# On the sparse grid combination method for SU(2) lattice problems

Michael Griebel University of Bonn and Fraunhofer SCAI Joint work with Heinz-Jürgen Flad, U. Bonn

- 1. The lattice model SU(2)
- 2. The sparse grid combination method
- 3. Numerical experiments

- Non-abelian SU(2) Yang-Mills theory in *d* dimensions
  - d-1 spatial and one imaginary time dimension
  - Wick-rotated into Euclidean space with Euclidean metric
- Uniform lattice of size N, i.e  $\Lambda_{d,N} \coloneqq \{n = (n_0, \dots, n_{d-1}) \in \mathbb{N}_0^d \colon n_\mu = 0, \dots, N-1\}$
- On each lattice site  $n \in \Lambda_{d,N}$ , place d link variables  $U_{\mu}(n) \in SU(2), \mu = 0, ..., d 1$ 
  - Matrices  $U_{\mu}(n) \in \mathbb{C}^{2 \times 2}$  with  $U_{\mu}(n)U_{\nu}^{\dagger}(n) = 1$  and  $\det U_{\mu}(n) = 1$
  - Connect site *n* to sites  $n + e_{\mu}$  in forward directions  $\mu = 0, ..., d 1$ , with  $e_{\mu}$  the *d* –dimensional unit vector in coordinate direction  $\mu$ .



- Set of all such matrices  $\mathcal{U}_{d,N} = \left\{ U_{\mu}(n) \in SU(2), n \in \Lambda_{d,N}, \mu = 0, \dots, d-1 \right\}$
- Plaquette operator in site *n* is the closed loop  $P_{\mu,\nu}(n) \coloneqq U_{\mu}(n) \ U_{\nu}(n+e_{\mu})U_{\mu}^{\dagger}(n+e_{\nu})U_{\nu}^{\dagger}(n)$

• For each element in  $\mathcal{U}_{d,N}$  we have Wilson's lattice action  $S_{\Lambda_{d,N}} \coloneqq -\frac{\beta}{2} \sum_{n \in \Lambda_{d,N}} \sum_{\mu < \nu} Re Tr P_{\mu,\nu}(n)$ with  $\beta = \frac{1}{2}$  the inverse squared gauge coupling constant

with  $\beta = \frac{1}{g_0^2}$  the inverse squared gauge coupling constant

- Produce a Markov chain of *M* samples  $\mathcal{U}_{d,N,i}$ , i = 1, ..., M via rejection sampling by the Metropolis algorithm distributed as  $\mathbb{P}(\mathcal{U}_{d,N}) \propto \exp(-S(\mathcal{U}_{d,N}))$ 
  - Tune the rejection rate to about 50%
  - For given parameters N, M, β, we employ the code su2 of C. Urbach, HISKP, see

https://github.com/urbach/su2/tree/EducationalVersion

• The main observable is the empirical plaquette expectation

$$\widehat{P}_{d,N,M} \coloneqq \langle P \rangle_M \coloneqq \frac{1}{M} \sum_{i=1}^M P(\mathcal{U}_{d,N;i})$$

where

$$P(\mathcal{U}_{d,N;i}) = \frac{2}{d(d-1)N^d} \sum_{n \in \Lambda_{d,N}} \sum_{\mu < \nu} \operatorname{Re} \operatorname{Tr} U_{\mu,\nu;i}(n)$$

with the sampled matrices

$$U_{\mu,\nu:i}(n), \ n \in \Lambda_{d,N}$$
,  $\mu, \nu = 0, \dots, d-1, \mu < \nu$ 

that together comprise one sample  $\mathcal{U}_{d,N,i}$ 

- The cost is  $cost_{d,N,M} = O(MN^d)$  with  $\beta$ -dependent constant
- The error is  $|\hat{P}_{d,\infty,\infty} \hat{P}_{d,N,M}|$

# Limits

- For  $M \to \infty$  we have convergence  $\hat{P}_{d,N,M} \longrightarrow \hat{P}_{d,N,\infty,N}$ 
  - Is due to the law of large numbers and the Metropolis algorithm
- Infinite volume limit:  $N \rightarrow \infty$ .
  - It exists for  $\beta > 0$ , the system converges to a Young-Mills theory in discrete space-time with lattice spacing a = 1
  - If the confinement property holds we have fast convergence in *N* and need practically only moderate values of *N*
- Continuum limit:
  - Hope: By making *N* larger while making the lattice spacing *a* smaller and smaller, a continuous theory is obtained with  $a \rightarrow 0$ .
  - Renormalization group transform, Callan-Symanzik equation, Low-Gell-Mann functions, improved actions
- For now: We stick to the infinite volume limit only

- So far: With d, N, M,  $\beta$  fixed, we can compute  $\hat{P}_{d,N,M}$  by the code *su2* with cost of  $O(MN^d)$ , certain accuracy and convergence rate
  - Can we improve on the relation of error versus cost ?
- Sparse grids:
  - For function approximation, quadrature, PDE solution, uncertainty quantification, machine learning, we can apply the sparse grid idea and have substantial cost complexity gains
  - This is due to higher regularity of the underlying functions which possess bounded mixed derivatives.
  - Can we find a related property for lattice problems, and can we exploit it to gain faster algorithms ?
- We try to first find out for the SU(2)
- Note: Multilevel MC and multi-fidelity UQ are just special cases of a sparse grid method, sparse grids are more general

• Consider dyadic levels  $l_1, l_2 \ge 1$ , i.e.  $N = 2^{l_1}, M = 2^{l_2}$  and, with

$$\tilde{P}_{l_1, l_2} := \hat{P}_{d, 2^{l_1}, 2^{l_2}}$$

the associated table of results of the code su2

$$\left\{\tilde{P}_{l_1,l_2}\right\}_{l_1,l_2} \, l_1, l_2 \in \mathbb{N}^2$$

which is trivially extended to zero levels by  $\tilde{P}_{0,l_2} = \tilde{P}_{l_1,0} = \tilde{P}_{0,0} = 0$ 

- Define the table  $\{\Delta_{l_1,l_2}\}_{l_1,l_2}$  of the hierarchical surplus/benefit  $\Delta_{l_1,l_2} := \tilde{P}_{l_1,l_2} - \tilde{P}_{l_1-1,l_2} - \tilde{P}_{l_1,l_2-1} + \tilde{P}_{l_1-1,l_2-1}$
- Telescopic sum identities

$$\tilde{P}_{L_1,L_2} = \sum_{l_1=1}^{L_1} \sum_{l_2}^{L_2} \Delta_{l_1,l_2}$$
 and  $\tilde{P}_{\infty,\infty} = \sum_{l_1=1}^{\infty} \sum_{l_2}^{\infty} \Delta_{l_1,l_2}$ 

- Take the cost  $cost_{l_1,l_2}$  of each  $\Delta_{l_1,l_2}$  into account, which is up to a small constant that of the cost of  $\tilde{P}_{l_1,l_2}$
- Define the table  $\{bcr_{l_1,l_2}\}_{l_1,l_2}$  with the benefit/cost ratios  $bcr_{l_1,l_2} \coloneqq \frac{|\Delta_{l_1,l_2}|}{cost_{l_1,l_2}}$
- The optimal index set Γ<sub>K</sub> can be determined by a simple knapsack problem: Sort the benefit/cost ratios and take the first K indices with the largest bcr<sub>l1</sub>,l2 into account
- For rising *K* it involves a truncation of the *bcr* table along its level set lines
- Leads to the associated general sparse grid approximation

$$\tilde{P}_{L_1,L_2} = \sum_{l_1,l_2 \in \Gamma_K} \Delta_{l_1,l_2}$$

with minimal overall cost  $\sum_{l_1, l_2 \in \Gamma_K} cost_{l_1, l_2}$  and minimal error

• The telescopic sum for  $\Gamma_K$  can be partially reversed. This leads to the general sparse grid combination method

$$\tilde{P}_{\Gamma_{K},} = \sum_{l_{1}, l_{2} \in \Gamma_{K}} \Delta_{l_{1}, l_{2}} = \sum_{l_{1}, l_{2} \in \Gamma_{K}} c_{l_{1}, l_{2}} \tilde{P}_{l_{1}, l_{2}}$$

with the combination coefficients

$$c_{l_1,l_2} \coloneqq \sum_{z_1,z_2=0,0}^{l_1,l_2} (-1)^{z_1+z_2} \chi_{\Gamma_K}((l_1,l_2) + (z_1,z_2))$$

and the characteristic function  $\chi_{\Gamma_K}(l_1, l_2) := \begin{cases} 1 & \text{if } (l_1, l_2) \in \Gamma_K \\ 0 & \text{else} \end{cases}$ 



- Involves now only certain  $\tilde{P}_{l_1,l_2}$ , i.e. calls of the code *su*2, with different parameters and the linear combination of its results
- Can be tried analogously with other theories and codes
- Can also be tried for code involving renormalization, Callan-Symanzik corrections, etc. provided that there is code and that the limit exists at all ?
- Can be seen as a two-variate extrapolation method between the lattice size/spacing and the number of MC samples

- Most simple example: Isotropic sparse grid, d = 2
- Index set:  $\Gamma_{isp,L} = \{(l_1, l_2) \in \mathbb{N}^2, l_1 + l_2 \le L + 1\}$
- Isotropic sparse grid approximation

$$\tilde{P}_{isp,L} = \sum_{l_1, l_2 \in \Gamma_{sparse,L}} \Delta_{l_1, l_2}$$

Isotropic combination technique



• Cost complexity gain in contrast to full grid  $\square$ :  $O(L2^{L})$  instead of  $O(2^{2L})$ 

- Isotropic situation rarely encountered: Slow rate of MC in  $l_1$ -direction, much faster rate in  $l_2$ -direction, product decay unclear
- Anisotropic index set associated to  $L_1$ ,  $L_2$

 $\Gamma_{asp,L_1,L_2} = \{(l_1, l_2) \in \mathbb{N}^2, (L_2 - 1)l_1 + (L_1 - 1)l_2 \le L_1 L_2 - 1\}$ 

- Anisotropic sparse grid approximation  $\tilde{P}_{asp,L_1,L_2} = \sum_{l_1,l_2 \in \Gamma_{asp,L_1,L_2}} \Delta_{l_1,l_2}$
- Anisotropic combination technique



#### Numerical experiments

- For simplicity, set d = 2
- We consider  $\beta = 0.5$  and  $\beta = 10$
- Benefit cost ratios for N, M of different level indices



 We see an anisotropic sparse grid structure in both cases and NOT a full grid structure

#### Numerical experiments

- This is good news:
  - We have a kind of product type behavior of the convergence and a sparse grid effect for the SU(2).
  - Allows substantially faster algorithms by means of the sparse grid combination method
- The diagonal cut off isoline of the isotropic case for optimal complexity is rotated
  - Anisotropy reflects the slower convergence rate in sampling direction versus the faster rate in lattice size direction
  - Gets more profound for the larger value of  $\beta$
- How can we detect this algorithmically and how can we practically construct an optimal index set ?

# Algorithmic remarks

- Dimension-adaptive method builds the index set successively adapted to a specific problem under consideration
- Example:



- Adaptive method: Error indicator bcr<sub>l1,l2</sub> > ε involving the Δ<sub>l1,l2</sub>, largest value marks the index for refinement, refinement in two directions, and repeat
- Associated combination method involves only the  $\tilde{P}_{l_1,l_2}$
- Note again: Just code to be called for different lattice resolutions and different samplings/chain lengths

# Concluding remarks

- We studied SU(2) lattice problems for the most simple case d=2 and the infinite volume limit
  - Wanted to find out if there is a kind of product decay/sparse grid effect or not
  - Yes ! Allows to substantially speed up calculations
- Next:
  - Consider the cases d = 3, 4
  - Try to consider the continuum limit case, code ?
  - Consider other problems than just SU(2), code ?
  - Note: Other codes can be simply plugged into our method
- Instead with MCMC, our approach could work for quasi MC-type techniques of higher order as well ?