Bonn Fall HEP Meeting 2024: Embracing Diversity in High Energy Physics

Probing the QGP: Recent Advances in Heavy-Flavour Physics with ALICE at the LHC

Samrangy Sadhu University of Bonn

What is Quark-Gluon Plasma (QGP)?

At extreme temperature and energy density, **QCD** predicts a phase transition from hadronic matter to a deconfined partonic matter, the Quark-Gluon Plasma (QGP)

[MeV] 200 Temperature T 100

RHIC, LHC : high temperature, low baryon density **FAIR** : moderate temperature, high baryon density

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

Schematic picture of the time evolution of Heavy-ion collisions :

Schematic picture of the time evolution of Heavy-ion collisions :

Schematic picture of the time evolution of Heavy-ion collisions :

Initial state effects:

- Gluon saturation
- Modification of PDFs

Schematic picture of the time evolution of Heavy-ion collisions :

Initial state effects:

- Gluon saturation
- Modification of PDFs

Schematic picture of the time evolution of Heavy-ion collisions :

Initial state effects:

- Gluon saturation
- Modification of PDFs

In medium effects:

- Energy loss
- Collectivity

Schematic picture of the time evolution of Heavy-ion collisions :

Initial state effects:

- Gluon saturation
- Modification of PDFs

In medium effects:

- Energy loss
- Collectivity

Schematic picture of the time evolution of Heavy-ion collisions :

Initial state effects:

- Gluon saturation
- Modification of PDFs

In medium effects:

- Energy loss
- Collectivity

- Coalescence: combination of quarks close in phase space
- Fragmentation: break up of colour strings connecting partons

Heavy quarks: a unique probe of QGP

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion collisions -> perturbative QCD can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q = 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of QGP medium

Charm $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ *t*_c ~ 0.08 fm/c

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \sim 0.03 \, \text{fm/c}$

• Energy loss of partons traversing the QGP is expected to occur via both inelastic (radiative energy loss via medium-induced gluon radiation) and elastic (collisions with the QGP constituents) processes.

> Therefore, heavy quarks act as important tools for characterizing the medium formed in heavy-ion collisions.

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

p-Pb collisions:

- Study cold nuclear matter (CNM) effects
- Possible collective effects ?

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

p-Pb collisions:

- Study cold nuclear matter (CNM) effects
- Possible collective effects ?

Pb-**Pb** collisions:

 Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

Possible modification of the quark hadronization

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

- **p**-Pb collisions:
- Study cold nuclear matter (CNM) effects
- Possible collective effects ?

Production of heavy-quark hadrons can be calculated using the factorization approach:

Pb-**Pb** collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

Possible modification of the quark hadronization

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

- **p**-Pb collisions:
- effects
- Possible collective effects ?

Production of heavy-quark hadrons can be calculated using the factorization approach:

$$\frac{\mathrm{d}\sigma^{\mathrm{H}_{c}}}{\mathrm{d}\sigma^{\mathrm{H}_{c}}_{p_{\mathrm{T}}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = \Pr(x_{1},\mu_{F}) \cdot \Pr(x_{2},\mu_{F}) \otimes \underbrace{\frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p^{c}_{\mathrm{T}}}(x_{1},x_{2};\mu_{R},\mu_{F})}_{\operatorname{Parton distribution functions (PDFs)}} \otimes \underbrace{\frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p^{c}_{\mathrm{T}}}(x_{1},x_{2};\mu_{R},\mu_{F})}_{\operatorname{Fragmentation function function (hadronisation)}} \otimes \underbrace{D_{\mathrm{c}\to H_{c}}(z=\frac{p_{\mathrm{H}_{c}}}{p_{c}},\mu_{F})}_{\operatorname{Fragmentation function (hadronisation)}}$$

Study cold nuclear matter (CNM)

Pb-**Pb** collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

Possible modification of the quark hadronization

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

- **p**-Pb collisions:
- effects
- Possible collective effects ?

Production of heavy-quark hadrons can be calculated using the factorization approach:

$$\frac{\mathrm{d}\sigma^{\mathrm{H}_{c}}}{\mathrm{d}\sigma^{\mathrm{H}_{c}}_{p_{\mathrm{T}}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = \operatorname{PDF}(x_{1},\mu_{F}) \cdot \operatorname{PDF}(x_{2},\mu_{F}) \otimes \underbrace{\frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p^{c}_{\mathrm{T}}}(x_{1},x_{2};\mu_{R},\mu_{F})}_{\mathbf{Parton\ distribution\ functions\ (PDFs)}} \otimes \underbrace{\frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p^{c}_{\mathrm{T}}}(x_{1},x_{2};\mu_{R},\mu_{F})}_{\mathbf{Fagmentation\ function\ function\ section\ (pQCD)}} \otimes \underbrace{D_{\mathrm{c}\to H_{c}}(z=\frac{p_{\mathrm{H}_{c}}}{p_{c}},\mu_{F})}_{\mathbf{Fagmentation\ funct\ function\ funct\ function\ funct\ funct\$$

• Study cold nuclear matter (CNM)

Pb-**Pb** collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

Possible modification of the quark hadronization

section (pQCD)

ion (hadronisation)

Assumed to be universal across **collision systems**

Two important probes

Open heavy flavour: Charm hadrons (D⁰, D[±], ...), bottom hadrons (B^0 , B^{\pm} ,...)

- Both pillars evolved and extended significantly over the years

Quarkonia: charmonium $(c\overline{c})$: J/ ψ , ψ ',..., bottomonium $(b\overline{b})$: Υ ...

Probe of deconfinement & QGP medium temperature

Both probe medium transport properties via, e.g. the collective expansion of the QGP

Two important probes

- Both pillars evolved and extended significantly over the years

Both probe medium transport properties via, e.g. the collective expansion of the QGP

Two important probes

This talk

- Both pillars evolved and extended significantly over the years

Both probe medium transport properties via, e.g. the collective expansion of the QGP

The ALICE detector (Run 2)

Results in pp collisions

Run:285602 Timestamp:2018-04-30 08:13:04(UTC) Colliding system:p-p Energy: 13 TeV

Cross section of D mesons

JHEP 12 (2023) 086

Prompt charm hadron : hadrons from c-quark hadronisation or from the decay of excited charm hadrons

 p_T-differential cross sections described by pQCD calculations (FONLL, kTfactorization, GM-VFNS) - Good agreement within uncertainties

> FONLL : JHEP 05 (1998) 007, JHEP 10 (2012) 137 kT-factorization : Phys. Rev. D 104 (2021) 094038 **GM-VFNS**: JHEP 12 (2017) 021, Nucl. Phys. B 925 (2017) 415–430

Prompt Λ_c^+ /**D**⁰ ratio : Questioning the Universality

Measurements of the baryon-to-meson yield ratio -> p_T -dependent enhancement of Λ_c^+/D^0 ratio in pp w.r.t. e⁺e⁻

LEP: (0.113 ± 0.013 ± 0.006)

EPJC 75 (2015) 19

Prompt Λ_c^+ /**D**⁰ **ratio : Questioning the Universality**

Measurements of the baryon-to-meson yield ratio $\rightarrow p_T$ -dependent enhancement of Λ_c^+/D^0 ratio in pp w.r.t. e+e-

LEP: $(0.113 \pm 0.013 \pm 0.006)$

EPJC 75 (2015) 19

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)

Measurements of the baryon-to-meson yield ratio -> p_T -dependent enhancement of Λ_c^+/D^0 ratio in pp w.r.t. e⁺e⁻

LEP: $(0.113 \pm 0.013 \pm 0.006)$

EPJC 75 (2015) 19

Prompt Λ_c^+ **/D**⁰ ratio : Questioning the Universality

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)

Different hadronization mechanisms proposed:

Measurements of the baryon-to-meson yield ratio $\rightarrow p_T$ -dependent enhancement of Λ_c^+/D^0 ratio in pp w.r.t. e+e-

Prompt Λ_c^+ /**D**⁰ ratio : Questioning the Universality

LEP: $(0.113 \pm 0.013 \pm 0.006)$

EPJC 75 (2015) 19

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)

Prompt Λ_c^+ /D^o ratio : Questioning the Universality

LEP: $(0.113 \pm 0.013 \pm 0.006)$

EPJC 75 (2015) 19

Prompt Λ_c^+ /D^o ratio : Questioning the Universality

Cross section of non-prompt D mesons

arXiv:2402.16417

Non-prompt charm hadron : Charm hadrons from beautyhadron decays

PYTHIA 8

Comput. Phys. Commun. 191 (2015) 159–177 Eur. Phys. J. C 74 (2014) 3024 FONLL JHEP 05 (1998) 007 JHEP 10 (2012) 137

 Consistent with data within uncertainties

TAMU Phys. Rev. Lett. 131 (2023) 012301

- Good agreement for D^o
- Tend to overestimate the D_s^+

GM-VFNS JHEP 12 (2017) 021 Nucl. Phys. B 925 (2017) 415-430 J. Phys. G 41 (2014) 075006

 Underestimate the data at low p_T, whereas a better description at high p_T

Non-prompt Λ_c^+/D^0 ratio

Phys. Rev. D 108, 112003

Ratio of p_T-differential production cross section of non-prompt Λ_c^+ and **D**⁰

- \checkmark Ratio $\Lambda_{\rm b}^0$ / (B⁰+B⁺) is a bit lower than non-prompt Λ_c^+/D^0
- \checkmark Beauty, charm, and strange hadrons have a similar trend and are compatible within uncertainties
- ✓ PYTHIA with CR-BLC tune describes the data for $p_T > 2$ GeV/c and significantly higher at low p_T for heavyflavour hadrons

Run:265338 Timestamp:2016-11-11 02:02:08(UTC) Colliding system:p-Pb Energy: 5.02 TeV

Results in p–Pb collisions

Prompt and non-prompt Λ_c^+ **/D**⁰ ratio

Phys. Rev. C 107, 064901

QCM pp : Chin. Phys. C 45 (2021) 113105 p-Pb : Phys. Rev. C 97 (2018) 064915

Similar trend of in both pp and p-Pb collisions

 Shift towards higher p_T in p–Pb collisions attributed to radial flow (described by QCM prediction)

Decreasing trend of non-prompt at midrapidity with increasing p_T

• Baryon enhancement at low $p_T \rightarrow p_T$ hadronisation effects apart from invacuum fragmentation

R_{pPb} of prompt charm hadrons in p–Pb collisions

D-meson R_{pPb} is compatible with unity and compared to model predictions including CNM effects

Both Λ_c^+ and $\Xi_c^0 \mathbb{R}_{pPb}$ are compatible within uncertainties \rightarrow similar modification of the production in p–Pb collisions ✓ $\mathsf{R}_{\mathsf{pPb}}$ of Ξ_c^0 is larger than unity → no conclusion of increasing trend with p_T due to large uncertainties ✓ Models underestimate the data (only $\Lambda_c^+ R_{pPb}$ is described below 2 GeV/c)

R_{pPb} of non-prompt charm hadrons

EPPS16 EPJC 77 (2017) 163 nCTEQ15 Phys. Rev. D 93 (2016) 085037 EPPS* Phys. Rev. Lett. 121 (2018) 052004

17

✓ Good agreement with model predictions within uncertainties • Consistent with B meson R_{pPb} result from CMS at high p_T

• p_T-integrated R_{pPb} of measured at midrapidity

- \checkmark Observed a possible suppression for non-prompt J/ψ
- ✓ Suppression at forward rapidity whereas compatible with unity at backward rapidity

Results in Pb–Pb collisions

Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV

Ratio increases from pp to semicentral and central Pb–Pb collisions at the intermediate p_T region • Compare to different model predictions

 \checkmark Catania : underestimate the data in the intermediate p_T region

✓ TAMU : reproduce the magnitude and shape of the data, and better description within uncertainties

Λ_c^+/D^0 ratio

SHMc : JHEP 07 (2021) 035 Catania : Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb-Pb) TAMU : Phys. Lett. B 795 (2019) 117–121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb–Pb)

 \checkmark SHMc : describe the ratio in semicentral collisions and underestimate the data in 4 < p_T < 8 GeV/c in central collisions

$\Lambda_{c}^{+}/\mathbf{D}^{0}$ ratio

p_T-integrated ratio vs multiplicity from pp to Pb–Pb ✓ No multiplicity dependence observed

Suggest a modified mechanism of hadronization in all hadronic collisions w.r.t e⁺e⁻ and e⁻p collisions (PYTHIA 8)

Catania and TAMU describe the data, while SHMc underestimates the data

✓ unobserved charm-baryon states need to be assumed in normalisation

SHMc : JHEP 07 (2021) 035 Catania : Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb-Pb) TAMU : Phys. Lett. B 795 (2019) 117–121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb–Pb) PYTHIA 8 : Comput. Phys. Commun. 191 (2015) 159–17

R_{AA} and v₂ of non-strange D mesons

ALI-PUB-501956

Understanding the heavy-quark interactions with the medium constitutes by comparing R_{AA} and v₂ with models \checkmark Models fairly describe the data, but challenging to describe the R_{AA} and v₂ simultaneously ✓ Realistic QGP evolution, collisional/radiative energy loss, and hadronization mechanisms (fragmentation/coalescence) are required to describe the data

Sensitive to quark diffusion, thermalisation with the medium, and hadronization mechanisms for $2 < p_T < 6$ GeV/c

R_{AA} of charm hadrons

- Suppression of all charm species from p_T > 6 GeV/c fo charm quarks with the medium
- Hint of a hierarchy $R_{AA}(D^0) < R_{AA}(D_S^+) < R_{AA}(\Lambda_c^+)$ in 4 < p_T < 8 GeV/c in 0–10%, while less pronounced in 30–50%
- For $p_T > 10$ GeV/c, all R_{AA} are compatible within uncertainties

• Suppression of all charm species from $p_T > 6$ GeV/c for 0–10% and from $p_T > 4$ GeV/c for 30–50% -> Interaction of

p_T < 8 GeV/c in 0–10%, while less pronounced in 30–50% tainties

R_{AA} ratio of non-prompt **D** mesons

 R_{AA} ratio of non-prompt D_s^+ to prompt D_s^+ and non-prompt D^0 Larger energy loss of charm quark with respect to beauty quark in central collisions ✓ Consistent with unity in semicentral collisions

TAMU model describes the data for central collisions while overestimates for semicentral collisions ✓ Possible enhancement at low pT → the abundance of strange quarks and the hadronisation via recombination

TAMU Phys. Lett. B 735 (2014) 445

Elliptic flow of non-prompt D mesons

ALI-PUB-545128

ALI-PUB-545136

Non-prompt D⁰ v2 is lower than that of prompt non-strange D meson v2

✓ Different degree of participation between charm and beauty quarks in the medium expansion Compatible with the v2 of beauty-decay electrons within uncertainties

- ✓ Good agreement with LIDO predictions
- \checkmark No significant difference of decay kinematics between B meson and non-prompt D⁰ meson

In pp collisions :

- Production cross section described by pQCD calculations • Fragmentation function universality is violated in pp collisions ✓ Hadronisation via recombination is dominant at low pT

In p–Pb collisions :

- Heavy-quark production is not significantly affected by CNM effects
- In Enhanced baryon production in p-Pb collisions w.r.t pp collisions in the intermediate pT region

In Pb–Pb collisions :

- Baryon enhancement depends on the event multiplicity, while pT-integrated baryon-to-meson ratio is consistent across collision systems
- Both charm and beauty quarks lose energy in the medium ✓ Beauty quarks lose less energy than charm quarks
- Heavy quarks participate in a hydrodynamically expanding medium, v2(HF) > 0✓ v2(c) > v2(b)

Summary

What's going on ?

Recent results from Run3 : D_s^+ and $b \rightarrow D^0$ production

What's next?

What's next?

Find out more

37 October 2025

CERN-EP-2023-009 27 January 2023

ALICE upgrades during the LHC Long Shutdown 2

Thank you

Backup

> Nuclear modification factor:

$$R_{AA} = \frac{AA}{\text{rescaled } pp} = \frac{d^2 N_{AA}/dp_T dy}{\langle N_{binary} \rangle d^2 N_{pp}/dp}$$

Elliptic flow: initial spatial anisotropy+ hydro = final momentum anisotropy
Quantified by the second Fourier coefficient, v_2

$$rac{dN}{darphi} = rac{N}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2 v_n
ight] \mathrm{os}\left(n \left(arphi - \Psi
ight)
ight)$$

$$v_2 = < cos2(\varphi_{part} - \Psi_{EP}) >$$

→ Related to pressure gradients & shear viscosity to entropy ratio (η/s)
 → Sensitive to thermalization of the system

R_{AA} ratio of prompt **D**⁰

ALI-PUB-534213

✓ Hint of a mass dependent in-medium energy loss

R_{AA} ratio of non-prompt D⁰ to prompt D⁰ as a function of p_T in 0–10% centrality compared to model predictions ✓ At low pT, formation of D mesons via coalescence makes a hardening of the prompt D⁰ meson pT \checkmark At hight pT, beauty quarks lose less energy than charm quarks via radiative processes

TAMU Phys. Lett. B 735 (2014) 445 CUJET3.1 Chin. Phys. C 43 (2019) 044101 LGR EPJC 80 (2020) 671 Phys. J. C 80 (2020) 1113 MC@sHQ+EPOS2 Phys. Rev. C 89 (2014) 014905

Non-prompt D⁰ R_{AA} is systematically higher than that of prompt D⁰ for $p_T > 5$ GeV/c in both centrality classes

Recent results from Run3 : $\Sigma_c^{0,++}$ (2520)/ $\Sigma_c^{0,++}$ (2455)

- SHM agrees with data within uncertainties

PYTHIA with neither Monash nor CR-BLC reproduces data Ratio sensitive to c-diquark spin-1 to spin-0 suppression factor