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The lattice model SU(2)

* Non-abelian SU(2) Yang-Mills theory in d dimensions
e d — 1 spatial and one imaginary time dimension
* Wick-rotated into Euclidean space with Euclidean metric

 Uniform lattice of size N, I.e
Agn = {n = (ng,...,Ng—1) € N4: n,=0,.,N-— 1}

« On each lattice site n € Ay y, place d link variables
U,n) eSUC2),u=0,..,d—1

- Matrices U, (n) € C2*2with U,(n)U) (n) = 1 and detU,(n) = 1

« Connect site n to sites n + ¢, In forward directions u = 0, ...,d — 1,
with e, the d —dimensional unit vector in coordinate direction .



The lattice model SU(2)

« Example n o ® &
n+e,
® ® ® ®
U, (n)
® o- 1M, o ®
n n+e;
e @ ® ®

« Set of all such matrices
Ugy ={U,(n) € SUR),nE ANt =0,..,d — 1}

« Plaquette operator in site n is the closed loop
P,v(n) =U,(n) Uv(n + eM)UMJr (n + ev)U:,r (n)



The lattice model SU(2)

For each element in U, y we have Wilson's lattice action
B
SAd,N = _EzneAd,N Yu<vReTr P, (n)

with § = g_12 the inverse squared gauge coupling constant
0

Produce a Markov chain of M samples Uy ;i =1,...,M via
rejection sampling by the Metropolis algorithm distributed as

P(Ugn )  exp(=S(Ug,n))
* Tune the rejection rate to about 50%

* For given parameters N, M, 5, we employ the code su2
of C. Urbach, HISKP, see

https://github.com/urbach/su2/tree/EducationalVersion



The lattice model SU(2)

« The main observable is the empirical plaguette expectation
M
~ 1
Ponm =Py = MZ P(Ug,n;i )
i=1

where

2
P(Ug,n;; ) = (A —DN? Z ZRe Tr Uyy,i(n)

neAg y u<v
with the sampled matrices
Uiv.i(n), n€Agn, i, v=0,...,d —1Lu<v
that together comprise one sample Ug v ;

 The costis costyyy = O(MN%) with B-dependent constant
* The erroris |Pgew — Panul



Limits
For M — oo we have convergence Py yy — Pinw,
* Is due to the law of large numbers and the Metropolis algorithm

Infinite volume limit: N — oo.

It exists for f > 0, the system converges to a Young-Mills theory
In discrete space-time with lattice spacinga =1

« If the confinement property holds we have fast convergence in
N and need practically only moderate values of N

Continuum limit;

« Hope: By making N larger while making the lattice spacing a
smaller and smaller, a continuous theory is obtained with a — 0.

« Renormalization group transform, Callan-Symanzik equation,
Low-Gell-Mann functions, improved actions

For now: We stick to the infinite volume limit only



Sparse grid combination method

So far: With d, N, M, B fixed, we can compute P, y » by the code
su2 with cost of 0(MN9), certain accuracy and convergence rate

« Can we improve on the relation of error versus cost ?
Sparse grids:
 For function approximation, quadrature, PDE solution,

uncertainty quantification, machine learning, we can apply the
sparse grid idea and have substantial cost complexity gains

« This is due to higher regularity of the underlying functions
which possess bounded mixed derivatives.

« Can we find a related property for lattice problems, and can
we exploit it to gain faster algorithms ?

We try to first find out for the SU(2)

Note: Multilevel MC and multi-fidelity UQ are just special cases
of a sparse grid method, sparse grids are more general



Sparse grid combination method

Consider dyadic levels I,1, > 1,i.e. N =241, M = 2!2 and, with

plblz: = Pd,211,212
the associated table of results of the code su2

{ﬁll’lz}ll,lz l,1, € N?

which is trivially extended to zero levels by Py;, = P, o = Py = 0

Define the table {4, ;,}, , of the hierarchical surplus/benefit

1,42

A11,12: = Pl1;lz o Pl1—1,lz o Pl1;lz—1 + Pl1—1,lz—1

Telescopic sum identities

D — vl L D _ 0 00
PLlJLZ - le=1zl2 All;lz and POO;OO - le=1 le All,lz



Sparse grid combination method

Take the cost cost; ;, of each 4, ; Into account, which is up

to a small constant that of the cost of P, ;,
Define the table {bcr;, ;,}, , with the benefit/cost ratios
1,42

1A14,1,1
costyy 1,

bery, 1, =

The optimal index set I'y can be determined by a simple
knapsack problem: Sort the benefit/cost ratios and take the
first K indices with the largest bcry i, Into account

For rising K it involves a truncation of the bcr table along its
level set lines

Leads to the associated general sparse grid approximation
PL1,L2 = le,lze FK All;lz
with minimal overall cost »,; ; cr, cost;, ;, and minimal error



Sparse grid combination method

* The telescopic sum for I’y can be partially reversed. This
leads to the general sparse grid combination method

PFK; = le,lze FK All,lzz le’lze FK Cll,lz ll lZ Pll,lz

with the combination coefficients
Iyl
Cll,lz = Zzll’zzzzo,O(_l)Zl-l_ZZXFK(( ll’ 12) + (Zl’ ZZ))

and the characteristic function yr(l;, lz)::{(l) if (lle’llsze) € Ik

12 lz

|
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Sparse grid combination method

Involves now only certain 1511,12, l.e. calls of the code su2, with
different parameters and the linear combination of its results

Can be tried analogously with other theories and codes

Can also be tried for code involving renormalization, Callan-
Symanzik corrections, etc. provided that there is code and
that the limit exists at all ?

Can be seen as a two-variate extrapolation method between
the lattice size/spacing and the number of MC samples



Sparse grid combination method

Most simple example: Isotropic sparse grid, d = 2
Index set: Tjgpp = {(l1,1,)eN I + 1, <L + 1}
|sotropic sparse grid approximation

~

PiSP;L = le;lze Isparse L All'lz
Isotropic combination technique

~

PiSp,L - le+lz=L+1 Pll;lz _ le+lz=L+1 Pll!lz

lz 12

L L

[l

l

!
L ! L 1

« Cost complexity gain in contrast to full grid O:
0(L2") instead of 0(22%%)



Sparse grid combination method

* Isotropic situation rarely encountered: Slow rate of MC in [;-direction,
much faster rate in [,-direction, product decay unclear

« Anisotropic index set associated to L4, L,

TaspryL, = (1, 12)eN?, (Ly — Dl +(Ly — DI, < LyLy — 13

~

* Anisotropic sparse grid approximation Py, ;. 1, = le,lzerasp Lol A,

 Anisotropic combination technique

Pasp;Ll;LZ = Z(Lz—l)ll'i'(l;l—l)lz: L1L2 Pl]_;lz T Z(Lz—l)ll'i'(l;l—l)lz:: L1L2—1 Pll,lz

>

L,

b

l
L, t
H
N
Ly

« Cost complexity gain in contrast to full grid:
0 (2max(Lyl2)Y instead of O(2L1712)

L



Numerical experiments
* For simplicity, set d = 2
« Weconsider § =0,5and f =10

 Benefit cost ratios for N, M of different level indices

64000 64000

16000 F———

8 16 32 64 128 256 512
16 32 64 128 256 512

« We see an anisotropic sparse grid structure in both cases and
NOT a full grid structure



Numerical experiments

This is good news:

« We have a kind of product type behavior of the convergence
and a sparse grid effect for the SU(2).

 Allows substantially faster algorithms by means of the sparse
grid combination method

The diagonal cut off isoline of the isotropic case for optimal
complexity is rotated

 Anisotropy reflects the slower convergence rate in sampling
direction versus the faster rate in lattice size direction

« Gets more profound for the larger value of

How can we detect this algorithmically and how can we
practically construct an optimal index set ?



Algorithmic remarks

« Dimension-adaptive method builds the index set successively
adapted to a specific problem under consideration

 Example:

SHEH N

* Adaptive method: Error Indicator bcry, ;, > € involving the 4;_ ;,,

largest value marks the index for refinement, refinement in two
directions, and repeat

« Associated combination method involves only the le,zz

« Note again: Just code to be called for different lattice resolutions
and different samplings/chain lengths




Concluding remarks

We studied SU(2) lattice problems for the most simple case d=2
and the infinite volume limit

« Wanted to find out if there is a kind of product decay/sparse
grid effect or not

* Yes ! Allows to substantially speed up calculations

Next:

« Consider the cases d = 3,4

* Try to consider the continuum limit case, code ?

« Consider other problems than just SU(2), code ?

* Note: Other codes can be simply plugged into our method

Instead with MCMC, our approach could work for quasi MC-type
technigues of higher order as well ?



