

Automated Generator Environment in ORCA for Accurate Many-Body Theory

Hang Xu, Frank Neese

Department of Molecular Theory and Spectroscopy Max-Planck-Institut für Kohlenforschung

September 30, 2024

H.Xu	(MPI-Kofo)
------	------------

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quantum chemists focus on determining the electronic structure of chemical systems with high accuracy, which enables the calculations of:

- Energies
- Molecular properties

• • • • • • • • • •

Quantum chemists focus on determining the electronic structure of chemical systems with high accuracy, which enables the calculations of:

- Energies
- Molecular properties

What are the current goals?

- To tackle systems that were not accessible before (like heavy-metal complexes, large biomolecules, etc.)
- To achieve expected accuracy (chemical accuracy ~ 1 kcal/mol)
- To calculate (approximate) numbers faster (lower scaling)

• ...

(日) (同) (日) (日)

N-Particle Space and Wavefunction

Suppose we have N particles with labels 1, 2, 3, ..., n and their respective single-particle Hilbert space:

$$\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \dots, \mathcal{H}_n$$
 (1)

< □ > < □ > < □ > < □ > < □ >

N-Particle Space and Wavefunction

Suppose we have N particles with labels 1, 2, 3, ..., n and their respective single-particle Hilbert space:

$$\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \dots, \mathcal{H}_n$$
 (1)

Then the N-particle Hilbert space and respective wavefunction (Slater Determinant) look like:

$$\mathcal{H}^{N} = \mathcal{A}(\underbrace{\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3} \otimes \cdots \otimes \mathcal{H}_{n}}_{N \text{particles}})$$
(2)

$$\Psi(x_1, x_2, \dots, x_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(x_1) & \psi_2(x_1) & \dots & \psi_N(x_1) \\ \psi_1(x_2) & \psi_2(x_2) & \dots & \psi_N(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(x_N) & \psi_2(x_N) & \dots & \psi_N(x_N) \end{vmatrix}$$
(3)

イロト イボト イヨト イヨト

N-Particle Space and Wavefunction

Suppose we have N particles with labels 1, 2, 3, ..., n and their respective single-particle Hilbert space:

$$\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \dots, \mathcal{H}_n$$
 (1)

Then the N-particle Hilbert space and respective wavefunction (Slater Determinant) look like:

$$\mathcal{H}^{N} = \mathcal{A}(\underbrace{\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3} \otimes \cdots \otimes \mathcal{H}_{n}}_{Next : the})$$
(2)

Nparticles

$$\Psi(x_1, x_2, \dots, x_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(x_1) & \psi_2(x_1) & \dots & \psi_N(x_1) \\ \psi_1(x_2) & \psi_2(x_2) & \dots & \psi_N(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(x_N) & \psi_2(x_N) & \dots & \psi_N(x_N) \end{vmatrix}$$
(3)

and the N-particle Fock space and the wavefunction (Occupation Number State, or Fock State):

$$\mathcal{F}^{N}(\mathcal{H}) = \bigoplus_{i=0}^{N} \mathcal{H}^{i} = \mathcal{H}^{0} \oplus \mathcal{H}^{1} \oplus \mathcal{H}^{2} \oplus \dots \oplus \mathcal{H}^{N}$$
(4)

$$|\Psi\rangle = |\underbrace{1, 1, 1, \dots, 0, 0, 0, \dots}_{Noccupied} = \hat{a}_{i1}^{\dagger} \hat{a}_{i2}^{\dagger} \dots \hat{a}_{in}^{\dagger} |0\rangle$$
(5)

(日) (同) (日) (日)

The Hamiltonian

The non-relativistic electronic Hamiltonian under Bonn-Oppenheimer (BO) approximation:

$$\hat{H}_{elec} = \underbrace{-\sum_{i}^{N_{e}} \frac{1}{2} \nabla_{i}^{2}}_{\hat{r}_{e}} + \underbrace{\sum_{i,j>i}^{N_{e}} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}}_{\hat{V}_{ee}} \underbrace{-\sum_{i}^{N_{e}} \sum_{A}^{N_{N}} \frac{Z_{A}}{|\mathbf{r}_{i} - \mathbf{R}_{A}|}}_{\hat{V}_{eN}} + \underbrace{\sum_{A,B>A}^{N_{N}} \frac{Z_{A}Z_{B}}{|\mathbf{R}_{A} - \mathbf{R}_{B}|}}_{\hat{V}_{NN}}$$
(6)

2

< □ > < □ > < □ > < □ > < □ >

The Hamiltonian

The non-relativistic electronic Hamiltonian under Bonn-Oppenheimer (BO) approximation:

$$\hat{H}_{elec} = \underbrace{-\sum_{i}^{N_{e}} \frac{1}{2} \nabla_{i}^{2}}_{\hat{T}_{e}} + \underbrace{\sum_{i,j>i}^{N_{e}} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}}_{\hat{V}_{ee}} \underbrace{-\sum_{i}^{N_{e}} \sum_{A}^{N_{N}} \frac{Z_{A}}{|\mathbf{r}_{i} - \mathbf{R}_{A}|}}_{\hat{V}_{eN}} + \underbrace{\sum_{A,B>A}^{N_{N}} \frac{Z_{A}Z_{B}}{|\mathbf{R}_{A} - \mathbf{R}_{B}|}}_{\hat{V}_{NN}}$$
(6)

Using second quantization and neglecting the nuclear-nuclear repulsion term, it could be written as:

$$\hat{H}_{\text{elec}} = \sum_{pq} h_{pq} \hat{a}_p^{\dagger} \hat{a}_q + \frac{1}{2} \sum_{p,q,r,s} \langle pq | rs \rangle \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r$$
(7)

The Hamiltonian

The non-relativistic electronic Hamiltonian under Bonn-Oppenheimer (BO) approximation:

$$\hat{H}_{elec} = \underbrace{-\sum_{i}^{N_{e}} \frac{1}{2} \nabla_{i}^{2}}_{\hat{\tau}_{e}} + \underbrace{\sum_{i,j>i}^{N_{e}} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}}_{\hat{V}_{ee}} \underbrace{-\sum_{i}^{N_{e}} \sum_{A}^{N_{N}} \frac{Z_{A}}{|\mathbf{r}_{i} - \mathbf{R}_{A}|}}_{\hat{V}_{eN}} + \underbrace{\sum_{A,B>A}^{N_{N}} \frac{Z_{A}Z_{B}}{|\mathbf{R}_{A} - \mathbf{R}_{B}|}}_{\hat{V}_{NN}}$$
(6)

Using second quantization and neglecting the nuclear-nuclear repulsion term, it could be written as:

$$\hat{H}_{\text{elec}} = \sum_{pq} h_{pq} \hat{a}_p^{\dagger} \hat{a}_q + \frac{1}{2} \sum_{p,q,r,s} \langle pq | rs \rangle \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r$$
(7)

with:

$$h_{pq} = \langle p | \hat{h} | q \rangle = \int \psi_{\rho}^{*}(\mathbf{r}) \left(-\frac{1}{2} \nabla^{2} - \sum_{A}^{N_{N}} \frac{Z_{A}}{|\mathbf{r} - \mathbf{R}_{A}|} \right) \psi_{q}(\mathbf{r}) \mathrm{d}\mathbf{r}$$
(8)

$$\langle pq|rs \rangle = \iint \frac{\psi_p^*(\mathbf{r}_1\psi_q^*(\mathbf{r}_2)\psi_r(\mathbf{r}_1)\psi_s(\mathbf{r}_2))}{|\mathbf{r}_1 - \mathbf{r}_2|} \mathrm{d}\mathbf{r}_1 \mathrm{d}\mathbf{r}_2 \tag{9}$$

H.Xu (MPI-Kofo)

Overview of Quantum Chemistry Methods

¹Borges, Ricardo, Et al. (2021). Focus Review. Chemical Reviews

H.Xu (MPI-Kofo)

1

September 30, 2024 5

< □ > < 同 >

• *N*-electron wavefunction: single Slater determinant $|\Phi_{HF}\rangle = |1, 1, 1, ..., 0, 0, 0, ...\rangle$

・ロト ・回ト ・ヨト ・ヨト

- N-electron wavefunction: single Slater determinant $|\Phi_{\text{HF}}\rangle = |1,1,1,\ldots,0,0,0,\ldots\rangle$
- The molecular orbitals ψ_i are solved by minimizing the total electronic energy

(日) (同) (日) (日)

- N-electron wavefunction: single Slater determinant $|\Phi_{\text{HF}}\rangle = |1,1,1,\ldots,0,0,0,\ldots\rangle$
- The molecular orbitals ψ_i are solved by minimizing the total electronic energy
- Eigenvalue problem

$$\hat{F}\psi_i = \epsilon_i \psi_i \tag{10}$$

・ロト ・日 ・ ・ ヨ ・ ・

- *N*-electron wavefunction: single Slater determinant $|\Phi_{HF}\rangle = |1, 1, 1, \dots, 0, 0, 0, \dots\rangle$
- The molecular orbitals ψ_i are solved by minimizing the total electronic energy
- Eigenvalue problem

$$\hat{\mathbf{F}}\psi_i = \epsilon_i \psi_i \tag{10}$$

• The Fock operator \hat{F} depends on ψ_i , making it a Self-Consistent Field (SCF) problem:

1

$$\hat{F} = \hat{h} + \sum_{j} (2\hat{J}_j - \hat{K}_j)$$
 (11)

in which the Coulomb and exchanged operators are defined as:

$$\hat{J}_{j}\psi_{i}(\mathbf{r}) = \int \frac{|\psi_{j}(\mathbf{r}')|^{2}}{|\mathbf{r}-\mathbf{r}'|}\psi_{i}(\mathbf{r})\mathrm{d}\mathbf{r}' \qquad \hat{K}_{j}\psi_{i}(\mathbf{r}) = \int \frac{\psi_{j}^{*}(\mathbf{r})\psi_{i}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\psi_{j}(\mathbf{r})\mathrm{d}\mathbf{r}'$$
(12)

- N-electron wavefunction: single Slater determinant $|\Phi_{HF}\rangle = |1, 1, 1, \dots, 0, 0, 0, \dots\rangle$
- The molecular orbitals ψ_i are solved by minimizing the total electronic energy
- Eigenvalue problem

$$\hat{\mathbf{F}}\psi_i = \epsilon_i \psi_i \tag{10}$$

• The Fock operator \hat{F} depends on ψ_i , making it a Self-Consistent Field (SCF) problem:

1

$$\hat{F} = \hat{h} + \sum_{j} (2\hat{J}_j - \hat{K}_j) \tag{11}$$

in which the Coulomb and exchanged operators are defined as:

$$\hat{J}_{j}\psi_{i}(\mathbf{r}) = \int \frac{|\psi_{j}(\mathbf{r}')|^{2}}{|\mathbf{r}-\mathbf{r}'|}\psi_{i}(\mathbf{r})\mathrm{d}\mathbf{r}' \qquad \hat{K}_{j}\psi_{i}(\mathbf{r}) = \int \frac{\psi_{j}^{*}(\mathbf{r})\psi_{i}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\psi_{j}(\mathbf{r})\mathrm{d}\mathbf{r}'$$
(12)

Once converged, the total energy E_{HF} could be evaluated via:

$$E_{\mathsf{HF}} = \sum_{i} \langle \psi_i | \hat{h} | \psi_i \rangle + \sum_{i,j} \left(2 \langle \psi_i \psi_j | \psi_i \psi_j \rangle - \langle \psi_i \psi_j | \psi_j \psi_i \rangle \right)$$
(13)

$$|\Psi_{\mathsf{CC}}\rangle = e^{\hat{\mathcal{T}}}|\Phi_{\mathsf{HF}}\rangle = e^{\hat{\mathcal{T}}}|1, 1, 1, \dots, 0, 0, 0, \dots\rangle$$
(14)

▶ < ∃ >

Image: A mathematical states and a mathem

$$|\Psi_{\mathsf{CC}}\rangle = e^{\hat{T}}|\Phi_{\mathsf{HF}}\rangle = e^{\hat{T}}|1, 1, 1, \dots, 0, 0, 0, \dots\rangle$$
(14)

in which the coupled-cluster excitation operators are defined as:

$$\hat{T} = \sum_{m} \hat{T}_{m} = \sum_{m} \frac{1}{(m!)^{2}} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{\hat{a}^{\dagger}_{a} \hat{a}_{i} \hat{a}^{\dagger}_{b} \hat{a}_{j} \hat{a}^{\dagger}_{c} \hat{k} \dots \}$$
(15)

$$|\Psi_{CC}\rangle = e^{\hat{T}}|\Phi_{HF}\rangle = e^{\hat{T}}|1,1,1,\ldots,0,0,0,\ldots\rangle$$
(14)

in which the coupled-cluster excitation operators are defined as:

$$\hat{T} = \sum_{m} \hat{T}_{m} = \sum_{m} \frac{1}{(m!)^{2}} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{\hat{a}^{\dagger}_{a} \hat{a}_{i} \hat{a}^{\dagger}_{b} \hat{a}_{j} \hat{a}^{\dagger}_{c} \hat{k} \dots \}$$
(15)

Schrödinger Equation:

$$\hat{H}_{\text{elec}}|\Psi_{\text{CC}}\rangle = E_{\text{CC}}|\Psi_{\text{CC}}\rangle$$
 (16)

H.XII I	(MPI-Kofo)

$$|\Psi_{CC}\rangle = e^{\hat{T}}|\Phi_{HF}\rangle = e^{\hat{T}}|1,1,1,\ldots,0,0,0,\ldots\rangle$$
(14)

in which the coupled-cluster excitation operators are defined as:

$$\hat{T} = \sum_{m} \hat{T}_{m} = \sum_{m} \frac{1}{(m!)^{2}} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{\hat{a}^{\dagger}_{a} \hat{a}_{i} \hat{a}^{\dagger}_{b} \hat{a}_{j} \hat{a}^{\dagger}_{c} \hat{k} \dots \}$$
(15)

Schrödinger Equation:

$$\hat{H}_{\text{elec}}|\Psi_{\text{CC}}\rangle = E_{\text{CC}}|\Psi_{\text{CC}}\rangle \tag{16}$$

or (via the "effective" Hamiltonian):

$$\bar{H}|\Phi_{\mathsf{HF}}\rangle = e^{-\hat{T}}\hat{H}_{\mathsf{elec}}e^{\hat{T}}|\Phi_{\mathsf{HF}}\rangle = E_{\mathsf{CC}}|\Phi_{\mathsf{HF}}\rangle \tag{17}$$

ORC

A_AGE	September 30, 2024	7 / 26

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ∃ → のへで

The effective Hamiltonian could be expanded with the Baker-Campbell-Hausdorff (BCH) formula which truncates naturally here:

$$\bar{H} = e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2}[[\hat{H}, \hat{T}], \hat{T}] + \frac{1}{6}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] + \frac{1}{24}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}]$$
(18)

(日) (同) (日) (日)

The effective Hamiltonian could be expanded with the Baker-Campbell-Hausdorff (BCH) formula which truncates naturally here:

$$\bar{H} = e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2}[[\hat{H}, \hat{T}], \hat{T}] + \frac{1}{6}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] + \frac{1}{24}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}]$$
(18)

By projecting the Schrödinger equation onto the ground state we obtain the energy in closed-form:

$$E_{\rm CC} = \langle \Phi_{\rm HF} | \bar{H} | \Phi_{\rm HF} \rangle = \langle \Phi_{\rm HF} | e^{-\hat{T}} \hat{H}_{\rm elec} e^{\hat{T}} | \Phi_{\rm HF} \rangle = \langle \Phi_{\rm HF} | \hat{H} + [\hat{H}, \hat{T}] + \dots | \Phi_{\rm HF} \rangle$$
(19)

イロト イボト イヨト イヨト

The effective Hamiltonian could be expanded with the Baker-Campbell-Hausdorff (BCH) formula which truncates naturally here:

$$\bar{H} = e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2}[[\hat{H}, \hat{T}], \hat{T}] + \frac{1}{6}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] + \frac{1}{24}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}]$$
(18)

By projecting the Schrödinger equation onto the ground state we obtain the energy in closed-form:

$$E_{\mathsf{CC}} = \langle \Phi_{\mathsf{HF}} | \bar{H} | \Phi_{\mathsf{HF}} \rangle = \langle \Phi_{\mathsf{HF}} | e^{-\hat{T}} \hat{H}_{\mathsf{elec}} e^{\hat{T}} | \Phi_{\mathsf{HF}} \rangle = \langle \Phi_{\mathsf{HF}} | \hat{H} + [\hat{H}, \hat{T}] + \dots | \Phi_{\mathsf{HF}} \rangle$$
(19)

projecting onto the $\mu\text{-body}$ excitation manifold we can solve for the corresponding CC amplitude t_{μ} :

$$0 = \langle \Phi_{\mu} | \bar{H} | \Phi_{\mathsf{HF}} \rangle = \langle \Phi_{\mu} | e^{-\hat{T}} \hat{H}_{\mathsf{elec}} e^{\hat{T}} | \Phi_{\mathsf{HF}} \rangle = \langle \Phi_{\mu} | \hat{H} + [\hat{H}, \hat{T}] + \dots | \Phi_{\mathsf{HF}} \rangle$$
(20)

(日) (同) (日) (日)

Number of Diagrams for Coupled Cluster Theory

$$\begin{array}{rcl} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Theory	Time			Dia	agram	s per	excitat	ion lev	el	
	(s)	0	1	2	3	4	5	6	7	8
CCSD	0.1	3	14	31						
CCSDT	0.7	3	15	37	47					
CCSDTQ	2.4	3	15	38	53	74				
CCSDTQP	6.3	3	15	38	54	80	99			
CCSDTQPH	13.8	3	15	38	54	81	105	135		
CCSDTQPH7	26.0	3	15	38	54	81	106	141	169	
CCSDTQPH78	45.4	3	15	38	54	81	106	142	175	215

2

²F.Evangelista, AGMBT workshop 2023 Saclay

$$\hat{E}_{q}^{p} = \hat{a}_{p\alpha}^{\dagger} \hat{q}_{q\alpha} + \hat{a}_{p\beta}^{\dagger} \hat{q}_{q\beta}$$
(21)

• • • • • • • • • •

$$\hat{E}_{q}^{p} = \hat{a}_{p\alpha}^{\dagger} \hat{q}_{q\alpha} + \hat{a}_{p\beta}^{\dagger} \hat{q}_{q\beta}$$
(21)

• • • • • • • • • •

We can arrange any target into this form:

$$\gamma_{uv\dots z}^{mn\dots t} = \langle \Phi_{\mathsf{HF}} | \hat{E}_{u}^{m} \hat{E}_{v}^{n} \dots \hat{E}_{z}^{t} | \Phi_{\mathsf{HF}} \rangle \tag{22}$$

$$\hat{E}_{q}^{p} = \hat{a}_{p\alpha}^{\dagger} \hat{q}_{q\alpha} + \hat{a}_{p\beta}^{\dagger} \hat{q}_{q\beta}$$
(21)

We can arrange any target into this form:

$$\gamma_{uv\dots z}^{mn\dots t} = \langle \Phi_{\mathsf{HF}} | \hat{E}_{u}^{m} \hat{E}_{v}^{n} \dots \hat{E}_{z}^{t} | \Phi_{\mathsf{HF}} \rangle \tag{22}$$

and then apply these commutator relation and termination conditions for equation generation:

$$[\hat{E}_q^p, \hat{E}_s^r] = \hat{E}_s^p \delta_{rq} - \hat{E}_q^r \delta_{ps}$$
⁽²³⁾

$$\hat{E}_{\rho}^{i}|\Phi_{\mathsf{HF}}\rangle = 2\delta_{i\rho}|\Phi_{\mathsf{HF}}\rangle \qquad \langle\Phi_{\mathsf{HF}}|\hat{E}_{i}^{\rho} = 2\delta_{i\rho}\langle\Phi_{\mathsf{HF}}| \qquad (24)$$

$$\hat{E}^{p}_{a}|\Phi_{\mathsf{HF}}\rangle = 0 \qquad \langle \Phi_{\mathsf{HF}}|\hat{E}^{a}_{p} = 0 \qquad (25)$$

イロト イボト イヨト イヨト

$$\hat{E}_{q}^{p} = \hat{a}_{p\alpha}^{\dagger} \hat{q}_{q\alpha} + \hat{a}_{p\beta}^{\dagger} \hat{q}_{q\beta}$$
(21)

We can arrange any target into this form:

$$\gamma_{uv\dots z}^{mn\dots t} = \langle \Phi_{\mathsf{HF}} | \hat{E}_{u}^{m} \hat{E}_{v}^{n} \dots \hat{E}_{z}^{t} | \Phi_{\mathsf{HF}} \rangle \tag{22}$$

and then apply these commutator relation and termination conditions for equation generation:

$$[\hat{E}_q^p, \hat{E}_s^r] = \hat{E}_s^p \delta_{rq} - \hat{E}_q^r \delta_{ps}$$
⁽²³⁾

$$\hat{E}_{\rho}^{i}|\Phi_{\mathsf{HF}}\rangle = 2\delta_{i\rho}|\Phi_{\mathsf{HF}}\rangle \qquad \langle\Phi_{\mathsf{HF}}|\hat{E}_{i}^{\rho} = 2\delta_{i\rho}\langle\Phi_{\mathsf{HF}}| \qquad (24)$$

$$\hat{E}^{p}_{a}|\Phi_{\rm HF}\rangle = 0 \qquad \langle \Phi_{\rm HF}|\hat{E}^{a}_{p} = 0 \qquad (25)$$

- Move indices around with commulation relations
- Creates 0 and Kronecker deltas

H.Xu (MPI-Kofo

Equation Processing: The Toolchain

- Equation Generation \longrightarrow Equation Processing (Factorization) \longrightarrow Code Generation
- Maths utilities: indices, tensors, contractions, symmetry, etc.
- Text-based symbol manipulation

3

An equation file contains:

- Header: containing information about tensor storage, permutational symmetry etc.
- Equations: containing actual contractions:
 - Target tensor
 - Source tensors
 - factors and summation information

イロト イヨト イヨト イ

An equation file contains:

- · Header: containing information about tensor storage, permutational symmetry etc.
- Equations: containing actual contractions:
 - Target tensor
 - Source tensors
 - factors and summation information

Example:

$$S_{ij}^{ab} \leftarrow -\sum_{kc} (ki|bc) \tau_{kj}^{ac}$$
 (26)

Sijab(a0,i0,b0,j0) += -1.0 I(K0,i0,b0,C0) Tau(a0,K0,C0,j0)

- Summation indices are capitalized
- Rank-4 tensors like S_{ii}^{ab} stored on disk, as a Matrix Container: $S_{[i,j]}(a,b)$

イロト 不得 トイヨト イヨト

Utilizing permutational symmetry to reduce redundant terms, e.g. for the target:

$$E_{\text{CCSD}} \leftarrow \langle \Phi_{\text{HF}} | \hat{H} \hat{T}_2 | \Phi_{\text{HF}} \rangle \tag{27}$$

during the equation generation there are many redundant terms:

$$E_{\text{CCSD}} \leftarrow \sum_{ijab} (ia|jb) T_{ij}^{ab}$$

$$E_{\text{CCSD}} \leftarrow \sum_{ijab} (jb|ia) T_{ij}^{ab}$$
(28)
(29)

(日) (同) (日) (日)

Utilizing permutational symmetry to reduce redundant terms, e.g. for the target:

$$E_{\text{CCSD}} \leftarrow \langle \Phi_{\text{HF}} | \hat{H} \hat{T}_2 | \Phi_{\text{HF}} \rangle \tag{27}$$

during the equation generation there are many redundant terms:

$$E_{\text{CCSD}} \leftarrow \sum_{ijab} (ia|jb) T_{ij}^{ab}$$
 (28)

$$E_{\text{CCSD}} \leftarrow \sum_{ijab} (jb|ia) T_{ij}^{ab}$$
(29)

Using the symmetry relation (ia|jb) = (jb|ia) we can merge these two terms into one:

$$E_{\text{CCSD}} \leftarrow 2\sum_{ijab} (ia|jb) T_{ij}^{ab}$$
(30)

Image: A math a math

H.Xu ((MPI-Kofo)

Given the following contractions:

$$A = BCDEF \tag{31}$$

$$X = PQCDR \tag{32}$$

$$Y = JDEFL$$
(33)

2

メロト メタト メヨト メヨト

Given the following contractions:

$$A = BCDEF \tag{31}$$

$$X = PQCDR \tag{32}$$

$$Y = JDEFL$$
(33)

There might be several different ways to factorize term A:

$$A = (((BC)D)E)F \tag{34}$$

$$A = B((CD)(EF)) \tag{35}$$

$$A = (BC)(D(EF)) \tag{36}$$

Which one shall we pick? ightarrow The global minimization problem

H.Xu ((MPI-Kofo)

Cost Model

- Estimates the FLOP count for a given contraction
- Based on the index space sizes
- Determines the factorization scheme

Ξ.

イロト イヨト イヨト イヨト

Cost Model

- Estimates the FLOP count for a given contraction
- Based on the index space sizes
- Determines the factorization scheme

< □ > < 同 >

Cost Model

Cost model time estimation (s)

• Estimates the FLOP count for a given contraction

Wall time (s)

- Based on the index space sizes
- Determines the factorization scheme

< □ > < 同 >

virtual

Contraction:

$$E_{(T)} \leftarrow \sum_{ijkabc} t_{ijk}^{a} t_{ijk}^{abc}(jb|kc)$$
(38)

Factorization Scheme (1):

Factorization Scheme (2):

$$X_{jk}^{bc} = \sum_{ia} t_i^a t_{ijk}^{abc}$$
(39)

$$E_{(T)} \leftarrow \sum_{jkab} X_{jk}^{bc}(jb|kc)$$
(40)

 $\text{FLOP}=6.402\times10^{10}$

$$X_i^a = \sum_{jkbc} t_{ijk}^{abc}(jb|kc)$$
(41)

$$E_{(T)} \leftarrow \sum_{ia} t_i^a X_i^a \qquad (42)$$

イロト イ団ト イヨト イヨト

 $\text{FLOP} = 6.400 \times 10^{10}$

Contraction:

$$E_{(T)} \leftarrow \sum_{ijkabc} t_{ijk}^{a} t_{ijk}^{abc}(jb|kc)$$
(38)

Factorization Scheme (1):

Factorization Scheme (2):

$$X_{jk}^{bc} = \sum_{ia} t_{ijk}^{a} t_{ijk}^{abc}$$
(39)
$$X_{i}^{a} = \sum_{jkbc} t_{ijk}^{abc}(jb|kc)$$
(41)
$$E_{(T)} \leftarrow \sum_{jkab} X_{jk}^{bc}(jb|kc)$$
(40)
$$E_{(T)} \leftarrow \sum_{ia} t_{i}^{a} X_{i}^{a}$$
(42)
$$FLOP = 6.402 \times 10^{10}$$
FLOP = 6.400×10^{10}

Note that in practice, $N_{\rm virt} >> N_{\rm inactive} > N_{\rm active}$

(日) (同) (日) (日)

• Summation Intermediates (distributive law):

$$S \leftarrow AC$$
 (43)

$$S \leftarrow BC$$
 (44)

as addition is chepaer than multiplication:

$$D \leftarrow A + B$$
 (45)

$$S \leftarrow DB$$
 (46)

メロト メタト メヨト メヨト

Xii I	MPI_Kofo

• Summation Intermediates (distributive law):

$$S \leftarrow AC$$
 (43)

$$S \leftarrow BC$$
 (44)

as addition is chepaer than multiplication:

$$D \leftarrow A + B$$
 (45)

$$S \leftarrow DB$$
 (46)

< □ > < □ > < □ > < □ > < □ >

• I/O minimization:

$$\sigma_{[i,j]}(a,b) \leftarrow X_{[i,j]}(a,b) \qquad \text{vs} \qquad \sigma_{[i,j]}(a,b) \leftarrow X_{[a,b]}(i,j) \tag{47}$$

H.Xu ((MPI-Kofo)	١

Contraction Engine (I): Optimized Efficiency

- Part of the C++ code generator
- Inserts specialized hand-written function calls based on pattern matching
- Reduces I/O as much as possible
- Improves efficiency as much as possible
- \Rightarrow Load as much as possible into memory, use BLAS whenever possible

Contraction Engine (I): Optimized Efficiency

- Part of the C++ code generator
- Inserts specialized hand-written function calls based on pattern matching
- Reduces I/O as much as possible
- Improves efficiency as much as possible
- \Rightarrow Load as much as possible into memory, use BLAS whenever possible

Example:

$$C_{pq}^{\prime s} \leftarrow \sum_{tuv} A_{stu}^{p\nu} B_{tu}^{qv} \tag{48}$$

$$C_{[p,q]}(r,s) \leftarrow A_{[s,T,U]}(p,r,V)B_{[T,U]}(q,V)$$
(49)

ORCA_AGE	September 30, 2024	18 / 26

イロト 不得 トイヨト イヨト ヨー ろくつ

$$C_{[p,q]}(r,s) \leftarrow A_{[s,T,U]}(p,r,V)B_{[T,U]}(q,V)$$
(50)

Very slow, as well as redundant and unnecessary I/O with the p, q loop.

H.Xu (MPI-Kofo

3

イロト イヨト イヨト イヨト

$$C_{[p,q]}(r,s) \leftarrow A_{[s,T,U]}(p,r,V)B_{[T,U]}(q,V)$$

$$\tag{51}$$

Alternatively, we define the intermediates A_T,B_T,C_T (BLAS-able and kept in memory!):

• All terms applicable would invoke this! (Pattern matching)

H.Xu (MPI-Kofo)

э

Nuclear Gradient (Analytic)

- Maxcore: 5000 MB per core
- CPU: AMD EPYC 75F3
- Basis: def2-TZVP
- Frozen core, single gradient step

A D > A A

The total electronic energy under external perturbations:

$$E(\mathbf{X}) = E_0 + \sum_i \left(\frac{\partial E}{\partial X_i}\right)_0 X_i + \frac{1}{2} \sum_{i,j} \left(\frac{\partial^2 E}{\partial X_i \partial X_j}\right)_{(0,0)} X_i X_j + \dots$$
(52)

where $\mathbf{X} = (\mathbf{F}, \mathbf{B}, \mathbf{I}, \dots)$ is the collection of perturbations.

We can identify various molecular properties as the derivatives in the Taylor series:

•
$$\frac{\partial E}{\partial F_i}$$
: electric dipole p_i

•
$$\frac{\partial^2 E}{\partial F_i \partial F_j}$$
: polarizability α_{ij}

•
$$\frac{\partial^2 E}{\partial B_i \partial B_j}$$
: magnetizability β_{ij}

•
$$\frac{\partial^2 E}{\partial B_i \partial m_{N_j}}$$
: NMR shielding σ_{ij}

Image: A math a math

Response Properties(II)

$$\frac{\partial^2 E}{\partial x \partial y} = \sum_{\mu\nu} D_{\mu\nu} \frac{\partial^2 h_{\mu\nu}}{\partial x \partial y} + \sum_{\mu\nu} \frac{\partial D_{\mu\nu}}{\partial x} \frac{\partial h_{\mu\nu}}{\partial y} + \dots$$
(53)

We can post-process the generated equations to obtain new equations for derivatives:

- Product rule
- Relabel the quantities with corresponding derivatives

(日) (同) (日) (日)

Response Properties(II)

$$\frac{\partial^2 E}{\partial x \partial y} = \sum_{\mu\nu} D_{\mu\nu} \frac{\partial^2 h_{\mu\nu}}{\partial x \partial y} + \sum_{\mu\nu} \frac{\partial D_{\mu\nu}}{\partial x} \frac{\partial h_{\mu\nu}}{\partial y} + \dots$$
(53)

We can post-process the generated equations to obtain new equations for derivatives:

- Product rule
- · Relabel the quantities with corresponding derivatives

Response Properties(III)

- Maxcore: 5000 MB per core
- CPU: AMD EPYC 75F3
- Basis: def2-TZVP

A D > A A

 Frozen core, single gradient step

Scales the same as unperturbed methods, with a pre-factor

Summary:

- In quantum chemistry (electronic structure theory), we strive for highly accurate electronic energy and molecular properties
- Accurate wavefunction method like higher-order Coupled Cluster methods are hard implement
- Automated code generation gives us the access towards these "advanced" methods

(日) (同) (日) (日)

Summary:

- In quantum chemistry (electronic structure theory), we strive for highly accurate electronic energy and molecular properties
- Accurate wavefunction method like higher-order Coupled Cluster methods are hard implement
- Automated code generation gives us the access towards these "advanced" methods

In the future, we wish to have:

- Better performance in parallelization
- Lower scaling methods (new approximations)

• ...

(日) (同) (日) (日)

Anastasios Papadopoulos

Ingolf Harden

Kantharuban Sivalingam

Ute Becker

Marvin Lechner

AGE Team

Frank Neese

