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Euclidean Monte Carlo

• well tested and developed

• access to equilibrium properties

• large systems accessible

• critical slowing down

Hamiltonian / QC

• currently being developed

• only small system sizes

• time evolution / non-equilibrium
accessible
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Combine the strengths of both approaches!

• match both approaches non-perturbatively
• combine both approaches in a first application



Lattice Regularisation

• quantum field theory requires
regularisation

• lattice regularisation:
⇒ discretise space-time

• hyper-cubic L3 × T -lattice with
lattice spacing a

⇒ momentum cut-off: kmax ∝ 1/a
• derivatives⇒ finite differences
• integrals⇒ sums
• gauge potentialsAµ inGµν ⇒ link
matrices Uµ (’ ’)

L

a
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∑
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Hamiltonian Limit

Matching Lattice Lagrangian and Lattice Hamiltonian approach: g(g0)

• starting in 4d Euclidean Space-Time:
Hamiltonian should be obtained by taking the limit at → 0

[Creutz, PRD 15 (1977)]

• introduce anisotropy ξ0 = at/as and action

SW =
β

ξ0

∑
x,i

Re (1− P0i(x)) + βξ0
∑
x,i>j

Re (1− Pij(x))

with β = N/g20 . [Peardon, Morningstar, PRD 60, (1999)]

• which g-value corresponds to g0 at ξ0 = 1 and do observables match?
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A Non-perturbative Protocol

Keep spatial lattice spacing as fixed while taking ξ0 → 0

• use physical distance r0/as to keep as fixed

• r0/as so-called Sommer parameter defined as

r2F (r)|r=r0 = c .

with F (r) the force between a static quark
and anti-quark.

• r0/as can be determined from the static
potential V (r)
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1 start with some g0-value
2 compute riso = r0/as(g0, ξ0 = 1)

3 for every ξi0 < 1 tune gi0 such
that

r0/as(g
i
0, ξ

i
0) = riso

4 compute other observable
O(gi0, ξ

i
0) and take the limit

ξ0 → 0



Test-case: U(1) Lattice Gauge Theory

We consider compact U(1) LGT in 2 + 1 dimensions as a first test-case

⇒ U ∈ U(1) or Uµ ≡ eiφµ

Pros:

• Similarities to QCD
• fast to simulate
• also accessible for QC / TN

Cons:

• no equivalent physical system
• no running coupling

Note: I’m omitting some renormalisation details in the following!
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r0-Matching in Practice
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two starting β-values
• β = 1/g20 = 1.65

• β = 1/g20 = 1.7
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two starting β-values
• β = 1/g20 = 1.65

• β = 1/g20 = 1.7

• matching within stat.
errors

• at small ξ0:
critical slowing down



Critical Slowing Down in Practice

Severe slowing down with ξ0 → 0
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The Finite Volume Issue

• Hamiltonian calculation: L = 3

• Lagrangian: L = 16 required

⇒ Repeat MC with L = 3

• define ratio

R =
P (L = 16)

P (L = 3)

• and extrapolate ξ → 0 1.
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Preliminary Comparison Ĥ ↔ L

• Hamiltonian results from exact
diagonalisation

• agreement within 1.5σ or so…

• finite volume corrections essential

• currently still investigating
extrapolations

• publication in preparation
MSc work by Christiane Groß
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An Application: The Running Coupling

• running coupling αren depends on energy /
length scale

• example αs in QCD

• by matching to perturbation theory, access to
dynamically generated scale Λ

• requires g0 ≪ 1

• can be determined via step scaling s ∈ R+

σs(αren(r)) = αren(s · r)

[Lüscher, Weisz, Wolff, NPB 359, (1991)]
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αren(r0, g0) →αren(sr0, g0)

↓
αren(r1, g1) → αren(sr1, g1)

αren(r1, g1) → ↓
αren(r1, g1) →αren(r2, g2) . . .



U(1) Gauge Theories

• classically, one parametrises a U(1) object as

U(φ) = eiφ

• φ becomes quantum number labeling states |φ⟩ ∈ H

φ̂|φ⟩ = φ|φ⟩

• canonical momentum operator for φ̂ reads (L̂ ≡ p̂φ)

L̂ = −i ∂
∂φ

, [L̂, Û ] = Û , Û = eiφ̂

• equivalent to the commutator [φ̂, L̂]
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L̂2
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Ĥ =
g2

2

∑
L̂2
k − 1

2g2

∑
TrRe P̂kl

+ Gauss Law∑
µ

(L̂x,k − L̂x−k̂,k)|ψ⟩ = 0

⇒ physical states



Discretised U(1) Gauge Theory

• need to discretise gauge dofs

• interestingly, one can find discrete operators
L̂ and Û exactly fulfilling [L̂, Û ] = Û

• but in a basis where L̂ is diagonal

L̂ =


1 0 0 . . .

0 2 0

0 0 3
...

. . .

 , Û =


0 −1 0

0 0 −1
...
0 0 . . . 0


• angular momentum interpretation!
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Approximation / Truncation

• discretisation requires finite l approximation

• replace U(1) by Z2l+1

[Haase et al., Quantum 5, 393 (2021)]

• Û not unitary, but commutation relations
exact

• L̂ diagonal

• at small g0: magnetic basis favourable (Û
diagonal)
[Haase et al., Quantum 5, (2021); Kaplan and Stryker, PRD 102, (2020); Paulson et al., PRX

Quantum 2, (2021)]
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Step Scaling in 2 + 1d Compact U(1) Gauge Theory

• compact pure U(1) gauge theory shares confinement with QCD

• however, theory is trivial, no renormalisation of the coupling

⇒ proof-of-concept calculation

• we employ exact diagonalisation (ED) and variational quantum eigensolver (VQE)

• and use r2F (r) as a proxy for the renormalised coupling
[Crippa et int., Funcke, et int., CU, arXiv:2404.17545]

• L = 3with periodic open conditions
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Results: Step Scaling at fixed l = 1

• example for fixed truncation l = 1

• electrical basis only

• compare ED and VQE

• r1 = 1, r2 =
√
5

• from β = 1.4 to the perturbative regime

• at large β
[Crippa et int., Funcke, et int., CU, arXiv:2404.17545]
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Results: Running Coupling

• assume the scale has been set at
β = 1.4

• e.g. 0.1 fm

• this would be determined via Monte
Carlo

• now follow the step scaling to βmax

• reasonable agreement for different
r-pairs

• residual lattice artefacts visible
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Non-trivial dependence on r?

• in 2 + 1d: g20 has dimension of a mass

• define g̃2 = g20/µ with [µ] mass

• in terms of g̃2, β-function becomes
linear

⇒ dimensionless r2F becomes
non-trivial dependence on physical r



Currently Ongoing: AddingMatter

• U(1) in 2 + 1d with matter fields:
⇒ non-trivial β-function

• requires effort on Hamiltonian as well
as on Lagrangian side

• ongoing work by Emil Rosanowski and
Alessio Negro
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Additional Terms in Ĥ

• mass term

Ĥm ∝ mϕ̂†xϕ̂x

• kinetic term

Ĥkin ∝ ϕ̂†xÛx,kϕ̂x+k̂

• possibly Wilson term

ĤW ∝ aϕ†∇⋆
k∇kϕ



Currently Ongoing: Magnetic Basis SU(2) Gauge Fields

• apply canonical transformation

• local string/loop formulation

• with additional helper fields

• plus smart way to represent Tr(P )

• promising preliminary results
→ poster by Timo Jakobs

[[Mathur, Rathor, PRD 107 (2023)]]
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Preliminary
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Summary

• matching Ĥ and L in compact U(1) LGT

• steps scaling in compact U(1) LGT

• next steps are
• including matter fields
• non-Abelian gauge groups

• thanks to:
A. Crippa, L. Funcke, C. Groß, T. Jakobs, A. Negro, S. Romiti, E. Rosanowski, andmore
and for your attention!
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