

(NUMERIQS)

B01 Quasi-Particle Dynamics in Low-Dimensional Topological Systems

Thomas Luu & Ulf Meißner

IAS-4, Forschungszentrum Jülich & HISKP, University of Bonn

October 1, 2024

In a nutshell...

Interested in dynamics of low-dimensional electronic systems

- At least one of the dimensions of the material is small (~nanoscale)
- Quantum effects and strong correlations induce novel phenomena ⇒ non-perturbative
- Topology and symmetry play significant roles
- Perfect marriage of EFT and Monte Carlo methods

Our team. . .

There's me (TL), there's him (UM), and there's

- Lin Wang (PD)
 - Comes from University of Konstanz
 - Degree from University of Science and Technology of China (USTC), Hefei, China
 - Research in
 - graphene/silicon quantum dots
 - topological superconductors/insulators
 - spintronics in low-dimensional systems including semiconductors and 2D materials
 - magnon topology
 - quantum anomalous Hall insulators
 - mesoscopic physics
- Starts on Oct. 1, 2024
- Collaborates with condensed matter experimentalists at RWTH

Symmetries relevant for low-D systems

• Time-reversal symmetry $T: T^2 = \pm 1$

• $t = -t \implies E(k) = E(-k)$

- Charge conjugation symmetry (or particle-hole symmetry) $C: C^2 = \pm 1$
 - spectrum symmetric about zero: $E_+(k) = -E_-(-k)$
- Chiral symmetry (or sublattice symmetry) $S: S^2 = S$
 - $E_+(k) = -E_-(k)$

Normally, different phases of matter are distinguished by their ground-state symmetries (and lack thereof)

Phase transitions occur when symmetries get broken

Another example studied by NuMeriQS scientists:

- Quantum phase transition of Hubbard model on a honeycomb lattice
 - J. Ostmeyer, **T.L.**, C. Urbach et al. [arXiv:2005.11112] Phys.Rev.B 102 (2020) 245105
 - J. Ostmeyer, **T.L.**, C. Urbach et al. [arXiv:2105.06936] Phys.Rev.B 104 (2021) 155142

Phase transitions can also be classified by topology

- Another classic example: BKT transition (XY model)
 - Phases classified by topological invariant $\pi_1(S^1) = \mathbb{Z}$ (ie winding number)
 - Phases are distinct, but the ground states in each phase do not break the symmetry of the system

Intimately related to the Mermin-Wagner theorem

 continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2

A little bit more about "topology" Topology 101

A little bit more about "topology" Topology 101

A little bit more about "topology" Topology 101

Classification of matter: the ten-fold way

Symmetry				Dimension							
AZ	Т	С	S	1	2	3	4	5	6	7	8
Α	0	0	0	0	Z	0	Z	0	Z	0	Z
AIII	0	0	1	Z	0	Z	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	Z	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	Z	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	Z	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
С	0	-1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
СІ	1	-1	1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0

Atland & Zirnbauer, arXiv:cond-mat/9602137 Dyson, J.Math.Phys. 3 (1962) 1199

Novel forms of phenomena

 $\int \mathcal{D}\phi$

fractional quantum hall effect

Novel forms of phenomena

fractional quantum hall effect

topological insulator/superconductor

localized edge states due to boundary/bulk correspondence \mathbb{Z}_2 invariants

Another example: hybrid nanoribbons

Rizzo et al., ACS Nano 2021, 15, 12, 20633–20642 Potential application: Topological Quantum Dots

... and fault-tolerant quantum computing (one day)

Localization in the presence of interactions: TL, U.-G. Meißner, L. Razmadze Phys.Rev.B 106 (2022) 195422

Simplifying the the theory with interactions

• fit m_s to underlying interacting theory

predict spectrum of new geometries

(NUMERIQS)

A new type of localization

Localization due to \mathbb{Z}_2 invariants not the complete story

7/9 hybrid

'Kilimanjaro' localization

The extent of 'Kilimanjaro' localization can be controlled

see B01 poster

Ingredients for an effective (field) theory

• Separation of scales (ie energy gap to bulk states)

 Identification of relevant low-energy degrees of freedom

Interaction terms constrained by symmetries

Systematic power counting of terms

$$\delta H^{i}_{T,C,S} + \mathcal{O}\left(\left(\frac{q}{\delta E}\right)^{i+1}\right)$$

(NUMERIQS)

Takeaways

In case you weren't paying attention...

- Low-D materials offer fascinating novel phenomena, but require non-perturbative techniques due to strong correlation effects
- EFT methods applicable
 - symmetries are well established
 - identification of low-energy degrees of freedom
 - separation of scales (energy gap to bulk states)
 - systematic power counting
- Also great testbed for algorithmic testing and development, which already is leading to calculations in novel phase spaces

