NuMeriQS Project C01

Lattice Gauge Theories: Combining Approaches with \hat{H} and \mathcal{L}

Lena Funcke, Carsten Urbach

Gefördert durch Deutsche

Project C01: General Outline

Euclidean Monte Carlo

- *•* well tested and developed
- *•* access to equilibrium properties
- *•* large systems accessible
- *•* critical slowing down

Hamiltonian / QC

- *•* currently being developed
- *•* only small system sizes
- time evolution / non-equilibrium accessible

Project C01: General Outline

Euclidean Monte Carlo

- *•* well tested and developed
- *•* access to equilibrium properties
- *•* large systems accessible
- *•* critical slowing down

Hamiltonian / QC

- *•* currently being developed
- *•* only small system sizes
- time evolution / non-equilibrium accessible

Combine the strengths of both approaches!

- *•* match both approaches non-perturbatively
- *•* combine both approaches in a first application

Lattice Regularisation

- *•* quantum field theory requires regularisation
- *•* lattice regularisation:
- *⇒* discretise space-time
	- *•* hyper-cubic *^L*³ *[×] ^T*-lattice with lattice spacing *a*
	- *⇒* momentum cut-off: *k*max *∝* 1/ *a*
	- *•* derivatives *⇒* finite differences
	- *•* integrals *⇒* sums
	- \bullet gauge potentials A_μ in $G_{\mu\nu} \Rightarrow$ link matrices U_μ (' \Longleftrightarrow ')

Lattice Gauge Theories

Continuum Lagrange Density

$$
\mathcal{L}=-\frac{1}{4}\left(G_{\mu\nu}^{a}\right)^{2}
$$

 \bullet Field strength $G^a_{\mu\nu}$

Lattice Gauge Theories

Continuum Lagrange Density

$$
\mathcal{L}=-\frac{1}{4}\left(G_{\mu\nu}^{a}\right)^{2}
$$

• Field strength
$$
G^a_{\mu\nu}
$$

regularise / discretize

Lattice Lagrange Density
\n
$$
\mathcal{L}_{\text{lat}} = -\frac{N}{g_0^2} (1 - \text{Tr} \, \text{Re} \, P_{\mu\nu})
$$
\n• Plaquette $P_{\mu\nu}$

Lattice Gauge Theories

 $\bullet \longrightarrow \bullet$

Lattice Lagrange Density
\n
$$
\mathcal{L}_{\text{lat}} = -\frac{N}{g_0^2} (1 - \text{Tr} \operatorname{Re} P_{\mu\nu})
$$

• Plaquette *Pµν*

time continuum limit / Legendre Trafo

Hamiltonian Limit

Matching Lattice Lagrangian and Lattice Hamiltonian approach: $g(g_0)$

- *•* starting in 4*d* Euclidean Space-Time: Hamiltonian should be obtained by taking the limit $a_t \to 0$ [Creutz, PRD 15 (1977)]
- \bullet introduce anisotropy $\xi_0 = a_t/a_s$ and action

$$
S_W = \frac{\beta}{\xi_0} \sum_{\mathbf{x},i} \text{Re} (1 - P_{0i}(\mathbf{x})) + \beta \xi_0 \sum_{\mathbf{x},i>j} \text{Re} (1 - P_{ij}(\mathbf{x}))
$$

 $\mathsf{with} \ \beta = N/g_0^2$. [Peardon, Morningstar, PRD 60, (1999)]

• which *g*-value corresponds to g_0 at $\xi_0 = 1$ and do observables match?

A Non-perturbative Protocol

Keep spatial lattice spacing a_s fixed while taking $\xi_0 \rightarrow 0$

- use physical distance r_0/a_s to keep a_s fixed
- \bullet r_0/a_s so-called Sommer parameter defined as

$$
r^2F(r)|_{r=r_0}=c.
$$

with *F*(*r*) the force between a static quark and anti-quark.

• r_0/a_s can be determined from the static potential $V(r)$

A Non-perturbative Protocol

Keep spatial lattice spacing a_s fixed while taking $\xi_0 \rightarrow 0$

- use physical distance r_0/a_s to keep a_s fixed
- \bullet r_0/a_s so-called Sommer parameter defined as

 $r^2 F(r)|_{r=r_0} = c$.

with $F(r)$ the force between a static quark and anti-quark.

• r_0/a_s can be determined from the static potential $V(r)$

- **1** start with some g_0 -value
- **2** compute $r_{\text{iso}} = r_0/a_s(g_0, \xi_0 = 1)$
	- ${\bf B}$ for every $\xi_0^i < 1$ tune g_0^i such that

$$
r_0/a_s(g^i_0,\xi^i_0)~=~r_{\rm iso}
$$

⁴ compute other observable $O(g_0^i,\xi_0^i)$ and take the limit *ξ*⁰ *→* 0

Test-case: U(1) **Lattice Gauge Theory**

We consider compact $U(1)$ LGT in $2 + 1$ dimensions as a first test-case

 $\Rightarrow U \in U(1)$ or $U_{\mu} \equiv e^{i\varphi_{\mu}}$

Pros:

• Similarities to QCD

- *•* fast to simulate
- *•* also accessible for QC / TN
- **Cons:**
	- *•* no equivalent physical system
	- *•* no running coupling

Note: I'm omitting some renormalisation details in the following!

*r*0**-Matching in Practice**

*r*0**-Matching in Practice**

Critical Slowing Down in Practice

Severe slowing down with *ξ*⁰ *→* 0

The Finite Volume Issue

- Hamiltonian calculation: $L = 3$
- *•* Lagrangian: *L* = 16 required
- \Rightarrow Repeat MC with $L = 3$
	- *•* define ratio

$$
R = \frac{P(L = 16)}{P(L = 3)}
$$

Preliminary Comparison *^H*^ˆ *↔ L*

- *•* Hamiltonian results from exact diagonalisation
- *•* agreement within 1*.*5*σ* or so…
- *•* finite volume corrections essential
- *•* currently still investigating extrapolations
- *•* publication in preparation MSc work by **Christiane Groß**

Preliminary Comparison *^H*^ˆ *↔ L*

- *•* Hamiltonian results from exact diagonalisation
- *•* agreement within 1*.*5*σ* or so…
- *•* finite volume corrections essential
- *•* currently still investigating extrapolations
- *•* publication in preparation MSc work by **Christiane Groß**

An Application: The Running Coupling

- *•* running coupling *α*ren depends on energy / length scale
- *•* example *α^s* in QCD
- *•* by matching to perturbation theory, access to dynamically generated scale Λ
- *•* requires *g*⁰ *≪* 1

An Application: The Running Coupling

- *•* running coupling *α*ren depends on energy / length scale
- *•* example *α^s* in QCD
- *•* by matching to perturbation theory, access to dynamically generated scale Λ
- *•* requires *g*⁰ *≪* 1
- *•* can be determined via step scaling *s ∈* R⁺

$$
\sigma_s(\alpha_{\text{ren}}(r)) = \alpha_{\text{ren}}(s\ \cdot r)
$$

[Lüscher, Weisz, Wolff, NPB 359, (1991)]

$$
\alpha_{\text{ren}}(r_0, g_0) \rightarrow \alpha_{\text{ren}}(sr_0, g_0)
$$
\n
$$
\downarrow
$$
\n
$$
\alpha_{\text{ren}}(r_1, g_1) \rightarrow \alpha_{\text{ren}}(sr_1, g_1)
$$
\n
$$
\downarrow
$$
\n
$$
\alpha_{\text{ren}}(r_2, g_2) \dots
$$

U(1) **Gauge Theories**

• classically, one parametrises a *U*(1) object as

$$
U(\varphi) \,=\, e^{i\varphi}
$$

$$
\hat{H}=\frac{g^2}{2}\sum \hat{L}_k^2-\frac{1}{2g^2}\sum\mathrm{Tr}\,\mathrm{Re}\,\hat{P}_{kl}
$$

• φ becomes quantum number labeling states *|φ⟩ ∈ H*

$$
\hat{\varphi}|\varphi\rangle\,=\,\varphi|\varphi\rangle
$$

• canonical momentum operator for *^φ*^ˆ reads (*L*^ˆ *[≡] ^p*ˆ*φ*)

$$
\hat{L} = -\mathbf{i}\frac{\partial}{\partial \varphi}, \qquad [\hat{L}, \hat{U}] = \hat{U}, \qquad \hat{U} = e^{i\hat{\varphi}}
$$

• equivalent to the commutator $[\hat{\varphi},\hat{L}]$

U(1) **Gauge Theories**

• classically, one parametrises a *U*(1) object as

$$
U(\varphi) \,=\, e^{i\varphi}
$$

$$
\bullet\ \varphi\text{ becomes quantum number labeling states }|\varphi\rangle\in\mathcal{H}
$$

$$
\hat{\varphi}|\varphi\rangle\,=\,\varphi|\varphi\rangle
$$

• canonical momentum operator for *^φ*^ˆ reads (*L*^ˆ *[≡] ^p*ˆ*φ*)

$$
\hat{L} = -\mathbf{i}\frac{\partial}{\partial \varphi}, \qquad [\hat{L}, \hat{U}] = \hat{U}, \qquad \hat{U} = e^{i\hat{\varphi}}
$$

• equivalent to the commutator $[\hat{\varphi},\hat{L}]$

C. Urbach: NuMeriQS Project C01 page 13

$$
\hat{H} = \frac{g^2}{2} \sum \hat{L}_k^2 - \frac{1}{2g^2} \sum \text{Tr} \text{Re} \,\hat{P}_{kl}
$$

$$
+\text{ Gauss Law}
$$
\n
$$
\sum_{\mu} (\hat{L}_{x,k} - \hat{L}_{x-\hat{k},k}) |\psi\rangle = 0
$$
\n
$$
\Rightarrow \text{physical states}
$$

Discretised *U*(1) **Gauge Theory**

- *•* need to discretise gauge dofs
- *•* interestingly, one can find discrete operators \hat{L} and \hat{U} exactly fulfilling $[\hat{L}, \hat{U}] = \hat{U}^T$
- $\bullet~$ but in a basis where \hat{L} is diagonal

$$
\hat{L} = \begin{pmatrix} 1 & 0 & 0 & \dots \\ 0 & 2 & 0 & \\ 0 & 0 & 3 & \\ \vdots & & & \ddots \end{pmatrix}, \hat{U} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \end{pmatrix}
$$

• angular momentum interpretation!

 \setminus

 $\Bigg\}$

Approximation / Truncation

- *•* discretisation requires finite *l* approximation
- replace $U(1)$ by \mathbb{Z}_{2l+1} [Haase et al., Quantum 5, 393 (2021)]
- \bullet \hat{U} not unitary, but commutation relations exact
- *• ^L*^ˆ diagonal
- $\bullet \,$ at small g_0 : magnetic basis favourable ($\hat U$ diagonal)

[Haase et al., Quantum 5, (2021); Kaplan and Stryker, PRD 102, (2020); Paulson et al., PRX Quantum 2, (2021)]

Step Scaling in 2 + 1**d Compact U**(1) **Gauge Theory**

- *•* compact pure U(1) gauge theory shares confinement with QCD
- *•* however, theory is trivial, no renormalisation of the coupling
- *⇒* proof-of-concept calculation
- *•* we employ exact diagonalisation (ED) and variational quantum eigensolver (VQE)
- $\bullet \,$ and use $r^2F(r)$ as a proxy for the renormalised coupling [Crippa et int., Funcke, et int., CU, arXiv:2404.17545]
- *• L* = 3 with periodic open conditions

Results: Step Scaling at fixed *l* = 1

- example for fixed truncation $l = 1$
- *•* electrical basis only
- *•* compare ED and VQE
- $r_1 = 1, r_2 = \sqrt{5}$
- from $\beta = 1.4$ to the perturbative regime
- *•* at large *β*

[Crippa et int., Funcke, et int., CU, arXiv:2404.17545]

Results: Step Scaling at fixed *l* = 1

- example for fixed truncation $l = 1$
- *•* electrical basis only
- *•* compare ED and VQE
- $r_1 = 1, r_2 = \sqrt{5}$
- from $\beta = 1.4$ to the perturbative regime
- *•* at large *β*

Results: Running Coupling

- *•* assume the scale has been set at $\beta = 1.4$
- *•* e.g. 0*.*1 fm
- *•* this would be determined via Monte Carlo
- now follow the step scaling to $\beta_{\sf max}$
- *•* reasonable agreement for different *r*-pairs
- residual lattice artefacts visible

[Crippa et int., Funcke, et int., CU, arXiv:2404.17545]

Results: Running Coupling

- *•* assume the scale has been set at *Non-trivial dependence on* r *?*
- in $2 + 1$ d: g_0^2 has dimension of a mass
- $\bullet\,$ define $\tilde{g}^2=g_0^2/\mu$ with $[\mu]\,$ mass
- linear *•* now follow the step scaling to *β*max *βmax* and *βmax a* $\bullet\,$ in terms of \tilde{g}^2 , β -function becomes
- \Rightarrow dimensionless r^2F becomes non-tri non-trivial dependence on physical *r*

[Crippa et int., Funcke, et int., CU, arXiv:2404.17545]

Currently Ongoing: Adding Matter

- $U(1)$ in $2 + 1$ d with matter fields:
- *⇒* non-trivial *β*-function
- *•* requires effort on Hamiltonian as well as on Lagrangian side
- *•* ongoing work by Emil Rosanowski and Alessio Negro

Additional Terms in *H*ˆ

• mass term

$$
\hat{H}_m \propto m \hat{\phi}_x^{\dagger} \hat{\phi}_x
$$

• kinetic term

$$
\hat{H}_{\rm kin} \ \propto \ \hat{\phi}^\dagger_x \hat{U}_{x,k} \hat{\phi}_{x+\hat{k}}
$$

• possibly Wilson term

 $\hat{H}_W \propto a\phi^\dagger \nabla_k^* \nabla_k \phi$

Currently Ongoing: Magnetic Basis SU(2) **Gauge Fields**

- *•* apply canonical transformation
- *•* local string/loop formulation
- *•* with additional *helper fields*
- *•* plus smart way to represent Tr(*P*)
- *•* promising **preliminary** results
- *→* poster by Timo Jakobs

Currently Ongoing: Magnetic Basis SU(2) **Gauge Fields**

Summary

- matching \hat{H} and $\mathcal L$ in compact U(1) LGT
- *•* steps scaling in compact U(1) LGT
- *•* next steps are
	- *•* including matter fields
	- *•* non-Abelian gauge groups
- *•* thanks to: **A. Crippa, L. Funcke, C. Groß, T. Jakobs, A. Negro, S. Romiti, E. Rosanowski, and more** and for your attention!