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The Two-Body Problem

Gravitational wave physics requires high precision: need to solve

Rµν −
1
2

Rgµν = Tµν .

Complicated: spin, tidal effects, radiation, modified theories...

Ignores merger, but gets us quite far. Can be computed with
amplitudes.
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Amplitudes are Quantum

Solving the EFE’s is hard. Can independently compute amplitudes
— but they are quantum objects

= + + +

+ + + + · · ·

Classical physics: ℏ → 0 implies exponentiation.

We could compute all the diagrams, but that’s a lot of work! Can we
do better?
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The Eikonal

One known example of a better way: the eikonal

e
i
ℏχ(b,s) − 1 ∼ + +

+ + + + · · ·

= i
∫

d̂4qδ̂(2p1 · q)δ̂(2p2 · q)e−iq·bM4[q2, s]

Cleverly packaged all the classical diagrams into a phase:

χ = χ0 + χ1 + χ2 + · · · , where χi ∼ O(G1+i)

Only well established for scalars, conservative.

Let’s look closely at the eikonal for clues.
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Quantum to Classical

Let’s expand amplitudes into fragments

Mn,L = G1+Lℏ−k (M(0)
n,L + ℏM(1)

n,L + ℏ2M(2)
n,L + · · · )

ℏ → 0 limit looks bad for k > 1... Cancellations must occur!We get
the relationship

M̃4,0 =
χ0

ℏ
, M̃4,1 = i

χ2
0

2ℏ2 +
χ1

ℏ
, M̃4,2 =

χ3
0

6ℏ3 + i
χ0χ1

ℏ2 +
χ2

ℏ
, · · ·

Infinite set of relations among fragments in the classical limit

M̃(0)
4,1 = i

(
M̃(0)

4,0

)2

2
, M̃(0)

4,2 =

(
M̃(0)

4,0

)3

6
, M̃(1)

4,2 = iM̃(0)
4,0M̃

(1)
4,1 · · ·

Where do these come from?

Next: Minimal Uncertainty 5 / 13



Quantum to Classical

Let’s expand amplitudes into fragments

Mn,L = G1+Lℏ−k (M(0)
n,L + ℏM(1)

n,L + ℏ2M(2)
n,L + · · · )

ℏ → 0 limit looks bad for k > 1... Cancellations must occur!We get
the relationship

M̃4,0 =
χ0

ℏ
, M̃4,1 = i

χ2
0

2ℏ2 +
χ1

ℏ
, M̃4,2 =

χ3
0

6ℏ3 + i
χ0χ1

ℏ2 +
χ2

ℏ
, · · ·

Infinite set of relations among fragments in the classical limit

M̃(0)
4,1 = i

(
M̃(0)

4,0

)2

2
, M̃(0)

4,2 =

(
M̃(0)

4,0

)3

6
, M̃(1)

4,2 = iM̃(0)
4,0M̃

(1)
4,1 · · ·

Where do these come from?

Next: Minimal Uncertainty 5 / 13



Minimal Uncertainty

Amplitudes are quantum – uncertainty built in:

(∆ψA)2(∆ψB)2 ≥ 1
4
| ⟨ψ|[A,B]|ψ⟩ |2,

where (∆ψA)2 = ⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2 is the variance.

Classical physics

(∆ψA)2 ≃ 0.

The relations among fragments are zero variance relations: they
minimise quantum uncertainty. Let’s see how!
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Zero Variance Relations

Suppose A = S†OAS. Vanishing variance implies

⟨S†OAOAS⟩ ∼ ⟨S†OAS⟩ ⟨S†OAS⟩

Expanding S = 1 + iT , we get at leading order

⟨OAOAT ⟩ − ⟨T †OAOA⟩ ∼ ⟨T †OA⟩ ⟨OAT ⟩ − ⟨OAT ⟩ ⟨OAT ⟩+ similar

Amplitudes are defined via ⟨T ⟩ ∼ Mδ(4) (
∑

i pi) and so we get

⟨OAOA⟩ ·Mq,L+1 ∼ ⟨OA⟩ ·Mr ,L ⟨OA⟩ ·Ms,L

Valid with spin, any number of legs/loops, conservative (q = r = s)
and radiative (r ̸= s).

Motivation beyond the eikonal.
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Eikonal state

Start with a two-particle state

|Ψ⟩ =
∫

p1,p2,a1,a2

|p1,a1;p2,a2⟩

We time-evolve with the S-matrix (spin implicit)

S |Ψ⟩ = |Ψ⟩+
∫

p′
1,p

′
2,q

|p′
1,p

′
2⟩ × δ̂(2p′

1 · q − q2)δ̂(2p′
2 · q + q2)iA4(s, t ,m2

i )

We can invert the eikonal

δ̂(2p̃1 · q)δ̂(2p̃2 · q)iA4(s, t ,m2
i ) =

∫
d4x eiq·x

{
(exp (iχ(x⊥))− 1)

}
where xµ⊥ = Πµν(p̃1, p̃2)xν and

X̃ = eq·Y Xe−q·Y , Yµ =
1
2

∂

∂p′µ
2

− 1
2

∂

∂p′µ
1
.
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Stationary Phase Conditions

We can therefore write

S |Ψ⟩ =
∫

p′
1,p

′
2

|p′
1,p

′
2⟩ ×

∫
d4qd4x eiq·xeq·Y exp

(
iχ(x⊥)/ℏ

)
e−q·Y

For ℏ → 0, we find two stationary phase conditions

Qµ = − ∂χ̃

∂xµ
, Xµ = bµ − ∂χ̃

∂Qµ
.

Qµ is the classical impulse while Xµ picks up iterations.

The final state is then

S |Ψ⟩ =
∫

p′
1,p

′
2

|p′
1,p

′
2⟩ × eiQ·X eQ·Y exp

(
iχ(x⊥)

)
e−Q·Y .

Note that the translation changes the scattering plane and induces an
infinite expansion of x⊥ in G. But what about radiation?
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Final State With Radiation

Coherent states automatically minimise uncertainty:

a† |α⟩ = α |α⟩ =⇒ (∆αx̂)2 = (∆αp̂)2 =
ℏ
2

in QFT, for us,

|p1,p2, α⟩ = e− 1
2

∫
k |α(k)|

2
exp

(∫
k
α(k)a†

η(k)
)
|p1,p2;0⟩

Compute lowest order to fix α ∼ M5, motivating the proposal

S |ψ⟩ =
∫

pi ,FT
ξb′

1
exp

(
i
ℏ
χ(x⊥)

)b′
1

b1

exp

(∫
on-shell

M5a†
)b1

a′
1

|p′
1,a

′
1,p

′
2⟩

This is our proposal for the final classical state including spin and
radiation. Needs lots of testing!

How do we get observables out?
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Observables in the Classical Limit

The change in some observable O1 ∈ H1 due to scattering is

∆O1 = ⟨Ψ|S†Ô1S|Ψ⟩ − ⟨Ψ|Ô1|Ψ⟩ = ⟨Ψ|S†[Ô1,S]|Ψ⟩ .

Applying our eikonal state then gives

⟨Ψ|S†[Ô1,S]|Ψ⟩ =
〈〈

e−iχ̃†+
∫
M5a[O(p1),eiχ̃+

∫
M5a†

] +O(Q)

〉〉
For large spin and zero radiation we have by BCH

[O,eiχ/ℏ] = eiχ/ℏ
(
−{⟨O⟩ , ⟨χ̃⟩} − 1

2
{⟨χ̃⟩ , {⟨O⟩ , ⟨χ̃⟩}}+ · · ·

)
where we have used {·, ·} = i

ℏ [·, ·].

Find a nice formula to compute observables with spin

∆O1 = O1 (Q)− {O1 (p1) , χ̃} −
1
2
{χ̃, {O1 (p1) , χ̃}}+ · · · ,
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Testing the Proposal

Test: compute non-trivial results. We find

• For O1 = P, we find ∆pµ1 = Qµ up to O(G2), including radiation
reaction at O(G3)

∆pµ1,RR = i
〈〈
M̃∗

5(x1, x2)∂
µ
1 M̃5(x1, x2)

〉〉
.

• For O1 = C in Yang-Mills, we compute the change in
colour-charge to one-loop

∆ca = −{ca, χ̃} − 1
2
{χ̃, {ca, χ̃}}+ · · ·

• For O1 = W, we find the linear spin-kick up to one-loop O(G2, s1)

∆sµ1 = sµ1 (∆p1)−
{

sµ1 , χ̃
}
− 1

2
{χ̃, {sµ1 , χ̃}}+ · · ·

The “direct” term can be traced to a boost, the rest rotation.
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Where next

• More checks needed, refine proposal,

• Tidal effects, Higher dimensional operators

• Higher orders in G: tail effects, memory etc

• Bound states

• Combine spin + radiation

• Extract Radiation Reaction beyond O(G3)

Thank you for listening.

Any Questions?
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	The Main Question

