
On the sparse grid combination method

for SU(2) lattice problems

Michael Griebel

University of Bonn and Fraunhofer SCAI

Joint work with Heinz-Jürgen Flad, U. Bonn

1. The lattice model SU(2)

2. The sparse grid combination method

3. Numerical experiments

The lattice model SU(2)

• Non-abelian SU(2) Yang-Mills theory in 𝑑 dimensions

• 𝑑 − 1 spatial and one imaginary time dimension

• Wick-rotated into Euclidean space with Euclidean metric

• Uniform lattice of size 𝑁, i.e

Λ𝑑,𝑁 ≔ 𝑛 = 𝑛0, . . . , 𝑛𝑑−1 ∈ ℕ0
𝑑: 𝑛𝜇 = 0,… ,𝑁 − 1

• On each lattice site 𝑛 ∈ Λ𝑑,𝑁, place 𝑑 link variables

𝑈𝜇 𝑛 ∈ 𝑆𝑈 2 , 𝜇 = 0, … , 𝑑 − 1

• Matrices 𝑈𝜇 𝑛 ∈ ℂ2 𝑥 2 with 𝑈𝜇 𝑛 𝑈𝜈
† 𝑛 = 1 and det 𝑈𝜇 𝑛 = 1

• Connect site 𝑛 to sites 𝑛 + 𝑒𝜇 in forward directions 𝜇 = 0,… , 𝑑 − 1,

with 𝑒𝜇 the 𝑑 −dimensional unit vector in coordinate direction 𝜇.

The lattice model SU(2)

• Example

• Set of all such matrices

𝒰𝑑,𝑁 = 𝑈𝜇 𝑛 ∈ 𝑆𝑈 2 , 𝑛 ∈ Λ𝑑,𝑁 , 𝜇 = 0,… , 𝑑 − 1

• Plaquette operator in site 𝑛 is the closed loop

𝑃𝜇,𝜈 𝑛 ≔ 𝑈𝜇 𝑛 𝑈𝜈 𝑛 + 𝑒𝜇 𝑈𝜇
†(𝑛 + 𝑒𝜈)𝑈𝜈

†(𝑛)

The lattice model SU(2)

• For each element in 𝒰𝑑,𝑁 we have Wilson’s lattice action

𝑆Λ𝑑,𝑁 ≔ −
𝛽

2
σ𝑛∈Λ𝑑,𝑁

σ𝜇<𝜈𝑅𝑒 𝑇𝑟 𝑃𝜇,𝜈 𝑛

with 𝛽 =
1

𝑔0
2 the inverse squared gauge coupling constant

• Produce a Markov chain of 𝑀 samples 𝒰𝑑,𝑁,𝑖 , 𝑖 = 1, … ,𝑀 via

rejection sampling by the Metropolis algorithm distributed as

ℙ 𝒰𝑑,𝑁 ∝ exp(−𝑆(𝒰𝑑,𝑁))

• Tune the rejection rate to about 50%

• For given parameters 𝑁,𝑀, 𝛽,we employ the code su2

of C. Urbach, HISKP, see

ℎ𝑡𝑡𝑝𝑠://𝑔𝑖𝑡ℎ𝑢𝑏. 𝑐𝑜𝑚/𝑢𝑟𝑏𝑎𝑐ℎ/𝑠𝑢2/𝑡𝑟𝑒𝑒/𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑉𝑒𝑟𝑠𝑖𝑜𝑛

The lattice model SU(2)

• The main observable is the empirical plaquette expectation

𝑃𝑑,𝑁,𝑀 ≔ 𝑃 𝑀 ≔
1

𝑀

𝑖=1

𝑀

𝑃(𝒰𝑑,𝑁;𝑖)

where

𝑃 𝒰𝑑,𝑁;𝑖 =
2

𝑑(𝑑 − 1)𝑁𝑑

𝑛∈Λ𝑑,𝑁

𝜇<𝜈

𝑅𝑒 𝑇𝑟 𝑈𝜇,𝜈;𝑖 𝑛

with the sampled matrices

𝑈𝜇,𝜈:𝑖 𝑛 , 𝑛 ∈ Λ𝑑,𝑁 , 𝜇, 𝜈 = 0,… , 𝑑 − 1, 𝜇 < 𝜈

that together comprise one sample 𝒰𝑑,𝑁,𝑖

• The cost is 𝑐𝑜𝑠𝑡𝑑,𝑁,𝑀 = 𝑂(𝑀𝑁𝑑) with 𝛽-dependent constant

• The error is | 𝑃𝑑,∞,∞ − 𝑃𝑑,𝑁,𝑀|

Limits

• For 𝑀 → ∞ we have convergence 𝑃𝑑,𝑁,𝑀 ⟶ 𝑃𝑑,𝑁,∞,

• Is due to the law of large numbers and the Metropolis algorithm

• Infinite volume limit: N → ∞.

• It exists for 𝛽 > 0, the system converges to a Young-Mills theory

in discrete space-time with lattice spacing 𝑎 = 1

• If the confinement property holds we have fast convergence in

𝑁 and need practically only moderate values of 𝑁

• Continuum limit:

• Hope: By making 𝑁 larger while making the lattice spacing 𝑎
smaller and smaller, a continuous theory is obtained with 𝑎 → 0.

• Renormalization group transform, Callan-Symanzik equation,

Low-Gell-Mann functions, improved actions

• For now: We stick to the infinite volume limit only

Sparse grid combination method

• So far: With d, 𝑁,𝑀, 𝛽 fixed, we can compute 𝑃𝑑,𝑁,𝑀 by the code

su2 with cost of 𝑂(𝑀𝑁𝑑), certain accuracy and convergence rate

• Can we improve on the relation of error versus cost ?

• Sparse grids:

• For function approximation, quadrature, PDE solution,

uncertainty quantification, machine learning, we can apply the

sparse grid idea and have substantial cost complexity gains

• This is due to higher regularity of the underlying functions

which possess bounded mixed derivatives.

• Can we find a related property for lattice problems, and can

we exploit it to gain faster algorithms ?

• We try to first find out for the SU(2)

• Note: Multilevel MC and multi-fidelity UQ are just special cases

of a sparse grid method, sparse grids are more general

Sparse grid combination method

• Consider dyadic levels 𝑙1, 𝑙2 ≥ 1, i.e. 𝑁 = 2𝑙1 ,𝑀 = 2𝑙2 and, with

෨𝑃𝑙1,𝑙2 :=
𝑃𝑑,2𝑙1 ,2𝑙2

the associated table of results of the code su2

෨𝑃𝑙1,𝑙2 𝑙1,𝑙2
𝑙1, 𝑙2 ∈ ℕ2

which is trivially extended to zero levels by ෨𝑃0,𝑙2 =
෨𝑃𝑙1,0 =

෨𝑃0,0 = 0

• Define the table Δ𝑙1,𝑙2 𝑙1,𝑙2
of the hierarchical surplus/benefit

Δ𝑙1,𝑙2 :=
෨𝑃𝑙1,𝑙2 −

෨𝑃𝑙1−1,𝑙2 −
෨𝑃𝑙1,𝑙2−1 +

෨𝑃𝑙1−1,𝑙2−1

• Telescopic sum identities

෨𝑃𝐿1,𝐿2 = σ𝑙1=1
𝐿1 σ𝑙2

𝐿2 Δ𝑙1,𝑙2 and ෨𝑃∞,∞ = σ𝑙1=1
∞ σ𝑙2

∞Δ𝑙1,𝑙2

Sparse grid combination method

• Take the cost 𝑐𝑜𝑠𝑡𝑙1,𝑙2 of each Δ𝑙1,𝑙2 into account, which is up

to a small constant that of the cost of ෨𝑃𝑙1,𝑙2

• Define the table 𝑏𝑐𝑟𝑙1,𝑙2 𝑙1,𝑙2
with the benefit/cost ratios

𝑏𝑐𝑟𝑙1,𝑙2 ≔
|Δ𝑙1,𝑙2|

𝑐𝑜𝑠𝑡𝑙1,𝑙2

• The optimal index set Γ𝐾 can be determined by a simple

knapsack problem: Sort the benefit/cost ratios and take the

first 𝐾 indices with the largest 𝑏𝑐𝑟𝑙1,𝑙2 into account

• For rising 𝐾 it involves a truncation of the bcr table along its

level set lines

• Leads to the associated general sparse grid approximation

෨𝑃𝐿1,𝐿2 = σ𝑙1,𝑙2∈ Γ𝐾
Δ𝑙1,𝑙2

with minimal overall cost σ𝑙1,𝑙2∈ Γ𝐾
𝑐𝑜𝑠𝑡𝑙1,𝑙2 and minimal error

Sparse grid combination method

• The telescopic sum for Γ𝐾 can be partially reversed. This

leads to the general sparse grid combination method

෨𝑃Γ𝐾, = σ𝑙1,𝑙2∈ Γ𝐾
Δ𝑙1,𝑙2= σ𝑙1,𝑙2∈ Γ𝐾

𝑐𝑙1,𝑙2𝑙1,𝑙2
෨𝑃𝑙1,𝑙2

with the combination coefficients

𝑐𝑙1,𝑙2 ≔ σ𝑧1,𝑧2=0,0
𝑙1,𝑙2 (−1)𝑧1+ 𝑧2𝜒Γ𝐾((𝑙1, 𝑙2) + (𝑧1, 𝑧2))

and the characteristic function 𝜒Γ𝐾(𝑙1, 𝑙2):=
1 if (𝑙1, 𝑙2) 𝜖 Γ𝐾
0 else

Sparse grid combination method

• Involves now only certain ෨𝑃𝑙1,𝑙2, i.e. calls of the code su2, with

different parameters and the linear combination of its results

• Can be tried analogously with other theories and codes

• Can also be tried for code involving renormalization, Callan-

Symanzik corrections, etc. provided that there is code and

that the limit exists at all ?

• Can be seen as a two-variate extrapolation method between

the lattice size/spacing and the number of MC samples

Sparse grid combination method

• Most simple example: Isotropic sparse grid, 𝑑 = 2

• Index set: Γ𝑖𝑠𝑝,𝐿 = 𝑙1, 𝑙2 𝜖ℕ2, 𝑙1 + 𝑙2 ≤ 𝐿 + 1

• Isotropic sparse grid approximation

෨𝑃𝑖𝑠𝑝,𝐿 = σ𝑙1,𝑙2∈ Γ𝑠𝑝𝑎𝑟𝑠𝑒,𝐿
Δ𝑙1,𝑙2

• Isotropic combination technique

෩𝑃𝑖𝑠𝑝,𝐿 = σ𝑙1+𝑙2=𝐿+1
෨𝑃𝑙1,𝑙2 − σ𝑙1+𝑙2=𝐿+1

෨𝑃𝑙1,𝑙2

• Cost complexity gain in contrast to full grid :

𝑂(𝐿2𝐿) instead of 𝑂(22𝐿)

• Isotropic situation rarely encountered: Slow rate of MC in 𝑙1-direction,

much faster rate in 𝑙2-direction, product decay unclear

• Anisotropic index set associated to 𝐿1, 𝐿2
Γ𝑎𝑠𝑝,𝐿1,𝐿2 = 𝑙1, 𝑙2 𝜖ℕ2, (𝐿2 − 1)𝑙1+(𝐿1 − 1)𝑙2≤ 𝐿1𝐿2 − 1

• Anisotropic sparse grid approximation ෨𝑃𝑎𝑠𝑝,𝐿1,𝐿2 = σ𝑙1,𝑙2∈Γ𝑎𝑠𝑝,𝐿1,𝐿2
Δ𝑙1,𝑙2

• Anisotropic combination technique

෨𝑃𝑎𝑠𝑝,𝐿1,𝐿2 = σ(𝐿2−1)𝑙1+(𝐿1−1)𝑙2= 𝐿1𝐿2
෨𝑃𝑙1,𝑙2 − σ(𝐿2−1)𝑙1+(𝐿1−1)𝑙2== 𝐿1𝐿2−1

෨𝑃𝑙1,𝑙2

• Cost complexity gain in contrast to full grid:

𝑂(2max(𝐿1,𝐿2)) instead of 𝑂(2𝐿1+𝐿2)

Sparse grid combination method

• For simplicity, set 𝑑 = 2

• We consider 𝛽 = 0,5 and 𝛽 = 10

• Benefit cost ratios for 𝑁,𝑀 of different level indices

• We see an anisotropic sparse grid structure in both cases and

NOT a full grid structure

Numerical experiments

𝛽 = 0,5 𝛽 = 10.0

Numerical experiments

• This is good news:

• We have a kind of product type behavior of the convergence

and a sparse grid effect for the SU(2).

• Allows substantially faster algorithms by means of the sparse

grid combination method

• The diagonal cut off isoline of the isotropic case for optimal

complexity is rotated

• Anisotropy reflects the slower convergence rate in sampling

direction versus the faster rate in lattice size direction

• Gets more profound for the larger value of 𝛽

• How can we detect this algorithmically and how can we

practically construct an optimal index set ?

Algorithmic remarks
• Dimension-adaptive method builds the index set successively

adapted to a specific problem under consideration

• Example:

• Adaptive method: Error indicator 𝑏𝑐𝑟𝑙1,𝑙2 > 𝜀 involving the Δ𝑙1,𝑙2,

largest value marks the index for refinement, refinement in two

directions, and repeat

• Associated combination method involves only the ෨𝑃𝑙1,𝑙2
• Note again: Just code to be called for different lattice resolutions

and different samplings/chain lengths

Concluding remarks

• We studied SU(2) lattice problems for the most simple case d=2

and the infinite volume limit

• Wanted to find out if there is a kind of product decay/sparse

grid effect or not

• Yes ! Allows to substantially speed up calculations

• Next:

• Consider the cases 𝑑 = 3, 4

• Try to consider the continuum limit case, code ?

• Consider other problems than just SU(2), code ?

• Note: Other codes can be simply plugged into our method

• Instead with MCMC, our approach could work for quasi MC-type

techniques of higher order as well ?

