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-® THE Two-Boby PROBLEM

Gravitational wave physics requires high precision: need to solve

1
R, — ERQIW =Tu .

Complicated: spin, tidal effects, radiation, modified theories...

Ignores merger, but gets us quite far. Can be computed with
~ amplitudes.
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AMPLITUDES ARE QUANTUM

Solving the EFE’s is hard. Can independently compute amplitudes
— but they are quantum objects
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Classical physics: i — 0 implies exponentiation.

We could compute all the diagrams, but that’s a lot of work! Can we
do better? @
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THE EIKONAL

One known example of a better way: the eikonal
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THE EIKONAL

One known example of a better way: the eikonal

=i / a*qé(2p1 - 9)5(2p2 - @) TP Mu[q?, 5]
Cleverly packaged all the classical diagrams into a phase:
X=Xo+X1+x2+--, Wwherey;~O(G")

Only well established for scalars, conservative.

Let’s look closely at the eikonal for clues.
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QUANTUM TO CLASSICAL

Let’'s expand amplitudes into fragments
Mn,L _ G1+Lh—k(M£’?2 + hMg’Z + h2M£)?Z + - )

h — 0 limit looks bad for kK > 1... Cancellations must occur!
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-® QUANTUM TO CLASSICAL

Let’'s expand amplitudes into fragments
Mn,L _ G1+Lh—k(M£’?2 + hMg’Z + h2M£)?Z + - )

h — 0 limit looks bad for k > 1... Cancellations must occur!We get
the relationship

2 3
~ X0 ~ - X0 X1 ~ Xo - X0X1 X2
./\/l470 5 Ma 4 572 + o My 613 + h2 + n

Infinite set of relations among fragments in the classical limit
2 3
~(0) ~(0)
MO — ,-( 470) MO _ (M4,0) M) A (0) x4 (1)
41 = > ) 42 — 6 ) 42 — 4,07V'4 1
Where do these come from?
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MINIMAL UNCERTAINTY

Amplitudes are quantum — uncertainty built in:
1
(AyAY(ByB)* > 2| (VIIA, Bllv) %

where (A, A)2 = (| A2|yh) — (| Alyp)? is the variance.
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MINIMAL UNCERTAINTY

Amplitudes are quantum — uncertainty built in:
1
(AyA)?(AyB)? > 2! (WIIA, Bl[) 2,
where (A, A)2 = (| A2|yh) — (| Alyp)? is the variance.

Classical physics

(AyA)? ~ 0.
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MINIMAL UNCERTAINTY

Amplitudes are quantum — uncertainty built in:
1
(AyA)?(AyB)? > 2! (WIIA, Bl[) 2,
where (A, A)2 = (1| A2|y)) — (| Aly)? is the variance.

Classical physics

(AyA)? ~ 0.

The relations among fragments are zero variance relations: they
minimise quantum uncertainty. Let’s see how!
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ZERO VARIANCE RELATIONS

Suppose A = ST04S. Vanishing variance implies

(STOAO0AS) ~ (STO4S) (STOAS)
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ZERO VARIANCE RELATIONS

Suppose A = ST0,4S. Vanishing variance implies
(8104048) ~ (STO4S) (STOAS)
Expanding S =1 + /T, we get at leading order
(OAOAT) — (TTOAO0R) ~ (TTOQ) (OAT) — (OaT) (OaT) + similar
Amplitudes are defined via (T) ~ MJ™ (3, p;) and so we get
(0a04) - Mg 111~ (Oa) - My 1 (On) - Mg

Valid with spin, any number of legs/loops, conservative (q = r = s)
and radiative (r # s).

Motivation beyond the eikonal. ®

OQ ‘\\ ) " b‘

%9 NEXT: EIKONAL STATE [CYO) ® =



-® EIKONAL STATE

Start with a two-particle state

V) :/ |p1, a1; po, @)
P1,P2,a1,a2

We time-evolve with the S-matrix (spin implicit)

S|v) = |v) +/ P}, Ph) % 6(2p) - g — G7)5(2P% - G + qP)ida(s, t, m?)
P1/7Péyq
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EIKONAL STATE

Start with a two-particle state

V) :/ |p1, a1; po, @)
P1,P2,a1,a2

We time-evolve with the S-matrix (spin implicit)
S|V) = W) + / |05, p2) x (20 - g — q7)3(2p5 - G + G)iAa(s, t, m?)
[ e}

We can invert the eikonal
5(2p1 - 9)5(2P2 - Q)iAs(s, t, m?) = / d*x e"“{ (exp (ix(xL)) — 1) }
where x| = 1" (P4, p2)x” and

Y — a8Y Xao—aY ___ <Y =
\\o X =e7"Xe s n 26,0/2# > (()\'pfl'u’ o
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STATIONARY PHASE CONDITIONS

We can therefore write

SV = [ Iphph)x [ atqatx érer Y exp (ix(x)/n ) oo
P Ps
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STATIONARY PHASE CONDITIONS

We can therefore write
SV = [ Iphph)x [ atqatx érer Y exp (ix(x)/n ) oo
P Ps

For h — 0, we find two stationary phase conditions

855 wo__ 85{
ox,’ Xi=b oQ,’

Q, is the classical impulse while X* picks up iterations.

Q=

The final state is then

S|v) :/ 105, ) x €9 X exp <iX(XL)) e .
Py P,

infinite expansion of x, in G. But what about radiation? o
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Note that the translation changes the scattering plane and induces an Q
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FINAL STATE WITH RADIATION

Coherent states automatically minimise uncertainty:

dloy=aln) = (BukP=(BbP =y
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FINAL STATE WITH RADIATION

Coherent states automatically minimise uncertainty:

dloy=aln) = (BukP=(BbP =y

N

in QFT, for us,

|p1, P2, ) = e 2 Sl exp (/k oz(k)élL(k)) |p1, p2; 0)

Compute lowest order to fix « ~ Ms, motivating the proposal

b, by

i
sl = [ _een(ja00) ew( [ Meal) lpi.hpy
pi, FT b on-shell aj
This is our proposal for the final classical state including spin and @
radiation. Needs lots of testing!
- How do we get observables out? O
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OBSERVABLES IN THE CLASSICAL LIMIT

The change in some observable Q¢ € #1 due to scattering is

A0y = (V[STO; S|W) — (W[ 04 |W) = (W|ST[O4, S]W) .
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OBSERVABLES IN THE CLASSICAL LIMIT

The change in some observable Q¢ € #1 due to scattering is
A0y = (V[ST01S|W) — (V|04 |W) = (W|ST[O1, S]|V) .

Applying our eikonal state then gives

WIST[01, S]1v) = (o ¥+ M0 pr). &5 4] 1 0(@) )
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OBSERVABLES IN THE CLASSICAL LIMIT

The change in some observable Q¢ € #1 due to scattering is
A0y = (V[ST01S|W) — (V|04 |W) = (W|ST[O1, S]|V) .
Applying our eikonal state then gives

WIST[01, S]1v) = (o ¥+ M0 pr). &5 4] 1 0(@) )

For large spin and zero radiation we have by BCH

0" = /" (~{(0). (0} - 3{(R) . L0}, (DN + - )

where we have used {-,-} = %[.7 ]1.
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OBSERVABLES IN THE CLASSICAL LIMIT

The change in some observable Q¢ € #1 due to scattering is
A0y = (V[ST01S|W) — (V|04 |W) = (W|ST[O1, S]|V) .

Applying our eikonal state then gives
(V|ST[04, S]|V) = <<ebmf Me3[Q(py ), XS M| 4 @(Q)>>

For large spin and zero radiation we have by BCH

0" = /" (~{(0). (0} - 3{(R) . L0}, (DN + - )

where we have used {-,-} = %[.7 ]1.

Find a nice formula to compute observables with spin

-r
- 1 - Q
A@12@1(O)—{@1(p1),X}—§{X7{@1(p1)aX}}+"'7 o
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-® TESTING THE PROPOSAL

Test: compute non-trivial results. We find

e For Oy =P, we find Ap{ = Q" up to O(G?), including radiation
reaction at O(G®)

APy pr = i<</\?l§(x1,x2)84‘/\3t5(x1,x2)>>.

e For 01 = C in Yang-Mills, we compute the change in
colour-charge to one-loop

AGT= (¢, 1) — (T A% XN} + -

e For Oy = W, we find the linear spin-kick up to one-loop O(G?, s1)

®

Asl = st (apy) — {8 X} — {X, {s{. XM+~ )

\\Q The “direct” term can be traced to a boost, the rest rotation. B
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WHERE NEXT

More checks needed, refine proposal,
Tidal effects, Higher dimensional operators
Higher orders in G: tail effects, memory etc
Bound states

Combine spin + radiation

Extract Radiation Reaction beyond O(G®)

Thank you for listening.

Any Questions?
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	The Main Question

