually doable.

= 2 loops: typically 2 — 2 and 2 — 3 with massless particles.
= 3 loops: 2 - 1 and first 2 — 2 with massless particles.

O Combing real and virtual corrections:

= NLO: usually doable.

= NNLO: typically 2 — 2 and hirst 2 — 3.
=» N3LO: 2 > 1.
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® [.oop integrations:
P g / e

= | loop: usually doable.

g;@%

= 2 loops: typically 2 — 2 and 2 — 3 with massless particles.
= 3 loops: 2 - 1 and first 2 — 2 with massless particles.

O Combing real and virtual corrections:

= NLO: usually doable.

= NNLO: typically 2 — 2 and hirst 2 — 3.
=» N3LO: 2 > 1.



