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Summary
• Structural emergence in computational chemistry of condensed phase processes is important for understanding phase transformations in materials science.
• The formation of the SEI (Solid Electrolyte Interphase) in rechargeable batteries is a crucial process that affects battery performance.
• Conventional AIMD (Ab Initio Molecular Dynamics) methods have limitations in terms of simulation time and computational cost.
• The project aims to address these challenges by using the HMC (Hybrid Monte Carlo) algorithm and ML (Machine Learning) based force field models to efficiently simulate
and analyse the high-dimensional potential energy surface associated with phase transitions and interfaces.

State of the Art
• Hybrid / Hamiltonian Monte Carlo (HMC)

H(p, q) =
1

2
(p, p) − ln(g(q)) .

One update step of the HMC combines the following three steps:
1. Draw the conjugate momenta p from a standard normal distribution.
2. Integrate Hamilton’s equations of motion

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

,

numerically using a symplectic integration scheme (reversible and area pre-
serving) starting from p, q to obtain new p′ and q′.

3. Accept or reject the proposal q′ with probability
Pacc = min{1, exp(−(H(p′, q′)−H(p, q))}.

• Machine-Learned Interaction Potentials (various, linear and non-linear)

Eref(X ) ≈ E(X ) =

n∑

i=1

V (Di(xi,Ni)).

A linear model is the MTP (Moment-Tensor-Potential), which is based on:
Mµ,ν(xi,Ni) =

∑

xj∈Ni

fµ(∥rij∥;Zi, Zj)r
⊗ν
ij , r⊗ν

ij = rij ⊗ . . .⊗ rij︸ ︷︷ ︸
ν times

.

Methods
• Hybrid / Hamiltonian Monte Carlo Method (M1, M4)
• Machine-Learning Interaction Potentials (M3, M9, M4)
– ML based ansatz: Eref(X ) ≈ E(X ) = Erep(X )+EML(X ,Q)+Edisp(X )+Eelec(X )

– Further issues: prediction of dipole and quadrupole moments (through equiv-
ariant architectures)

• Simulation of the crystallisation process (M7, M4)

Goals
Development of new approaches and workflows to analyse and simulate long time
atomistic processes of innovative functional materials for energy storage and har-
vesting.
• Create efficient HMC-based simulation techniques designed for phase transi-
tions and interfaces in energy storage and harvesting materials, capable of han-
dling reactive processes, nucleation, and melting.

• Develop ML-based force fields with high accuracy that are able to account for
polarisation effects

• Validate and apply the methods in the design of materials for energy storage and
harvesting, with a focus on emerging structures like SEI formation.

Preliminary Work

• Hybrid / Hamiltonian Monte Carlo (HMC)
– Proof of concept: HMC implementation for CPU/GPU
– Melting- and solidification curves with and without random defects

• MTP Based Machine-Learned Interaction Potentials
– Improvement for multi-element systems
– Training and testing error for about 4000 Ag-Pd, Cu-Pt and Ag-Pt alloys:

Machine learning for many-body potentials with moment tensors. T. Olbrich. Masterarbeit, Institut für Numerische
Simulation, Universität Bonn, 2018.

MD vs. HMC
• Molecular Dynamics (MD) is frequently employed but has problems with rare
events, as it can easily get stuck in certain configurations.

• Hybrid / Hamiltonian Monte Carlo (HMC) might be better at overcoming these
energy barriers due to the frequent resampling of momenta.

• How can we quantify this?
– MD has problems with conformational sampling of small molecules and may

sample different regions of phase space based on the initial conditions.
– Test the performance of HMC on the sampling of conformers of small

molecules like Butan-2-ol.
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• In CC theory, the wavefunction is defined as:

    in which the cluster (excitation) operators are defined as: 

ORCA’s Automated Generator Environment
For Accurate Quantum Many-Body Theory
Hang Xu, Frank Neese

• The quantum many-body problem, particularly the electron correlation problem, is 
of great interest in quantum chemistry and remains a significant challenge due to its 
highly complex nature.

• In a chemical system, the motion of electrons is never independent, leading to various 
interactions, including the Coulomb interaction from electrostatic forces and the 
exchange interaction arising from the fermionic nature of electrons. Mean-field 
methods like Hartree-Fock (HF) fail to capture these interactions fully, which is where 
post-HF methods like Coupled Cluster (CC) come into play.

• However, the process of deriving and implementing complex many-body theories like 
CC is remarkably demanding and requires intensive attention to detail to avoid human 
errors. This is where computational methods step in. Automated code generation 
has revolutionized the field by increasing robustness and efficiency, while minimizing 
human error during both equation derivation and code writing.

• In these automated approaches, tensor representation is crucial. Tensors are 
essential for handling the large, high-dimensional objects that arise naturally in many-
body quantum mechanics. Proper utilization of tensor contraction tools and libraries 
is critical for solving such problems efficiently, enabling large-scale calculations in 
computational chemistry.

• Higher-order CC equations involve thousands of non-redundant terms, which scale 
poorly (e.g. O(N7) for CCSD(T)). Meanwhile, meaningful computational work on large 
molecular systems requires calculations involving thousands of orbitals (basis 
functions). To manage such massive computations, parallelization schemes and 
the use of supercomputing resources become vital.

Department of Molecular Theory and Spectroscopy, 
Max-Planck-Institut für Kohlenforschung

(1) M. Lechner, A. Papadopoulos, K. Sivalingam, A. A. Auer, A. Koslowski, U. Becker, F. Wennmohs, F. Neese. Phys. Chem. Chem. Phys., 2024,26, 15205-15220

(2) M. Krupička, K. Sivalingam, L. Huntington, A. A. Auer, F. Neese. J. Comput. Chem. 2017, 38, 1853–1868

www.kofo.mpg.de hxu@kofo.mpg.de

WHAT PROBLEMS ARE WE TACKLING?

WHAT TOOLS ARE WE USING?

WHAT HAVE WE ACHIEVED?

Define the Hamiltonian
• The non-relativistic electronic Hamiltonian under Bonn-Oppenheimer (BO) approximation:

• Rewriting using second-quantization and neglecting the nuclear-nuclear repulsion term:

    with the following definitions of electronic integrals:

Define the Ansatz: Coupled Cluster

• We can write done the Schrödinger Equation and define the “effective” Hamiltonian (H ̅) as:

• Projecting the SE onto the ground-state and μ-body exciation manifold we obtain the energy 
expression together with the amplitudes equations that we need to solve:

Input Ansatz

A += 2BCij
A += 4BCji

A += 6BCij

REORDER
tensors

for 
optimal
scaling

A = BCDE

X = BC
Y = XD
A = YE

A += BC
A += BD

A += B(C+D)

MIN(I/O):

����� =�� ����������
GENERATOR:
• C++ code
• BLAS
• Contraction
   -Engine

AutoCI modules:
CI
CC

MP(n)
NEVPT(n)
fic-MRCC

...

CGEN:
raw working
equations
(through 

commutators)

Commutator Relations and Termination Conditions
• We can re-write the effective Hamiltonian into commutator expression using the 

Baker-Campbell-Hausdorff (BCH) formula (truncates naturally at 4th order 
since the “bare” electronic Hamiltonian contains at most 2-body interaction):

• From here, we can apply the following commutator relation to swap orders of the 
operators until they meet one of the termination conditions:

• Note here the single-particle excitation operator is defined as:

• Note on the orbital range convention:
• p,q,r ...               general orbitals
• i,j,k ...                occupied (inactive) orbitals
• a,b,c ...               unoccupied (virtual) orbitals
• t,u,v ...                active orbitals

WHAT DO WE WANT NOW?
• RHF and UHF analytic nuclear gradient: • UHF analytic polarizability:

• Benchmark Settings:
• Maxcore: 8000 MB per core
• Basis: def2-TZVP
• CPU: AMD EPYC 75F3
• Unrelaxed Density

• Benchmark Settings:
• Basis: def2-TZVP
• Single gradient step
• Fronzen core

• Maxcore: 5000 MB per core
• CPU: AMD EPYC 75F3

•Better performance: in equation/code generation
    & in generated code modules

•Better parallelization in equation/code generation
    & in generated code modules

•Lower scaling methods: to utilize the tensor sparsity
•i.e. generating DLPNO code
•requires handling of nonorthogonal basis

•(Maybe) calculation specific code generation

•Number of virtual/occupied orbitals are provided

•Bespoke for best performance

...
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Multi-level / multi-fidelity methods[1,2]

•High-fidelity model fhi → accurate but expensive.
•Low-fidelity model(s) f (1)

lo , . . . , f (k)
lo → cheap but inaccurate.

•Goal: Compute high-fidelity statistics by leveraging low-fidelity cost.

Multi-level Monte Carlo
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Multi-fidelity illustration
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min (MSE (E [f1]))

Model management strategies[1,2]

1.Adapting : Update low-fidelity model with high-fidelity information.
•Example: Additive δA and multiplicative δM correction

γ
(
f (1)
lo + δA

)
+ (1 − γ)f (1)

lo δM = f̃hi ≈ fhi, γ ∈ [0, 1].
2.Fusing : Merge high-fidelity and low-fidelity models.
•Example: Multi-fidelity MC estimator: m0 < · · · < mk,αi ∈ R

E[fhi] ≈ Em0[fhi] +
k∑

i=1
αi

[
Emi[f

(i)
lo ] − Emi−1[f

(i)
lo ]

]

3.Filtering : Use high-fidelity model only when indicated by low-fidelity filter.
•Example: Importance sampling: bias-density q from low-fidelity samples

P (fhi ∈ A) ≈
M∑

i=1
1fhi∈A(z ′i )w(z ′i ), (z ′i )

M
i=1 ∼

i.i.d.
q(z) dz

References
[1] B. Peherstorfer, K. Willcox, M. Gunzburger, SIAM J. Sci. Comput. 2016, 38, A3163–A3194.
[2] B. Peherstorfer, K. Willcox, M. Gunzburger, SIAM Rev. 2018, 60, 550–591.
[3] M. Thomas et al., Phys. Chem. Chem. Phys. 2013, 15, 6608–6622.
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IR and VCD spectra from correlation functions[3]

A(ω) ∝
∫

⟨µi(τ )µi(t + τ )⟩τe−iωtdt

∆A(ω) ∝
∫

[⟨µi(τ )mi(t + τ )⟩τ − ⟨mi(τ )µi(t + τ )⟩τ ] e−iωtdt

µi =
∑

j
µj + qj

(
rj − rref

i
)

mi =
∑

j

[
mj + 1

2(rj − rref
i ) × Ij + 1

2qj(rj − rref
i ) × vj

]
− 1

2µi × vref
i

Spectra of (R)-butan-2-ol
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AIMD
Classical

•Experiment by Wang et al.[4]

•AIMD: revPBE-D3(BJ)/DZ in
CP2K

•classical spectra by neglecting
atomic properties: µj, mj, Ij

Exploring different models
Molecular dipole moments: AIMD vs. classical

Next steps
•Determining the effect of the chemical environment on atomic properties
• Identifying suitable surrogate models for atomic and molecular properties
• Investigating machine learning models for IR and VCD spectra
•Developing a multi-fidelity UQ framework

Acknowledgements
This work was supported by the Studienstiftung des deutschen Volkes (Ger-
man Academic Scholarship Foundation). This project was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as
part of the CRC 1639 NuMeriQS – project no. 511713970.
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Summary

• Suzuki-Trotter decompositions are important for the time evolution of quantum systems, splitting the time evolution operator into steps like ei(A+B)t =
(
eiAt/NeiBt/N

)N .

• This project focuses on quantum spin chains (qubit systems) with the Hamiltonian H =
∑L

i=1

(∑3
a=1 J

aσa
i σ

a
i+1 + hiσ

z
i

)
, but the methods are generally applicable.

• The goal of this project is to derive Trotter schemes with reduced errors, in particular considering their performance in practice and potential use on quantum devices.

State of the Art
• Suzuki’s formula to construct higher order splitting methods is highly inefficient:

Sn+2(h) = Sn(snh)
p Sn ((1− 2psn)h) Sn(snh)

p , sn =
1

2p− (2p)
1

n+1

.

• Feasible optimisation methods only known for two operator Hamiltonians
H = A+B. No one-to-one correspondence to efficiencies with more operators.

• Theoretical predictions vastly overestimate errors observed in practice.
• No rigorous understanding of error accumulation over time.

Preliminary Work

Adapting 2-operator schemes for any number Λ of operators:

e(A+B)h+O(hn+1)

= eAa1heBb1heAa2h · · · eBbqheAaq+1h

e
h

Λ∑
k=1

Ak+O(hn+1)
=

(
Λ∏

k=1

eAkc1h

)(
1∏

k=Λ

eAkd1h

)

· · ·
(

Λ∏

k=1

eAkcqh

)(
1∏

k=Λ

eAkdqh

)

B

A

a1 a2b1 b2 bqaq aq+1

AΛ

A1

c1 c2d1 cqdq−1 dq

A2

...

J. Ostmeyer, J. Phys. A:
Math. Theor. 56, 285303
(2023)

Error accumulation:
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• Error scales asymptotically linear in
time t.

• Precise error accumulation scheme-
dependent.

• Only errors after single time step
known exactly.

J. Ostmeyer, J. Phys. A:
Math. Theor. 56, 285303
(2023)

Improving 4th order decompositions:
• Suzuki’s method is state of the art.
• Blanes & Moan’s scheme applied to
Λ > 2 operators for the first time.

• New optimised schemes developed
in:

J. Ostmeyer, J. Phys. A:
Math. Theor. 56, 285303
(2023)
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Real-time evolution:
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• Real-time evolution of very long
quantum spin chains.

• Use reweighting and density of states
techniques.

• Only short times feasible so far.

P. Buividovich and J. Ost-
meyer, Phys. Rev. B 107,
024302 (2023)

Methods
• Tensor Network methods (primarily MPS) (M2) → quantum circuit optimisation
• High Performance Computing (M4) → high-dimensional optimisation
• Quantum Algorithms (M5) → real-time evolution

Approaches

• Optimise the theoretical efficiency given by the expansion
e(A+B)h+O1 h+O3 h

3+O5 h
5+··· = eAa1heBb1h · · · eBbqheAaq+1h ,

O1 = (ν − 1)A + (σ − 1)B , O3 = α[A, [A,B]] + β[B, [A,B]] , . . .

Eff2 =
1

q2
√

|α|2 + |β|2
, . . .

with error coefficients α, β, . . . defined by the chosen Trotterization.
• Perform numerical experiments with Λ > 2 operators. Identify patterns that allow
to predict in practice performance for arbitrarily many operators and long times.

• Use the method by Childs et al. (PRX 11, 011020 (2021))
to predict Trotter error bounds as a baseline.

Goals
• Derive and maximise the theoretical efficiencies of order n ≥ 6 Trotter decompo-
sitions. Construct optimised higher order Trotter schemes for two operators.

• Generalise efficiency predictions for a higher number Λ > 2 of operators and
construct optimal Trotterizations in this case.

• Incorporate in-practice deviations from the theoretical efficiencies.
• Optimise time evolution for state-of-the-art noisy quantum computing.

Role within the CRC

A04

A06

B01

B02
B06

C01

C02

C03

• Particularly strong connection to project A06 treating similar physical systems
and sharing an interest in optimised quantum gates for time evolution.

• Potential direct application of methods derived here in projects C01, C02 & C03.
• Expected benefit from methods derived in projects B01, B02, B06.
• Important connection to project Z02 for numerical optimisation.
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Summary

• Subject of investigation:

– integrated Ab Initio Molecular Dynamics (AIMD) simulations and data analysis

• Aim: deeper understanding of molecular systems
– efficient use of computational resources enabling the investigation of more

complex chemical problems

• Approach:
– run multiple AIMD simulations simultaneously and use novel (temporal) graph

algorithms to exchange trajectories to lead the simulation
– develop analysis tools improving quality, efficiency, and scalability
– utilize the Modular Supercomputing Architecture (MSA) to match diverse

workflow requirements

State of the Art
• AIMD simulations: enable study of structure formation effects in complex
chemical systems, and vibrational spectroscopy such as Infrared, Raman, Vi-
brational Circular Dichroism (VCD)
– challenge: optimal performance and scalability on large HPC systems

• Graphs: so far static structural formations and transition graphs used
– challenge: lack time evolution information and struggle to recognize sim-

ilar conformations
• High Performance Computing: AIMD simulations with standard parameters
– challenge: efficiently use heterogeneous HPC systems by considering

thread parallelism, memory management, and communication

Preliminary Work

AIMD:
• radical Voronoi tessellation for domain
analysis and vibrational spectra calcu-
lation

• group atoms into subsets based on
their local neighborhood

M. Brehm et int., and B. Kirch-
ner, ChemPhysChem, vol. 16
(15), 2015

Temporal Graphs:
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• new similarity measure for
temporal graphs

• ML approach leading to im-
proved classification rates

L. Oettershagen,
et int., and P.
Mutzel, Big Data,
vol. 8 (5), 2020

MSA:
• MSA connects clusters with unique hard-
ware configurations to meet user needs

• scaling studies on HPC systems at
Jülich Supercomputing Centre (JSC)

S. Taherivardanjani, et int.,
and E. Suarez, B. Kirch-
ner, Advanced Theory and
Simulations, vol. 5, 2021
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Goals
• AIMD: improve capabilities and performance of AIMD simulation and analysis
of molecular vibrational spectroscopy.

• Graphs: develop novel analysis methods and tools for dynamic processes
based on temporal graphs

• HPC: improve MSA via co-design and adapt algorithms and codes to heteroge-
neous and modular supercomputing platforms (also see Z02)

Methods

M7: Molecular Dynamics (MD)
• computational chemistry
• Ab Initio MD (AIMD)
• trajectory analysis

M9: Graph Algorithms
• temporal graph similarity
• ML using graph kernels,
Graph Neural Networks (GNNs)

• graph analysis

M4: High Performance Computing & Co-design
• explore Modular Supercomputing Architecture (MSA) for large-scale simulations

Role within the CRC
• graph algorithms and graph
learning with A01

• numerical methods for quan-
tum chemistry with A03

• techniques of HPC and MSA
optimisations with A02 and
B02

• generalizations of used Delau-
nay trinangulation with C01

• strong link to Z02 for bench-
marking and testing on HPC
and MSA systems

A05

A01

A02
A03

B02

C01
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4. Method: QMC

Stochastic Series Expansion

3. Main findings
• Introducing measurement can lead to sign-problem in QMC

   but the focus of this work is on the sign-free scenarios.

• Singlet measurements destroy the long-range order. 

• Triplet measurement enhances the long-range order.

• Correlations decay as  , this is not known1/log(x)q [4]
    to arise in any ground state.

 

Unmeasured spins indicated by dash dot box

1. Background

2. Question

Can several local measurements on the ground state of 

highly entangled system conspire with each other to alter 

physical correlations? 

• Key aspect of measurement is its non-local nature which 

   has striking manifestation in violation of Bell-inequality .

• Measurements lead to entanglement transition in hybrid 

   quantum circuits under unitary evolution .

• Local measurements acting on low energy states have been shown to

   restructure entanglement and correlations at large length scales .

• Theory of measured ground states and Quantum Monte Carlo (QMC) 

   are both based on quantum-classical mapping.

[1]
[2]

[3]

Post-measurement Quantum Monte Carlo
Using Quantum Monte Carlo to study measurement induced collective 
phenomenon in large many-body systems

Kriti Bawejaa,*, David J. Luitza, Samuel J. Garrattb
aPhysikalisches Institut, University of Bonn, Germany  bDepartment of Physics, University of California, Berkeley, USA
*kbaweja@uni-bonn.de 
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• Triplets can entangle to form total singlet.  

• At  , the post-measurement state exhibits surface critical behaviour. J1/J2 = 0.52370 [5]
Measurement on diagonal bonds

J1/J2 = 0.52370

Moves in the configuration space according to the weights  of the configurations W

• Long-range singlet created with spin 1 and 7! 

• Measuring singlets increases the local AFM correlations. 
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5. Conclusion

• Measurement-induced collective phenomenon can be

   studied using QMC.

• Non-local aspect of the measurement process was explicitly

   shown with the considered systems.

• Post-measurement correlations in the critical regime of 

   columnar dimer model exhibit extraordinary-log behaviour.

• Duality between measurement-induced phenomena at

   low energies and the statistical mechanics of critical

   surfaces suggests QMC as a new tool in this setting.
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Abstract
Graphene nanoribbons are a promising candidate for fault-tolerant quantum electronics. In this scenario, qubits are realised by localized states that can emerge on
junctions in hybrid ribbons formed by two armchair nanoribbons of different widths. We derive an effective theory based on a tight-binding ansatz for the description of hybrid
nanoribbons and use it to make accurate predictions of the energy gap and nature of the localization in various hybrid nanoribbon geometries. We use quantum Monte Carlo
simulations to demonstrate that the effective theory remains applicable in the presence of Hubbard interactions. We discover, in addition to the well known localizations on
junctions, which we call ‘Fuji’, a new type of ‘Kilimanjaro’ localization smeared out over a segment of the hybrid ribbon. We show that Fuji localizations in hybrids of width N
and N+2 armchair nanoribbons occur around symmetric junctions if and only if N ≡ 1 mod 3, while edge-aligned junctions never support strong localization. This behaviour
cannot be explained relying purely on the topological Z2 invariant, which has been believed the origin of the localizations to date.

Systems of interest
• Armchair graphene nanoribbons (AGNRs) with different widths:

• Such systems can be experimentally engineered, see Rizzo, D.J., Veber, G.,
Cao, T. et al., Nature 560, 204–208 (2018)

Junction localization
• Cao et al., Phys. Rev. Lett. 119, 076401 (2017) predicted that edge geometry
and width of nanoribbons dictate topological Z2 invariant

• Bulk-boundary correspondence then leads to localization between unequal in-
variant systems

• Localized states correspond to lowest unfilled eigenstate

• These localizations, dubbed ‘Fuji’, have exp. decays on either side of the junction
• However, width of ribbon segments control decay of wavefunction: exp. vs pol.
• =⇒ Z2 invariance is not enough to describe such localizations

AND these results are in the non-interacting limit

Turning on interactions

• Interactions modelled by Hubbard onsite interaction U

Ĥ = −t
∑

σ,⟨i,j⟩
c†i,σcj,σ −

U

2

∑

i

ρ2i,− ; ρi,− = c†i,↑ci,↑ − c†i,↓ci,↓

• Monte Carlo simulations performed in the non-perturbative regime
• Found that localizations persist in the presence of interactions, see Luu,
Meißner, Razmadze, Phys.Rev.B 106 (2022) 195422

An Effective Theory Description of Junction
Localization

• We have necessary ingredients for making an effective theory
– Separation of scales: energy gap between lowest unfilled state to next excited state
– Identification of low-energy degrees of freedom: localized states
– Interactions constrained by symmetries: particle/hole (charge conjugation), sublattice (‘chi-

ral’), and time-reversal (and others)

• Can formulate 1-D ET with asymmetric hopping terms tA and tB

• tA and tB are low-energy constants (LECs) tuned to underlying free theory

• Staggered mass ms is LEC capturing interactions

A New Type of Localization

• Found certain junctions have exponential decay on one side and power-law on
the other

• These localizations, dubbed ‘Kilimanjaro’, have electrons confined between
junctions

The extent of Kilimanjaro localizations can be made arbitrarily wide
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Summary
Numerical simulations in Lattice Field Theory (LFT) require highly efficient algo-
rithms capable of scaling out to very large numbers of compute nodes. Both the
complexity of the simulations themselves and the rapidly evolving hardware land-
scape are posing unprecedented performance-portability, scalability, maintain-
ability and programmer productivity challenges.

Project B02 aims to develop an open-source software framework tackling these chal-
lenges, enabling future complex workflows of LFT simulations to run efficiently on
heterogeneous High-Performance Computing systems based on the Modular Su-
percomputing Architecture (MSA) and to explore the integration of sampling algo-
rithms accelerated using machine learning approaches and scalable algorithms.

State of the Art

• domain-specific monolithic data-
parallel libraries for LFT

• frameworks interfacing with some of
these libraries aiming at programmer
productivity

• general-purpose frameworks and lan-
guage extensions for performance-
portability

• general-purpose frameworks for task
parallelism

• the MSA as an approach to exascale
supercomputing

None of these currently combine performance-portability, productivity, task
parallelism and the ability to run on the MSA using multiple modules (multiple
architectures) at the same time.

Preliminary Work
Modular Supercomputing
Architecture (MSA):
• Heterogeneous computer design to
serve diverse user requirements

E. Suarez et al., CRC
Press (2019)

Twisted mass ensemble generation on GPU machines:
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Juwels Booster

• ported 20-year-old legacy lattice quantum
chromodynamics code to GPUs by extend-
ing NVIDIA QUDA library

• good scalability and performance but un-
sustainable → need new approach!

B. Kostrzewa, et int., C. Urbach, PoS LATTICE2022 (2023) 340

Algorithms for low dimensional systems:
• Optimized integrator
• Determinant filtering improving condi-
tioning of linear systems

• Mixed precision solvers for precondi-
tioned system 1
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 51  72 10  100

t/s

L

fGMRS−solver, Hasenbusch
fGMRES−solver, no Hasenbusch

CG−solver, no Hasenbusch

S. Krieg, T. Luu, J. Ostmeyer, P. Papaphilippou, C. Urbach, CPC 236, 15

Methods
• M4: high-performance computing and
co-design

• M1: numerical quadrature
• M7: molecular dynamics simulation

• M8: multilevel methods

• M9: graph algorithms and learning

• M3: machine learning

Goals

Extend existing libraries or combine
general-purpose solutions to develop a
framework for lattice field theory which:

• offers domain-specific data structures,
interfaces and algorithms,

• can be used from within a high-
productivity language such as Python,

• is performance-portable and supports
multiple simultaneous execution and
memory spaces,

• exposes task parallelism at a domain-
appropriate level of granularity,

• runs natively on the MSA in multi-
module mode,

• implements automatic workflow gener-
ation and optimisation for complex ob-
servables.

Schematic of the representation of a four-point-function as a workflow diagram
with hidden and explicit parallelism suitable for a task-based approach.

Role within the CRC
• Potential direct applications in B06,
C01 and A01.

• Benefit from expertise in A02 (auto-
matic code generation) and in A05
(graph algorithms).

• Exchange with A06 on the efficient im-
plementation of sparse matrix-vector
products and with A04 on the efficient
use of the MSA.

• Exchange with C01, C02 and C03
w.r.t. simulating hitherto inaccessible
parameter regions in gauge theories.

• Algorithmic overlaps with B01 and
B05 (HMC, ML) as well as B04
(quadrature).

• Crucial support by Z02 in the de-
velopment of systematic and repro-
ducible benchmarking workflows and
contributing to co-design efforts.

B02

A01

A02

A04

A05

A06
B01B04

B05

B06

C01

C02

C03

Trailblazer project for development strategies for the MSA with potential applica-
bility in various other projects.
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Summary

Predicting the average value of an observable for a lattice discretization leads to a high-dimensional integration problem. The usual approach for most lattice problems is
given by Monte Carlo quadrature and Markov chain Monte Carlo sampling. There, the error is of the order O(N−1/2) with N being the number of samples. But there exist
deterministic quadrature methods with higher convergence rates that may also be combined with Markov chain-type sampling. Furthermore, multilevel variants of these
methods can be derived which possess further reduced cost complexities. In this project, we investigate these superior methods for lattice gauge theories.

State of the Art

• Model problems from the Kogout ladder.
• Lattice approximation: On a uniform lattice on level L for a D-dimensional field,
we have the 2DL-dimensional integration problem

IL =

∫

ΩL

fL(xL)dµL(xL).

• Conventional quadrature rules suffer from the curse of dimension.
• Monte Carlo and Markov chain Monte Carlo sampling circumvent the curse but
have only an accuracy of O(N−1/2), where N is the number of used points. More-
over, they suffer from critical slowing down close to the critical temperature β∗.

• There exist higher order quadratures (QMC, Bayesian, sparse grids) which can
possess an accuracy of nearly O(N−r), r > 1/2.

Preliminary Work

• Two scales of approximation indices: In sync with the renormalization approach,
approximate IL via a restriction operator TL,l1 on lattices with spacings 2−l1, l1 =
L, . . . , 1, i.e. by a sequence of 2Dl1-dimensional integration problems

Il1 = TL,l1IL =

∫

Ωl1

fl1(xl1)dµl1(xl1), l1 = L, . . . , 1.

Approximate Il1 by a quadrature method Ql1,l2 which relates to a second index
l2. This gives for each Il1 a sequence of quadrature rules

Ql1,l2 =

nl2∑

j=1

αl1,jfl1(x
(j)
l1
), l2 ≥ 1,

with weights αl1,j ∈ R and 2Dl1-dimensional quadrature points x
(j)
l1

∈ Ωl1, j =

1, . . . , nl2, which act on Ωl1. Here, nl2 := 2al2 where a is a method-dependent
parameter. Altogether this gives the double-indexed sequence

Ql1,l2TL,l1 1 ≤ l1 ≤ L, l2 ≤ 1.

• The regular sparse grid combination approximation can be written as∑

l1+l2=L+1

Ql1,l2TL,l1 −
∑

l1+l2=L

Ql1,l2TL,l1.

It realizes a direct multilevel approach between lattices and quadratures and
relates to a kind of bivariate extrapolation.

• For general index sets Λ(K) there is the generalized combination method
∑

(l1,l2)∈Λ(K)

cl1,l2Ql1,l2TL,l1 where cl1,l2 =

(1,1)∑

(z1,z2)=(0,0)

(−1)z1+z2χΛ(K)((l1, l2) + (z1, z2))

with characteristic function χΛ(K).

The index set Λ(K) can be adaptively build up based on error indicators and cost
and a benefit/cost ratio concept involving knapsack optimization.

Methods

• Quadrature techniques (M1): Monte Carlo, Quasi Monte Carlo, Bayesian
quadrature, sparse grid quadrature.

• Markov chain variants of these basic quadrature techniques.
• Regular sparse grid combination method as multilevel approach between lattice
discretization and quadrature resolution.

• Generalized sparse grid combination method.
• Adaptive combination method steered by error indicators and cost by means of
a cost-benefit approach.

Goals

• Simple one-dimensional quantum mechanical test problems.
• Antiferromagnetic O(3) Heissenberg and related nonlinear sigma problems that
model chiral antiferromagnetic materials.

•SU(2) lattice gauge theory in (1+1) and (1+2) dimensional Euclidean space-time.
• Study properties of the various basic quadrature methods, i.e. Monte Carlo,
Quasi Monte Carlo, Bayesian Monte Carlo and sparse grid quadrature, within
both, the conventional combination method and its adaptive variant.

• Derive necessary algorithmic parameters and details, like scaling value a for
conventional approach or shape of generated index set for adaptive method.

• Derive Markov chain variants of the basic quadrature/sampling techniques and
study their properties.

• Employ Markov chain variants within the combination method to obtain multilevel
versions, first in an a-priori way and then in an adaptive a-posteriori way.

• Study these methods for the one-dimensional toy problems and then for the
problem class of Heisenberg models and nonlinear sigma models.

• Apply the new approaches to SU(2) lattice gauge theory relying on existing
codes which just have to be called as subroutines with their relevant discretiza-
tion parameters in the combination method.

• Study the index sets created by the adaptive version of the combination method
for the temperature β getting successively closer to the critical point β∗.

Altogether, identify good sparse grid combination methods of higher order, deter-
mine optimal parameter settings, and apply them to the above lattice problems.

Role within the CRC
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Summary

• Motivation and state-of-the-art: Precise perturbative predictions for collider experiments, like the Large
Hadron Collider (LHC) at CERN, require the computation of complicated integrals of the 4-momenta of vir-
tual intermediate particles.

• Longterm goal: Develop a numerical algorithm to evaluate Feynman integrals.
• Goals for the first funding period:

1. Develop an algorithm to construct numerators rendering two-loop integrals for LHC processes finite.
2. Develop an hp-quadrature scheme for exponential convergence, and apply it to the numerical evaluation

of Feynman integrals.

State of the Art

• Amplitudes arise from often divergent Feynman integrals, with divergences can-
celling each other non-trivially in the finite result
– To control divergences, one aims to separate integrals into a finite and diver-

gent part
– Integrating the two parts, analytical methods are reaching their limits
– Finite part can be integrated numerically
– Required precision cannot be obtained using traditional Monte Carlo tech-

niques due to slow convergence

• Integrals from boundary element methods are similar to Feynman integrals
– Numerical treatment well understood nowadays
–hp-approximation of kernel function using fast multipole method
– Evaluation of singular integrals using Duffy transformations

Goals

• Split Feynman integrals into
– Divergent part: Analytically ”simple”
– Locally finite part: Contains all the analytically complicated behaviour. Derive

integrand from loop-tree duality to numerically integrate using hp-quadrature

• Develop an algorithm to generate an hp-mesh, apply hp-quadrature

• Develop publicly available software package

• Apply these numerical techniques to compute two-loop processes which are out
of reach with conventional techniques, e.g., electroweak corrections processes
involving vector bosons

Current Work

Integrand Analysis:
• Implemented a general algorithm to derive
dual integrands from loop-tree duality

• In process: Implementation of algorithmic
construction of numerator for a given
Feynman integrand to obtain integrable
basis for finite part

Numerical integration:
• 1D hp-interpolation theory expanded to
larger class of Sobolev spaces

• Implemented hypercube based n-
dimensional hp-mesh generation for
integrals with singularities on co-dimension
1 hyperellipsoid

Construction of Integrands

Find a basis for the finite part of the
relevant integrals
– Remove especially non-integrable

IR and UV divergences
– Therefore, find algorithmic con-

struction for most general (polyno-
mial) numerator leading to a finite
integral

– Find finite number of generators for
numerator

Rewrite integrand in a form that is
compatible with hp-quadrature
– Derive dual integrand from causal

loop-tree duality
– Done by performing energy inte-

gration using residues

→ Lower-dimensional finite integrals with only compact integrable
singularities in the integrand

Illustration of hp-quadrature

General idea of hp-quadrature:
• Partition domain of integration into
subdomains with increasing size
with distance to singularity

• Employ higher order quadrature
rules for larger subdomains

• Regularize singular integrands us-
ing Duffy transformations

hp-interpolation in 1D:
• Using a geometric mesh, domain is
subdivided such that all domain el-
ements not bordering the singular-
ity have p-scaling

• Elements bordering singularity
have general h-scaling, which is
exponential with respect to mesh
size n
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Summary
• Project B05 aims at extracting the light baryon resonance spectrum from experimental data and determine the uncertainties of the resonance parameters in a well-defined
way. The baryon spectrum is the least understood part of the Standard Model.

• To this end, within the well-established Jülich-Bonn dynamical coupled-channel approach, we will transition from fitting with MINUIT to a Bayesian parameter estimation
with the Hybrid Monte Carlo (HMC) method.

State of the Art
• Light baryon resonance spectrum: overlapping and sometimes very broad
states, not visible as distinct peaks in cross section data

• Large number of inelastic channels in the medium-energy regime: extraction
process even further complicated

→ Apply theoretical well-founded approaches as, e.g., dynamical-coupled
channel (DCC) frameworks

• Numerically costly (due to the underlying theoretical complexity), large number
of free model parameters

• Determination of the significance of a resonance and the parameter uncertain-
ties: not straightforward, very challenging

→ Using a standard gradient minimization procedure (e.g. Cernlib MINUIT
function minimizer) is uneconomical, if not impossible

Preliminary Work
Jülich-Bonn DCC model
purely hadronic scattering matrix:

Tµν(q, p
′,W ) = Vµν(q, p

′,W ) +
∑

κ

∞∫

0

dp p2 Vµκ(q, p,W )Gκ(p,W )Tκν(p, p
′,W ) ,

•Vµν constructed from chiral Lagrangian
• s-channels: genuine resonance states
• t-, u-channels: background (dynamical
generation of poles possible)

• 2-body unitarity and analyticity, off-
shell intermediate momenta

• Resonances as poles on the 2nd Rie-
mann sheet

D. Rönchen, ..., U.-G.
Meißner et al., Eur. Phys. J.
A 49 (2013) 44

Photoproduction
in a semi-phenomenological approach:

Mµγ(q,W ) = Vµγ(q,W ) +
∑

κ

∞∫

0

dp p2 Tµκ(q, p,W )Gκ(p,W )Vκγ(p,W ) .

•Vµγ constructed with energy-dependent
polynomials

•Tµκ: identical to hadronic T -matrix
→ Universal pole positions and

residues

Photoproduc�on in a semi-phenomenological approach EPJ A ��, ��� (����)
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D. Rönchen, ..., U.-G.
Meißner et al., Eur. Phys. J.
A 50 (2014) 101

Simultaneous analysis of πN, γp → πN, ηN,KΛ,KΣ
• 72,000 data points, ∼900 free parameters
•χ2 minimization with MINUIT on supercomputer
• All 4-star PDG states seen, one exception:
N(1895)1/2−

↪→ important for η′N photoproduction?

D. Rönchen,
M. Döring, U.-
G. Meißner, Eur.
Phys. J. A 58
(2022) 229

Extension to strangeness channels: in progress
• DCC framework for K̄N reactions → two-pole structures
• extraction of the hyperon resonance spectrum, i.e. Λ∗ and Σ∗ states

Methods
• Stochastic sampling: Hybrid Monte Carlo (HMC)
• Coupled-channel calculations
• Uncertainty quantification
• High-performance computing
• Effective field theories / unitarized chiral perturbation theory

Goals
• Transition from MINUIT to a Bayesian parameter estimation with HMC
• Extend the Jülich-Bonn coupled-channel model to γp → η′p

• Perform a global coupled-channel fit of pion- and photon-induced hadronic
reactions

One question, e.g. : is there a η′p cusp effect responsible for the backward peak
in recent γp → ηp data?
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• Extract the resonance parameters of N ∗ and ∆ states with well-defined uncer-
tainties from the samples obtained with the HMC method

• In the future, this work will also be applied to strangeness baryon resonances,
i.e. the spectrum of Λ∗ and Σ∗ states

Role within the CRC
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Summary
• Runtimes of lattice quantum chromodynamics (LQCD) simulations remain, despite considerable algorithmic progress, dominated the computational cost associated
with the approximate solution of the Dirac equation, a very large sparse linear system Dz = b where D = D(U,m) denotes a discretisation of the Dirac operator on a
four-dimensional space-time lattice which depends on a gauge field U and a mass constant m.

• Its iterative solution requires the reduction of errors in all spectral components, which can typically only be attained at a uniform rate by so-called hierarchical or
multi-level methods further accelerated by Krylov methods.

• The goal of this project is the development of a robust efficient and highly parallel linear solver based on novel algebraic multigrid (AMG) / algebraic multiscale
(AMS) techniques and by the integration of machine learning (ML) techniques into the setup of the solver.

State of the Art
• Krylov methods used in LQCD are (flexible) GMRES, GCR, BiCGstab, etc.
• Preconditioners employed are, e.g. (often using lower floating-point precision)
single-level stationary linear iterations such as Jacobi-, Gauss-Seidel- SOR-
iterations, or hierarchical multi-level techniques such as geometric or AMG meth-
ods.

• Single level methods become highly inefficient as quark masses are tuned to-
wards their physical value and as lattice volumes are increased (the former ne-
cessitating the latter)

• Successful AMG approaches for LQCD currently use a multiplicative Schwarz
method as smoother, a simple geometric agglomeration strategy, and an adap-
tive construction of the coarse grid projection.

• The use of ML techniques in LQCD is in its infancy, but first approaches to use
ML for e.g. the smoother or as a learnable preconditioner exist

• Further applications of ML techniques are based on geometric multi-grid, which
is known to perform poorly for LQCD and GCNNs, which may be overkill for the
highly structured LQCD

Preliminary Work

DD-α-AMG: Adaptive Aggregation Based Domain Decomposition Multigrid
• MG method for LQCD
• Wilson and TMF
• Widely adopted
• Our benchmark
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Frommer, Kahl, Krieg, Leder, Rottmann, SIAM J. Sci. Comput. 36 (2014) A1581-
A1608

Algebraic multiscale approach and AMG
• AMS inspired coarsening
and interpolation for ag-
gregative AMG

• Improved parallelizability
• Reduced memory footprint
• Suitable for large prob-
lems

Ehrmann, Gries, Schweitzer, Comput Geosci 24, 683–696 (2020)

Error reduction in all spectral components due to multi-level structure:
smoothing and coarse grid defect correction.

Methods
• Adaptive aggregative Multigrid M8
• Domain decomposition
• Algebraic multiscale

• Krylov subspace methods
• Machine learning techniques M3
• Preconditioning

Goals
• Krylov methods: Evaluation of induced dimension reduction methods as an al-
ternative to GMRES or BiCG

• Multi-level preconditioner: Replacements of components of DD-α-AMG optimiz-
ing for large system sizes, small quark masses and the modular supercomputing
architecture (MSA)

• Smoothing scheme: Investigation of the optimal parameter settings and compo-
nents, evaluation of highly parallel smoothers, e.g. polynomial smoothers such
as Chebyshev iteration, and ML approaches

• Coarsening scheme, interlevel transfer operators:
– Investigation of aggregation strategies and their effect on parallel performance

and communication aspects.
– Extention of the AMS approach to LQCD, investigation of its efficiency.
– Study of the enrichment of the coarse space in the context of adaptively im-

proving the coarse space / interpolation.
– Investigation of ML approaches for improved interpolation and restriction op-

erators.

Role within the CRC
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Using Machine Learning for Noise Resilient 

Optimization of Variational Quantum Eigensolvers
Luca Wagner, Kim Nicoli, Lena Funcke

Noisy Intermediate Scale Quantum (NISQ) devices may be harnessed to 
outperform classical hardware for specific optimization tasks.

Especially, hybrid quantum-classical algorithms like Variational Quantum 

Eigensolvers (VQEs) can compute ground state energies of quantum 

Hamiltonians, or complex minimization tasks in general.

VQEs on NISQ Devices

• Gaussian Process Regression use Multivariate Gaussian distribution

- Goal: infer mean and variance of function values            from      

measured noisy points                        , with               .

• Kernel function of the VQE can be infered from its functional form [1]:
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1. VQE kernel with EMICoRe acquisition function: powerful machine-learning-

based method for optimising VQEs

2. Outperformance of state-of-the-art baseline for benchmark Ising model, 

even stronger for more complex quantum chemistry Hamiltonian

3. Even stronger outperformance when applying simulated hardware noise

4. Future work on application to lattice field theories, e.g. 2+1D QED

[1] Nicoli, Anders, Funcke, et al. “Physics-Informed Bayesian Optimization of Variational Quantum 
Circuits”. Proceedings of 37th Conference on Neural Information Processing Systems (NeurIPS 2023)

[2] Nakanishi, et al. “Sequential minimal optimization for quantum-classical hybrid algorithms”. Phys. 
Rev. Research 2, 043158 (2020) 

[3] Kandala, et al. “Hardware-efficient variational quantum eigensolver for small molecules and 
quantum magnets”. Nature 549, 242 (2017)
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Motivation

GP Regression and VQE KernelBackground

<latexit sha1_base64="CDTnvIjhRV1/6XmGvlEvaEtsvdo=">AAACOXicbVDLSgMxFM34rPVVdekmWAQXpcyIqBuh6MaVVOgLOkPJZNI2NDMZkjtCGfpbbvwLd4IbF4q49QfMtF3Yx4GQwzn3cu89fiy4Btt+s1ZW19Y3NnNb+e2d3b39wsFhQ8tEUVanUkjV8olmgkesDhwEa8WKkdAXrOkP7jK/+cSU5jKqwTBmXkh6Ee9ySsBInULV9aUI9DA0X+rW+gzICN9gN8UzBoyNjlPCrggk6NJS+wG7o06haJftMfAicaakiKaodgqvbiBpErIIqCBatx07Bi8lCjgVbJR3E81iQgekx9qGRiRk2kvHl4/wqVEC3JXKvAjwWP3fkZJQZ0uaypBAX897mbjMayfQvfZSHsUJsIhOBnUTgUHiLEYccMUoiKEhhCpudsW0TxShYMLOmxCc+ZMXSeO87FyWnceLYuV2GkcOHaMTdIYcdIUq6B5VUR1R9Ize0Sf6sl6sD+vb+pmUrljTniM0A+v3D0/krmw=</latexit>

Θ = {θ1, . . . ,θN}
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N

Goal:

• Find ground state and excited states of Hamiltonian     .

Quantum Device:

• Measure variational quantum circuit: get objective function 

Classical Computer:

• Optimize parameters     , given                – improvement by new EMICoRe method [1]

• Baseline method (NFT [2]) uses VQE’s functional form for sequential optimization:

• Sequential optimization of one parameter        each →                 becomes cosine 

• Find subspace optimum: fit two equidistant measurements + previous optimum

VQEs and NFT BaselineBackground
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H

EMICoRe’s Algorithmic ProcedureMethod

Quantum Chemistry HamiltonianResults

Simulated Hardware NoiseResults

Conclusion

References
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Introduction
The Bigger Picture
• Lattice gauge theory is typically simulated in the path integral
formalism. However, there is also a Hamiltonian formulation of
the theory, promising easier access to real time dynamics and
simulations at finite chemical potential.

• Simulations in this formalism have historically been pro-
hibitively expensive. Recent developments in tensor network
states and quantum computing promise to mitigate this and
lead to a renewed interest in this formulation.

The Hilbert Space

• The Hamiltonian acts on many particle wave functions
ψ (. . . , Ux,k, . . . ). The coordinate space of each particle is given
by the gauge group SU(2). Each particle corresponds to a
gauge link in connecting the sites of a cubical lattice.

• For numerical simulation the space of such wave functions
needs to be discretised. This is done by first finding an appro-
priate set of orthogonal single particle wave functions ϕ̂n(U).

• A basis of the full space is then given by
|. . . , nx,k, . . .⟩ =

∏

x,k

ϕ̂nx,k(Ux,k) . (1)

Operators
Momentum Operators
The momentum operators are defined by Lie derivatives:

L̂cx,k ψ = − i
d

dβ
ψ
(
. . . , e− i βτc Ux,k, . . .

)
|β=0 (2)

and

R̂c
x,k ψ = − i

d

dβ
ψ
(
. . . , Ux,k e

i βτc, . . .
)
|β=0 , (3)

where τc are the generator matrices of SU(2). They are also writ-
ten in a vectorized notation as

ˆ⃗
L =

∑

c

L̂cµ,xτc and ˆ⃗
R =

∑

c

R̂c
µ,xτc . (4)

Position Operators
The matrix valued position operators act as

Ûx,k ψ = Ux,k ψ (. . . , Ux,k, . . . ) (5)
and

Û †
x,k ψ = U †

x,k ψ (. . . , Ux,k, . . . ) . (6)

Dual Formulation
Kogut-Susskind Hamiltonian
The gauge links connect the sites of a cubical
lattice:

The Hamiltonian reads:

ĤKS =
g2

2

∑

x,k,c

(L̂cx,k)
2 − 2

g2

∑

x,j<k

Tr
[
Re P̂x,jk

]
(7)

where
P̂x,ij = Ûx,i Ûx+aî,j Û

†
x+aĵ,i

Û †
x,j . (8)

The second term, also called the magnetic
term, implements an interaction between the
four links of each plaquette in the lattice. When
g2 → 0 this interaction dominates and makes
efficient simulations of such systems quite dif-
ficult. This is why we reformulate the Hamilto-
nian to the dual Hamiltonian.

Dual Hamiltonian
In the Dual formulation we introduce an addi-
tional plaquette link at each site.

The Hamiltonian then transforms to

Ĥdual = g2
∑

x,k

Tr

[(
ˆ⃗
Lx,k + ∇̂k(U)Ex

)2
]

− 2

g2

∑

x

Tr
[
Re Ûx

] (9)

where
∇1(U)Ex =

ˆ⃗
Rx + Û †

2,x−ê2
ˆ⃗
Lx−ê2Û2,x−ê2 (10)

and
∇2(U)Ex =

ˆ⃗
Lx + Û †

1,x−ê1
ˆ⃗
Lx−ê1Û1,x−ê1 . (11)

Note that the magnetic term is now local, with
an interacting electric term. This allows for ef-
ficient simulations at small couplings.

Discretising the Plaquette Links

−2 0 2

Tr[Ux]

0.0

0.5

1.0

1.5

2.0

ψ
x
(U

)

Expected shape of the single link
wave function at small g2

• First we parametrize the gauge group by spherical coordinates
U(ψ, θ, ϕ) = cos(ψ)1 − 2 i sin(ψ) n⃗(θ, ϕ) · τ⃗ (12)

where n⃗(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)T . (13)
• With this we can make an Ansatz for the basis functions:

Bn,l,m = Cn(ψ)Yl,m(θ, ϕ) (14)
•Cn(ψ) is constructed from Hermite-Polynomials Hn as

Cn(ψ) ∼
1

sinψ

1√
π2 − ψ2

H2n+1(u(ψ)) e
−u2(ψ)

2 (15)

Here u =
√
α tanh−1 (ψ/π) is needed to get orthogonal functions.

The parameter α needs to be tuned for a given coupling. The
resulting functions are well suited to approximate wave functions
as the one sketched on the left.

Results

3.7

3.8

3.9

4.0

M

10−2 10−1 100

g2

2.4

2.6

2.8

3.0

E
0

HP nmax = 2, α = 50

HP nmax = 4, α = 50

HP nmax = 2, α = 700

HP nmax = 4, α = 700

Analytic

̇

2× 2 System

• On the left we show the ground state en-
ergy E0 and mass gap M = E1 − E0 of
the digitised Hamiltonian as a function of
the coupling g2.

• At a given value of α we see good
agreement with the analytic expectation
around an optimal g2.

• By increasing nmax the range, in which
the analytic prediction is matched in-
creases

3.1

3.2

3.3

3.4

3.5

M

10−1 100

g2

4.5

5.0

5.5

6.0

E
0

HP nmax = 6, lmax = 1

HP nmax = 6, lmax = 2

HP nmax = 15, lmax = 2

CG Jmax = 5.0 (Max. Tree)

̇

3× 2 System

• Helper links are digitised using the char-
acter expansion (eigenfunctions of ˆ⃗L2).

• To simulate we use matrix product states
and run at optimal α for each g2.

• The solid line shows maximum tree re-
sults, i.e. electric basis methods.

• Our method achieves good matching,
and remains stable even at small cou-
plings, where the maximum tree ap-
proach diverges.
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Summary
The sensible application of the Hybrid Monte Carlo (HMC) method to the Hubbard model is hindered by the emergence of infinite potential barriers due to a vanishing
fermion determinant, resulting in an ergodicity problem that needs to be resolved. This can be achieved by augmenting the HMC algorithm with radial updates, which refer to
multiplicative Metropolis-Hastings updates in a radial direction of the non-compact fields. These radial updates facilitate jumps over the potential barriers, thereby restoring
ergodicity while simultaneously reducing autocorrelation times at a comparably low computational cost.

Hubbard model
The Hubbard model is a condensed matter model used to describe interactions
of strongly-correlated electrons and consists of a nearest-neighbor tight binding
term and an on-site interaction term. In the particle-hole basis, it is given by

H = −κ
∑

⟨x,y⟩

(
a†xay − b†xby

)
+
U

2

∑

x

(
a†xax − b†xbx

)2
, (1)

where (ax, a
†
x) and (bx, b

†
x) are the ladder operators for an electron of spin-↑ and

an electron-hole of spin-↓, respectively. All information about the system is then
encoded in the expectation values

⟨O⟩ = Z−1 tr
(
Oe−βH

)
with Z = tr

(
e−βH

)
(2)

given in the thermal trace formalism.

Computational method
Extracting information on the Hubbard model through simulations is often achieved
by utilizing the framework of lattice field theory, where the expectation values are
given by path integrals over a field φ, such that

⟨O⟩ = Z−1

∫
Dφ O[φ]e−S[φ] with Z =

∫
Dφ e−S[φ]. (3)

In the importance sampling approach, they can be approximated using an en-
semble of characteristic field configurations {φ(i)}Mi=1 via

⟨O⟩ ≈ 1

M

M∑

i=1

O[φ(i)], (4)

where φ(i) ∼ e−S[φ]. The application of this framework to the Hubbard model (1) is
enabled by deriving the Hubbard action

SH[φ] =
1

2U∆t

∑

t,x

φ2
tx − log (detM [φ|κ] detM [−φ| − κ]) , (5)

with the fermion matrix in the exponential discretization given by
M [φ|κ]tx,t′y = δt,t′δx,y −

(
eκh

)
xy
eiφtxBt′δt′,t+1. (6)

Here, the adjacency matrix h = ∆tδ⟨z,z′⟩, a non-compact auxiliary field φ and a
Euclidean time dimension with lattice spacing ∆t = β/Nt were introduced. The
correct expectation values (3) are recovered in the continuum limit Nt → ∞. Evalu-
ating expectation values using (4) now requires generating characteristic samples
φ ∼ e−SH [φ], which is subject to Markov chain Monte Carlo (MCMC) methods.

Hybrid Monte Carlo
The Hybrid Monte Carlo method [1] is a widely used MCMC algorithm that intro-
duces a set of conjugate momenta πtx to define the Hamiltonian

H [φ, π] =
1

2

∑

t,x

π2
t,x + S[φ]. (7)

Using this Hamiltonian, it then constructs a Markov chain of field configurations by
numerically evolving the molecular dynamics (MD) equations

dπ

dτ
= −∂H

∂φ
= −∂S

∂φ
and dφ

dτ
=

∂H

∂π
= π (8)

over computer time τ along continuous trajectories in configuration space. How-
ever, the numerical evolution of (8) inevitably introduces a systematic error which
can be corrected by utilizing a Metropolis acceptance test with

αHMC = min
(
1, e−∆H

)
. (9)

In general, a MCMC method is governed by a transition kernel Ω(φ → φ′) between
subsequent configurations and it converges to a target distribution p[φ] if it is er-
godic and satisfies the detailed balance condition p[φ]Ω(φ → φ′) = p[φ′]Ω(φ′ → φ).

Ergodicity violations in the Hubbard model
It was shown in [2] that the fermion matrix (6) vanishes on manifolds with codi-
mension 1, giving rise to infinite potential barriers that separate regions in
configuration space. Therefore, if the evolution of the MD equations (8) attempts
to pass them, the force term F [φ] = −∂S

∂φ diverges and the evolution is repelled.
Hence, for a very fine MD integration, the HMC can not cross over into the
separated regions which constitutes an ergodicity problem and necessitates the
development of strategies for circumventing the potential barriers. [3]

Radial updates
Radial updates are multiplicative Metropolis-Hastings updates of a non-
compact bosonic field φ = (φ1, . . . , φd) that generate proposals by rescaling the
radius

R =

√∑d

i=1
φ2
i . (10)

Starting from an initial configuration φ, they proceed as follows:
1. Sample an update variable γ from a normal distribution N (γ|µ = 0, σ2

R).
2. Rescale the radius to generate a new configuration φ′ = (eγφ1, . . . , e

γφd).
3. Use φ′ in a Metropolis acceptance test with αR = min

(
1, e−∆S+dγ

)
.

The radial updates are a special case of the Transformation-based MCMC algo-
rithm [4] and satisfy the detailed balance condition. The combination of HMC
and radial updates yields an algorithm that can efficiently jump over potential
barriers and therefore restores ergodicity. Furthermore, radial updates reduce
autocorrelation times at comparably low computational cost.

References
[1] S. Duane, A.D. Kennedy, B.J. Pendleton, and D. Roweth. Hybrid Monte Carlo.

Phys. Lett. B, 195 (1987) 216-222
[2] M.V. Ulybyshev and S.N. Valgushev. Path integral representation for the Hub-

bard model with reduced number of Lefschetz thimbles. arXiv:1712.02188
[3] J.-L. Wynen, E. Berkowitz, C. Koerber, T.A. Lähde, and T. Luu. Avoiding er-

godicity problems in lattice discretizations of the Hubbard model. Phys. Rev.
B, 100, 075141.

[4] S. Dutta and S. Bhattacharya. Markov chain Monte Carlo based on determin-
istic transformations. Stat. Methodol. 16 (2014) 100–116



TP C02 – Poster 2

TENSOR NETWORK STUDY FOR SYMMETRY RESOLVED OTOC
Martina Gisti 1, David J. Luitz 1, Maxime Debertolis 1

1 Physikalisches Institut, University of Bonn, Germany
martina.gisti@uni-bonn.de

TENSOR NETWORK STUDY FOR SYMMETRY RESOLVED OTOC
Martina Gisti 1, David J. Luitz 1, Maxime Debertolis 1

1 Physikalisches Institut, University of Bonn, Germany
martina.gisti@uni-bonn.de

Abstract

The project purpose is to study the out-of-time-ordered (OTOC) in complex quantum many-body (MB) systems [1], which are usually used to investigate quantum chaos. Tensor
networks (TN) are an effective technique to describe complex MB systems with low entanglement, on top of which symmetries are used to simplify further the computational
complexity. This work aims to be extended to simulations of quantum MB systems on high dimensional lattices, which are challenging and physically relevant open problems. In
practice, isoTNs will be implemented and extended to compute symmetry resolved OTOCs in 2D and 3D.

Tensor Network and Symmetries

• Lattice with L spins, state |ψ⟩ ∈ H = V⊗L represented as a TN;
in 1D matrix-product-state (MPS)

|ψ⟩ =
∑

σ1,··· ,σL
a0,··· ,aL

Mσ1
a0a1
Mσ2

a1a2
· · ·MσL

aL−1aL
|σ1 · · ·σL⟩ .

• Operator acting on MB system as matrix-product-operator (MPO) in 1D,

Ô =
∑

σ1,...,σL

∑

σ′1,...,σ
′
L

Ôσ1,σ
′
1 . . . ÔσL,σ

′
L |σ1, . . . , σL⟩⟨σ′1, . . . , σ′L|

Fig. 1: MPS Fig. 2: MPO

Abelian Symmetry in TN
◦ U(1) : V =

⊕
nVn =⇒ Ô =

⊕
n Ôn,

block-diagonal structure of bilinear operators

Ô =
⊕

n

Ôn ∼




(1) 0 · · · 0
0 (2) · · · 0
... ... . . . ...
0 0 · · · (n)




◦TN is U(1) symmetric if local tensors are invariant under transformations associated
to conserved quantities (charges), e.g. magnetization Ŝz =

∑L
j=1 Ŝ

z
j

[Ô, Ŝz] = 0 ⇔
[
Ô
σj,σ

′
j

aj−1aj, Ŝ
z
]
= 0 ∀ j

◦ Implement the U(1) symmetry in TN [3]: associate to every index a charge q and
degeneracy dq, and impose the conservation of charges locally∑

j ∈ in

qj =
∑

j ∈ out

qj

• physical index - spin-charge : σj → (nj, dnj)

• virtual index - flow of charges: aj → (lj − l′j, dlj−l′j), lj − l′j =
∑j

i=i σi − σ′i

Fig. 3: MPS MPO

◦Symmetric MPO: charge conservation:

lj+1 − l′j+1 + nj + n′j = lj − l′j
◦Method: consider only the non-zero elements

stemming from the block-diagonal structure

MPOs projected into symmetry sector

◦ Idea: MPO represents the projected operator into specific symmetry sector n

Ô[s] = P †
[n] Ô P[n], n = ⟨Ŝz⟩

◦ alternative virtual charge: aj → (lj, l
′
j, dlj,l′j).

◦ computations involve smaller blocks of the matrix
◦ reduce the computational cost;

Symmetry Resolved OTOC

◦Consider Ŝzj (t) = Û(t)†Ŝzj Û(t), out-of-time-ordered correlators (OTOC), are:

Ci,j(t) = ∥ [Ŝzj (t), Ŝ
z
i ] ∥

2

F
= 1− 1

Tr (I)
· Tr

(
Ŝzj (t) Ŝ

z
i Ŝ

z
j (t) Ŝ

z
i

)
.

◦Results: OTOCs behaviour depends on the symmetry sector n.

Ci,j(t)
[n] = 1− 1

Nn
· Tr

((
Ŝzj (t)

[n] Ŝzi
[n]
)2)

, Nn = Tr
(
I[n]
)
.
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Fig. 6: OTOC in 1D system with L = 40 sites and isotropic Heisenberg interactions

◦OTOCs have different light-cones for each sector n.
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◦No equipartition of the information in different symmetry sectors n.

Outlook

◦DMRG with MPO in given sector

◦Symmetry resolved density matrix in 1D

◦OTOCs in 2D with IsoTNs, that are TNs with tailored
isometric conditions in higher dimensions D, in order
to ensure the optimal truncation [2, 4] [1]

|ψ⟩ =
∑

σ1,··· ,σL
a0,··· ,aL

Aσ1
a0a1
Aσ2
a1a2

· · ·ΨσL
aL−1aL

|σ1 · · ·σL⟩

∑

σj,aj−1,aj

Aσj
aj−1aj

· Aσj
aj−1aj

[∗] = I
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● Model for electron-electron interaction on lattice [1] e.g. graphene
● Fermionic Hamiltonian:

● Lattice size:       spatial and      temporal points
● Parameters: Hopping 𝜅, on-site interaction 
● Integrate out fermions:

● Bosonic action:

● Parameters: Rescaled interaction strength    , fermion matrix 
● Symmetries:  

○ Action: Z2 & space-time translation
○ Fermion matrix: 2𝜋 translation

Equivariant Normalizing Flows for the 
Hubbard Model
Janik Kreit, D. Schuh, E. Berkowitz, L. Funcke, T. Luu, K. Nicoli, M. Rodekamp

Hubbard ModelIntroduction

● Flow from Gaussian distribution       to target distribution       

● Single layer    of Real NVP architecture

● Layer computation: alter only on part of

● Minimize: KL divergence for target distribution 

Normalizing Flows[2]

Equivariant Layers

● Potential barriers: Challenging to tunnel through 

● Solid lines: Strong-coupling limit, exact for      = 2 and      = 1
● Sampler: Hamiltonian Monte Carlo (HMC)
● Ergodicity problems: Alleviated with lower NMD 
● Downside: Decreased acceptance rate

Ergodicity Problems

   

● Method:
○ 20 equivariant & 20 non-equivariant models trained
○ Mean and standard deviation of acceptance rate shown

● Non-equivariant: Comparable acceptance rates after 500k training steps
● Equivariant layers: Computational overhead less than 10%

ComparisonResults

Prior gaussian distribution
0

0

#

Symmetry 
transformations

PeriodicitySpace translation     symmetry

Inverse symmetry 
transformations

Fermion fields Auxiliary scalar fieldsHubbard-Stratonovich
transformation

Normalizing Flow

PeriodicitySpace translation      symmetry

Summary

Outlook
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Method

Not allowed to flow outside
“triangle”

hopping term on-site interaction

Embarrassingly parallel sampling with 
normalizing flows [2]

Lower NMD

Acceptance 
rate decreases

Non-equivariant
Acceptance rate: 75%

Training time: 25h

=

+x

s t

Normalizing Flow

Equivariant layers speed up training![3]

Equivariant
Acceptance rate: 85%
Training time: 16min

Graphene sized lattices [4] 

Honeycomb lattices in 2+1D

Chemical potential

Various observables, e.g. correlators

Coupling 
layer  l

Tilted peaks: Action 
not invariant under 

periodicity symmetry

Reweighting Acceptance rate: 
87%

First time using normalizing flows for 
Hubbard Model

Speed up training with equivariant 
layers

Implementation of symmetries is 
advantage compared to HMC

High acceptance rates across large 
range of hyperparameters

  


