

Collaborative Research Center TRR 257

Institut für Theoretische Teilchenphysik (KIT)

Flavour anomalies and new physics

Ulrich Nierste, Karlsruhe Institute of Technology KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Theoretical Particle Physics (TTP)

www.kit.edu

Heinrich Hertz

1886: discovery of electromagnetic waves

2 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Flavour physics

studies transitions between fermions of different generations.

Gauge eigenstates: SU(2) doublets $(u_{jL}, d_{jL})^T$ with

 $(d_1, d_2, d_3) \equiv (d', s', b')$ for down, strange, and bottom quark $(u_1, u_2, u_3) \equiv (u', c', t')$ for up, charm, and top quark

Quark Yukawa lagrangian of the Standard Model:

$$-L_Y = Y_{jk}^d \,\bar{d}_L^j \,d_R^k \,\frac{h}{\sqrt{2}} + Y_{jk}^u \,\bar{u}_L^j \,u_R^k \,\frac{h}{\sqrt{2}} + \text{h.c.}$$

with two complex 3×3 matrices Y^d and Y^u .

3 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Quark Yukawa lagrangian

$$-L_Y = Y_{jk}^d \,\bar{d}_L^j \,d_R^k \,\frac{h}{\sqrt{2}} + Y_{jk}^u \,\bar{u}_L^j \,u_R^k \,\frac{h}{\sqrt{2}} + \text{h.c.}$$

Replace $h \rightarrow \sqrt{2v}$ with the vacuum expectation value *v*:

$$\rightarrow$$
 Two mass matrices $M^d = Y^d v$ and $M^u = Y^u v!$

Four unitary rotations of $\begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$ and $\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ (for both *L* and *R*) diagonalise *M*^d

and M^{u} and yield the physical quark fields d, s, b and u, c, t.

4 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

CKM matrix

The unitary rotations diagonalising $M^d = Y^d v$ and $M^u = Y^u v$ drop out everywhere except in the coupling of the W boson:

Cabibbo-Kobayashi-Maskawa

In the SM V is the only source of transitions between quarks of different fermion generations.

Bethe Center for Theoretical Physics, Bonn, 27 May 2024, 5

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 0.97 & 0.22 & 0.037 \, e^{-i\gamma} \\ -0.23 & 0.97 & 0.042 \\ 0.0086 \, e^{-i\beta} & -0.042 \, e^{i\beta_s} & 0.999 \end{pmatrix}$$

with $\gamma = 66^\circ$, $\beta = 23^\circ$, $\beta_s = 1.1^\circ$.

The SM quark Yukawa sector involves 10 parameters:

6 quark masses ⇒ flavour-diagonal Yukawa couplings y_q = m_q/v
4 parameters in the unitary CKM matrix V:
3 angles
1 phase
4 express by e.g. V_{us}, V_{cb}, |V_{ub}|, γ.

b physics

b-flavoured hadrons:

 $\begin{array}{l} B_d \sim \bar{b}d, \ B^+ \sim \bar{b}u, \ B_s \sim \bar{b}s, \\ B_c^+ \sim \bar{b}c, \ \Lambda_b \sim bud, \ldots \end{array}$

Dominant *b* decay rates $\propto |V_{cb}|^2 = 1.7 \cdot 10^{-3} \Rightarrow$ total rate Γ_{tot} suppressed

⇒ enhanced branching ratios B(B → X) = Γ(B → X)/Γ_{tot}, sensitivity to rare decays B → X ⇒ probe small couplings or large masses of virtual particles
 ■ large lifetimes, e.g. τ(B_d) ≃ τ(B_s) = 1.5 ps⁻¹, permitting time-dependent studies ⇒ mixing-induced CP asymmetries ⇒ probe phases of couplings

Experiments

Asymmetric B factories: $e^+ - e^-$ colliders with different energies of the e^+ and e^- beams (3.1 GeV vs. 9 GeV). Center-of-mass energy: $\sqrt{s} = M_{\Upsilon(4S)} = 10.58 \text{ GeV}$

Only $B_d \bar{B}_d$ and $B^+ B^-$ pairs produced!

PEP-II collider with BaBar experiment SLAC,USA, 1999-2008

8 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Super-KEKB collider with Belle experiment KEK, Tsukuba, Japan, 1999-2010, Belle II since 2018

Flavour Anomalies and New Physics

Experiments LHCb at CERN, Geneva, Switzerland, since 2010: *pp* collisions

All b-flavoured hadrons are produced: $B_d, \bar{B}_d, B^{\pm}, B_c^{\pm}, \Lambda_b$, and other baryons.

9 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Outline

- Flavour anomalies and Beyond-Standard Model (BSM) physics
- **b** $\rightarrow c\tau\nu$: charged Higgs or leptoquark?
- **b** $\rightarrow s\ell^+\ell^-$: leptoquark or miscalculated QCD?
 - Renormalisation group analysis of leptoquark solutions

Summary and outlook

Flavour anomalies and Beyond-Standard Model (BSM) physics

¹¹ Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Flavour anomalies

Flavour anomalies = deviations between data and SM predictions

BSM mass reach of a given observable:

Assume a particle of mass M mediating the considered transition at tree level with coupling constants equal to 1.

Calculate the largest value of M for which the BSM contribution is larger than the theoretical and experimental uncertainties of the quantity.

Example:
$$B_d - \bar{B}_d$$
 oscillation frequency ΔM_d :

12 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Most sensitive: Flavour-changing neutral current (FCNC) processes.

13 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

BSM mass reach

Meson-antimeson mixing, $K \to \pi \nu \bar{\nu}$:1000 TeVFCNC B decays:50 TeV $b \to c \tau \nu$:4 TeV

⇒ The firm establishment of a flavour anomaly helps for the design of a future hadron collider and could establish a "no-lose" situation for FCC-hh.

14 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

BSM mass reach

Meson-antimeson mixing, $K \to \pi \nu \bar{\nu}$:1000 TeVFCNC B decays:50 TeV $b \to c \tau \nu$:4 TeV

⇒ The firm establishment of a flavour anomaly helps for the design of a future hadron collider and could establish a "no-lose" situation for FCC-hh.

FCC-hh fansIavour physicsflavour physicistsFCC-ee: 10^{13} Z bosons are a perfect b factory!

Flavour anomalies in 2024

$$R(D) = \frac{B(B \to D\tau\nu)}{B(B \to D\ell\nu)}, R(D^*) = \frac{B(B \to D^*\tau\nu)}{B(B \to D^*\ell\nu)}, \text{ where } \ell = e, \mu;$$

deviation to SM prediction between 3.1σ and 4.3σ .

- Too small $B(B \to K^{(*)}\ell^+\ell^-)$, $B(B_s \to \phi\mu^+\mu^-)$ for low values of q^2 , the dilepton invariant mass².
- Belle II: $B(B \rightarrow K \nu \bar{\nu})$ exceeds SM prediction by 2.7 σ .
- LHCb: $A_{CP}(D \rightarrow \pi^+\pi^-)$ exceeds SM expectation by a factor of six.
- $B(B_d \rightarrow K^*\bar{K}^*)/B(B_s \rightarrow K^*\bar{K}^*)$ exceeds SM prediction by a factor of three.

Cabibbo anomaly: V_{us} from $K \to \pi \ell \nu$ inconsistent with both $K^+ \to \ell^+ \nu$ and $|V_{us}|^2 = 1 - |V_{ud}|^2$ with 3σ .

16 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour anomalies in 2024

Obstacles to relate these anomalies to BSM physics:

- SM predictions involve hadronic matrix elements, which are calculated with non-perturbative methods and might have underestimated uncertainties. Still: In all presented flavour anomalies the hadronic uncertainties are subleading in some small parameter such as $\Lambda_{\rm QCD}/m_b$, m_{τ}/m_b , $m_s/\Lambda_{\rm QCD}$,...
- SM predictions depend on CKM elements which are found from fits to data assuming no BSM contamination of the data.

Moreover: Discrepancy with different methods to measure V_{cb} and $|V_{ub}|$.

⇒ The correct way would be to fit the CKM elements together with BSM parameters.

$b \rightarrow c \tau \nu$: charged Higgs or leptoquark?

Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

 $b \to c \tau \nu$

b-flavoured hadron $H_b = B_d, B^+, \Lambda_b$:

$$R(H_c) \equiv \frac{B(H_b \to H_c \tau \nu)}{B(H_b \to H_c \ell \nu)} \text{ with } \ell = e, \mu$$

Predictions involve form factors like $\langle D(\vec{p}_D) | \gamma^{\mu} | B(\vec{p}_B) \rangle$ or $\langle D^*(\vec{p}_D, \epsilon) | \gamma^{\mu} \gamma_5 | B(\vec{p}_B) \rangle$. The dominant form factor drops out in the ratio, remaining form factor ratio suppressed by m_{τ}/m_b .

Lattice gauge theory calculates form factors for $\vec{p}_D = \vec{p}_B = 0$ and a few points with small $D^{(*)}$ velocity.

 $b \to c \tau \nu$

$$R(H_c) \equiv \frac{B(H_b \to H_c \tau \nu)}{B(H_b \to H_c \ell \nu)}$$

New LHCb $R(D^+)$ measurement: Significance of deviation from SM down:

 $3.3\sigma \rightarrow 3.1.\sigma$,

for the form factors used by HFLAV.

Different measurements (from four experiments) agree within normal statistical fluctuations.

20 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

$B \rightarrow D^*$ form factors

Compare

BGL (Boyd, Grinstein, Lebed 1995):

global fit by Gambino, Jung, Schacht in 2019 to all available calculations and data in $B \to D^* \ell \nu$ with light leptons $\ell = e, \mu$. Phys. Lett. B 795 (2019) 386

HQET (using expansions in $\Lambda_{\text{OCD}}/m_{c,b}$):

global fit by Iguro, Kitahara and Watanabe in 2022 to all available calculations and data (including q^2 shapes) in $B \to D^* \ell \nu$ with light leptons $\ell = e, \mu$. arXiv:2210.10751 Fermilab/MILC (2021):

first lattice calculation employing $q^2 \neq q_{\text{max}}^2$.

Eur. Phys. J. C 82 (2022) 1141, Eur.Phys.J.C 83, 21 (2023).

21 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

$B \rightarrow D^*$ form factors

DM (Dispersive Matrix approach, Rome lattice group): uses Fermilab/MILC data and Rome calculation of susceptibility χ , employs analyticity and unitarity constraints to derive two-sided bounds on form factors.

> G. Martinelli, S. Simula, and L. Vittorio, Phys. Rev. D 104 (2021) 094512, Eur. Phys. J. C 82 (2022) 1083, JHEP 08 (2022) 022. G. Martinelli, M. Naviglio, S. Simula, and L. Vittorio, Phys. Rev. D 106 (2022) 093002.

With DM method find $R(D^*)$ compatible with Standard Model prediction and furthermore $|V_{cb}|$ from $B \to D^* \ell \nu$ consistent with $|V_{cb}|$ from inclusive $B \to X_c \ell \nu$ decays.

$B \rightarrow D^*$ form factors vs new physics P = H

Next slides: confront all four form factor predictions with new data on the fraction $F_L^{D^*,\text{light}}$ of longitudinally polarized D^* in $B \to D^* \ell \nu$ and the forward-backward asymmetries A_{FB}^e and A_{FB}^{μ}

Belle, 2301.07529; Belle II, talk by Chaoyi Lyu at ALPS, March 2023

Discriminating $B \rightarrow D^* \ell \nu$ form factors via polarization observables and asymmetries

Fedele, Blanke, Crivellin, Iguro, UN, Simula, Vittorio, arXiv:2305.15457.

23 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

24 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Predictions for $F_L^{D^*,\text{light}}$ and $A_{\text{FB}}^{e,\mu}$

25 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Effective BSM operators

Nice: We can describe all types of new physics in terms of effective four-quark operators:

$$O_{V}^{L} = \bar{c}_{L}\gamma^{\mu}b_{L}\bar{\tau}_{L}\gamma_{\mu}\nu_{\tau L},$$

$$O_{S}^{R} = \bar{c}_{L}b_{R}\bar{\tau}_{R}\nu_{\tau L},$$

$$O_{S}^{L} = \bar{c}_{R}b_{L}\bar{\tau}_{R}\nu_{\tau L},$$

$$O_{T} = \bar{c}_{R}\sigma^{\mu\nu}b_{L}\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{\tau L}.$$

Fit the corresponding coefficients $C_V^L, C_S^{R,L}, C_T$ to data.

Blanke, Crivellin, de Boer, UN, Nisandzic, Kitahara, Phys. Rev. D 100(2019) 3, 035035

Iguro, Kitahara, Watanabe, arXiv:2210:10751, arXiv:2405:06062

26 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

No BSM scenario has a measurable impact on $F_{I}^{D^*,\text{light}}$!

Fedele, Blanke, Crivellin, UN, Iguro, Simula, Vittorio, Phys. Rev. D 108 (2023) 5, 5

27 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

$R(D^{(*)})$ with best form factors

Deviation from SM prediction:

4.3σ

using also new Belle/LHCb average $F_L^{D^*,\tau} = 0.49 \pm 0.05$

Good fits (pulls $\geq 4.0\sigma$) for all tree-level BSM scenarios, including charged-Higgs exchange. Iguro, Kitahara, Watanabe, arXiv:2405.06062

28 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

BSM explanations of $b \to c \tau \bar{\nu}$ data

Charged Higgs boson: was known to be sensitive to effects of a hypothetical charged Higgs boson since 1992.

Grzadkowski, Hou, Phys. Lett. B 283 (1992) 427

Leptoquarks:

- bosons with quark-lepton coupling
- appear in SU(4) gauge theories, where lepton number is the fourth colour

29 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

$b \rightarrow s\ell^+\ell^-$: leptoquark or miscalculated QCD?

30 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

$b \to s\ell^+\ell^- \text{ and } b \to s\nu\bar{\nu}$

Belle II has measured $B(B \rightarrow K \nu \bar{\nu}) 2.7\sigma$ above the SM prediction. arXiv:2311.14647

persist since 2013

$$B(B \to K^{(*)}\ell^+\ell^-),$$

$$B(B_s \to \phi\mu^+\mu^-) \text{ lower}$$

than SM predictions for

$$1.1 \text{ GeV} \le q^2 \le 8 \text{ GeV}.$$

$$u_{\ell} \text{ and } \ell \text{ form an SU(2) doublet } L = \begin{pmatrix} \nu_{\ell} \\ \ell \end{pmatrix}$$

 \Rightarrow Connection between the two anomalies.

31 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

from Patrick Koppenburg's web page <u>https://www.nikhef.nl/~pkoppenb/anomalies.html</u> Hints of $B(B \rightarrow K^{(*)}e^+e^-) \neq B(B \rightarrow K^{(*)}\mu^+\mu^-)$ were not confirmed after 2022 reanalysis of LHCb data.

32 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

At the energy scale of a *B* decay, $m_b \sim 5 \text{ GeV}$, interactions mediated by much heavier particles appear point-like.

Concept: Derive an effective hamiltonian with four-fermion operators:

$$H = -\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} \sum_{\ell,\ell'=e,\mu,\tau} \left[C_9^{\ell\ell'} O_9^{\ell\ell'} + C_{10}^{\ell\ell'} O_{10}^{\ell\ell'} \right] + \dots$$

The couplings of the effective operators are called Wilson coefficients and are calculated from the Feynman diagrams. We are interested in

 $O_{9}^{\ell\ell'} = rac{lpha}{4\pi} [ar{s}_L \gamma^\mu b_L] [ar{\ell} \gamma_\mu \ell'],$

$$O_{10}^{\ell\ell'} = rac{lpha}{4\pi} [ar{s}_L \gamma^\mu b_L] [ar{\ell} \gamma_\mu \gamma^5 \ell']$$

 α is the QED coupling (Sommerfeld constant).

33 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Four-fermion interaction as in Fermi theory of beta decay:

Ulrich Nierste

A BSM explanation of $b \to s\ell^+\ell^-$ data require contribution to $C_9^{\mu\mu} \sim C_9^{ee}$ of order $-0.25 \cdot C_9^{\text{SM}}$.

Claim: enhancement of charm loop could fake BSM signal. Test this by fitting for q^2 -dependence of C_9^{BSM} :

Bordone, Isidori, Mächler, Tinari, arXiv: 2401.18007

34 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Leptoquark explanation

SU(3) triplet leptoquark. Mass < 35 GeV for couplings < O(1).

Contributes to both $C_9^{\ell\ell}$ and $C_{10}^{\ell\ell}$. Effects in $C_{10}^{\mu\mu}$ will affect $B(B_s \rightarrow \mu^+\mu^-)$ as well. O.k. with LHCb data, less so with CMS data.

One cannot use the same leptoquark for $b \to se^+e^-$ and $b \to s\mu^+\mu^-$, because this leads to unacceptably large $\mu \to e$ conversion.

 \Rightarrow postulate one leptoquark S_3^{ℓ} per flavour $\ell = e, \mu, \tau$.

But observed approximate lepton flavour universality requires $M_{S_3^e} \sim M_{S_3^{\mu}}$ and also similar couplings of S_3^e and S_3^{μ} .

Renormalisation group analysis of leptoquark solutions

³⁶ Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Mass gap

Flavour anomalies are usually explained by postulating a new particle with mass in the TeV range *ad-hoc*. The other particles of a reasonable UV completion are heavier.

Leptoquarks: Motivation in models with quark-lepton unification, such as $SU(4)_c$ models à la Pati-Salam. Heavy gluons (which are vector-like leptoquarks) must have masses above 1000 TeV to comply with bounds on $B(K_L \rightarrow \mu e)$.

Mass gap between the LQ masses as and the scale of the UV completion:

⇒ study low-energy properties of LQ couplings without knowing details of the UV model with renormalisation group (RG) equations.

Prototype example: Probing SM gauge unification at GUT scale only involves SM RG equations. GUT masses only enter next-to-leading order corrections.

Consider lepton number conservation $y_{3\,ij}^a \propto \delta_{aj}$ to suppress LFV processes like $\mu \rightarrow e$ conversion.

Infrared fixed-point

RG beta functions are known for generic BSM theories. Machacek, Vaughn, 1983, 1984

At fixed points of the RG equations the beta functions are zero. Quasi-fixed point: The beta functions of the LQ couplings y_{3ij}^a are zero, while the beta function of the SM couplings are not.

Infrared fixed point: $y_{3 ij}^{a}$ at the low scale probed in flavour or collider experiments is predicted.

Infrared fixed-point for S_3^{ℓ} scenario

Result for S_3^{ℓ} leptoquarks:

Fedele, UN, Wüst, JHEP 11 (2023) 131, Bachelor thesis F.Wüst

Infrared fixed point:

y^{e}_{321}	y^{e}_{331}	y^{μ}_{322}	y^{μ}_{332}	$y^{ au}_{323}$	$y^{ au}_{333}$
0.760	0.189	0.191	0.759	0.639	-0.452
0.189	0.760	0.759	0.191	0.639	-0.452

and two more found from permutations of (e, μ, τ) . Partial lepton-flavour universality (LFU) as an emerging feature! The third generation comes with opposite sign for $C_{9,10}^{\ell\ell}$. Prediction for $b \to s\tau^+\tau^-$! LFU needs three copies of S_3^{ℓ} , with just two S_3^{ℓ} find opposite signs.

Infrared fixed-point for (S_1^{ℓ}, S_3^{ℓ}) scenario **P**

Bizarre: *s*-*e* coupling converges to *b*- μ coupling and *b*-*e* coupling converges to s- μ coupling!

41 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Infrared fixed-point (S_1^{ℓ}, S_3^{ℓ}) scenario

The infrared fixed point for the S_1^{τ} coupling is smaller that the coupling inferred from $b \rightarrow c\tau\bar{\nu}$ data (for S_1^{τ} masses allowed by collider searches). Landau pole:

⇒ upper bound on scale of quark-lepton unification:

$$M_{\rm QLU} \lesssim 10^{11}\,{\rm GeV}$$

42 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Prediction for $B \to K^{(*)} \nu \bar{\nu}$

For the fixed-point solution for the S_3^{ℓ} couplings and the S_1^{ℓ} coupling fixed from the $b \to c\tau\nu$ anomaly we find a 10% enhancement of $B(B \to K\nu\bar{\nu})$ and $B(B \to K^*\nu\bar{\nu})$ from the S_1^{ℓ} contribution, detectable by Belle II.

43 Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Summary and outlook

Bethe Center for Theoretical Physics, Bonn, 27 May 2024,

Flavour Anomalies and New Physics

Summary and outlook

- Quark flavour physics: # data points \gg # of theorists
- Current flavour anomalies probe BSM physics with particle masses in the multi-TeV range.
 - \Rightarrow instrumental to justify and design future hadron colliders
- No clear direction, different flavour anomalies require different virtual particles.
- $b \to c \tau \bar{\nu}$:
 - Form factors better known thanks to new polarisation measurements in
 - $b \rightarrow c \ell \bar{\nu}$ polarisation data.
 - Charged-Higgs and various leptoquark scenarios have pulls of 4.0σ compared to SM.
 - Future: D^* and au polarisation data

Summary and outlook

- $\square b \to s\ell^+\ell^-:$
 - Data show no evidence for a miscalculated charm contribution.
 - Data show approximate LFU between e and μ . Popular S_3 leptoquark

needs several copies with lepton number conservation

- Future: CP asymmetries, free of hadronic uncertainties
- Leptoquark models:
 - embedding into theory of quark-lepton unification requires a mass gap, opportunity to use RG methods
 - $S_{3}^{\ell\ell}$ couplings have IR fixed point with equal contributions to two of the three

 $C_{9,10}^{\ell\ell}$ coefficients, while the third one has opposite sign.

 \Rightarrow Two-generation LFU emerges dynamically.