Probing the QGP: Recent Advances in Heavy-Flavour Physics with ALICE at the LHC

Samrangy Sadhu University of Bonn

Bonn Fall HEP Meeting 2024: Embracing Diversity in High Energy Physics

What is Quark-Gluon Plasma (QGP) ?

RHIC, LHC : high temperature, low baryon density FAIR : moderate temperature, high baryon density

At extreme temperature and energy density, QCD predicts a phase transition from hadronic matter to a deconfined partonic matter, the Quark-Gluon Plasma (QGP)

[MeV] 200 Temperature 100

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

Initial state effects:

- **• Gluon saturation**
- **• Modification of PDFs**

Initial state effects:

- **• Gluon saturation**
- **• Modification of PDFs**

Initial state effects:

Schematic picture of the time evolution of Heavy-ion collisions :

- **• Gluon saturation**
- **• Modification of PDFs**

In medium effects:

- **• Energy loss**
- **• Collectivity**

Initial state effects:

Schematic picture of the time evolution of Heavy-ion collisions :

- **• Gluon saturation**
- **• Modification of PDFs**

In medium effects:

- **• Energy loss**
- **• Collectivity**

Initial state effects:

and freeze out

Schematic picture of the time evolution of Heavy-ion collisions :

- **• Gluon saturation**
- **• Modification of PDFs**

In medium effects:

- **• Energy loss**
- **• Collectivity**

- **• Coalescence: combination of quarks close in phase space**
- **• Fragmentation: break up of colour strings connecting partons**

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering **in heavy-ion collisions -> perturbative QCD can be applied.**
- **• In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced**
	- \rightarrow Heavy quarks are produced before QGP formation ($t_{\text{QGP}} \sim 1$ fm/c and $t_{\text{Q}} = 1/2m_{\text{Q}} \leq 0.1$ fm/c)
	- **-> Identity is preserved while traversing the medium**
	- **-> Experience the complete evolution of QGP medium**

Heavy quarks: a unique probe of QGP

Therefore, heavy quarks act as important tools for characterizing the medium formed in heavy-ion collisions.

• Energy loss of partons traversing the QGP is expected to occur via both inelastic (radiative energy loss via medium-induced gluon radiation) and elastic (collisions with the QGP constituents) processes.

Charm $m_c \sim 1.3$ GeV/ c^2 *t***c ~ 0.08 fm/***c*

Beauty $m_b \sim 4.2 \text{ GeV}/c^2$ *tb* **~ 0.03 fm/***c*

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p -Pb and Pb-Pb systems

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p -Pb and Pb-Pb systems

p—Pb collisions:

- Study cold nuclear matter (CNM) effects
- Possible collective effects ?

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p -Pb and Pb-Pb systems
- Study cold nuclear matter (CNM) effects
- Possible collective effects?

p—Pb collisions:

Pb—Pb collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

• Possible modification of the quark hadronization

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p -Pb and Pb-Pb systems
- **p—Pb collisions:**
- effects
- Possible collective effects?

• Study cold nuclear matter (CNM)

Pb—Pb collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

• Possible modification of the quark hadronization

Production of heavy-quark hadrons can be calculated using the factorization approach:

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p -Pb and Pb-Pb systems
- **p—Pb collisions:**
- effects
- Possible collective effects?

• Study cold nuclear matter (CNM)

Pb—Pb collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

• Possible modification of the quark hadronization

Production of heavy-quark hadrons can be calculated using the factorization approach:

$$
\frac{d\sigma_{p_T}^{H_c}}{d\sigma_{p_T}^{H_c}}(p_T; \mu_F, \mu_R) = \frac{\text{PDF}(x_1, \mu_F) \cdot \text{PDF}(x_2, \mu_F)}{\text{Parton distribution}} \otimes \frac{\frac{d\sigma^c}{dp_T^c}(x_1, x_2; \mu_R, \mu_F)}{\frac{dp_T^c}{d\sigma_T^c}(x_1, x_2; \mu_R, \mu_F)} \otimes \frac{D_{c \to H_c}(z = \frac{p_{H_c}}{p_c}, \mu_F)}{p_c},
$$
\n
$$
\text{Factor (pQCD)} \qquad \text{(hadronisation)}
$$

pp collisions:

- Test pQCD calculations
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p -Pb and Pb-Pb systems
- **p—Pb collisions:**
- effects
- Possible collective effects?

• Study cold nuclear matter (CNM)

Pb—Pb collisions:

• Sensitivity to the energy-loss mechanism of heavy quarks (collisional and radiative processes)

• Possible modification of the quark hadronization

section (pQCD)

ion (hadronisation)

Production of heavy-quark hadrons can be calculated using the factorization approach:

$$
\frac{d\sigma_{p_T}^{H_c}}{d\sigma_{p_T}^{H_c}}(p_T; \mu_F, \mu_R) = \boxed{\text{PDF}(x_1, \mu_F) \cdot \text{PDF}(x_2, \mu_F)} \otimes \boxed{\frac{d\sigma^c}{dp_T^c}(x_1, x_2; \mu_R, \mu_F)} \otimes \boxed{D_{c \to H_c}(z = \frac{p_{H_c}}{p_c}, \mu_R)} \cdot \text{Parton distribution}}
$$
\n
$$
\text{Function} \quad \text{Fard scattering cross} \quad \text{Fragmentation function (pQCD)} \quad \text{(hadronisation)}
$$

Assumed to be universal across collision systems

Two important probes

Open heavy flavour: Charm hadrons (D^0 , D^{\pm} , ...), bottom hadrons (B^0, B^{\pm}, \dots)

• Both probe medium transport properties via, e.g. the collective expansion of the QGP

-
- **• Both pillars evolved and extended significantly over the years**

Quarkonia: charmonium $(c\overline{c})$: J/ ψ , ψ' ,..., bottomonium $(b\overline{b})$: Υ ..

Probe of deconfinement & QGP medium temperature

Two important probes

• Both probe medium transport properties via, e.g. the collective expansion of the QGP

-
- **• Both pillars evolved and extended significantly over the years**

Two important probes

• Both probe medium transport properties via, e.g. the collective expansion of the QGP

-
- **• Both pillars evolved and extended significantly over the years**

This talk

The ALICE detector (Run 2)

Results in pp collisions

Run:285602 Timestamp:2018-04-30 08:13:04(UTC) Colliding system:p-p
Energy: 13 TeV

Cross section of D mesons

Prompt charm hadron : hadrons from c-quark hadronisation or from the decay of excited charm hadrons

• p_T-differential cross sections described by pQCD calculations (FONLL, kTfactorization, GM-VFNS) ➡ **Good agreement within uncertainties**

JHEP 12 (2023) 086

FONLL : JHEP 05 (1998) 007, JHEP 10 (2012) 137 kT-factorization : Phys. Rev. D 104 (2021) 094038 GM-VFNS : JHEP 12 (2017) 021, Nucl. Phys. B 925 (2017) 415–430

Prompt Λ_c^+ **/D^o ratio : Questioning the Universality** \mathcal{C}

Measurements of the baryon-to-meson yield ratio -> p_T **-dependent enhancement** of Λ_c^+ /D^o ratio in pp w.r.t. e+e-

LEP: (0.113 ± 0.013 ± 0.006) EPJC 75 (2015) 19

Prompt Λ_c^+ **/D^o ratio : Questioning the Universality** \mathcal{C}

Measurements of the baryon-to-meson yield ratio -> p_T **-dependent enhancement** of Λ_c^+ /D^o ratio in pp w.r.t. e+e-

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)

LEP: (0.113 ± 0.013 ± 0.006) EPJC 75 (2015) 19

Measurements of the baryon-to-meson yield ratio -> p_T **-dependent enhancement** of Λ_c^+ /D^o ratio in pp w.r.t. e+e-

Models based on fragmentation functions evaluated from e^+e^- collisions underestimate the data (PYTHIA 8 Monash)

Different hadronization mechanisms proposed:

Prompt Λ_c^+ **/D^o ratio : Questioning the Universality** \mathcal{C}

Measurements of the baryon-to-meson yield ratio -> *p***T-dependent enhancement** of Λ_c^+ /D^o ratio in pp w.r.t. e+eModels based on fragmentation functions evaluated from e^{+e-} collisions underestimate the data (PYTHIA 8 Monash)

Different hadronization mechanisms proposed:

LEP: (0.113 ± 0.013 ± 0.006) EPJC 75 (2015) 19

Prompt Λ_c^+ **/D^o ratio : Questioning the Universality** \mathcal{C}

Color reconnection beyond leading color (PYTHIA 8 CR Mode 2)

Measurements of the baryon-to-meson yield ratio -> p_T **-dependent enhancement** of Λ_c^+ /D^o ratio in pp w.r.t. e+eModels based on fragmentation functions evaluated from e+e- collisions underestimate the data (PYTHIA 8 Monash)

LEP: (0.113 ± 0.013 ± 0.006) EPJC 75 (2015) 19

Prompt Λ_c^+ **/D^o ratio : Questioning the Universality** \mathcal{C}

excited charm baryons (Statistical Hadronisation

Measurements of the baryon-to-meson yield ratio -> p_T **-dependent enhancement**

of Λ_c^+ /D^o ratio in pp w.r.t. e+e-

Prompt Λ_c^+ **/D^o ratio : Questioning the Universality** \mathcal{C}

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)

Cross section of non-prompt D mesons

PYTHIA 8

Comput. Phys. Commun. 191 (2015) 159–177 Eur. Phys. J. C 74 (2014) 3024 FONLL JHEP 05 (1998) 007 JHEP 10 (2012) 137

- **Good agreement for D0**
- \cdot Tend to overestimate the $\mathrm{D}_{\mathrm{s}}^+$

• **Consistent with data within uncertainties**

• **Underestimate the data at low p_T, whereas a better description** at high p_T

TAMU Phys. Rev. Lett. 131 (2023) 012301

GM-VFNS JHEP 12 (2017) 021 Nucl. Phys. B 925 (2017) 415–430 J. Phys. G 41 (2014) 075006

arXiv:2402.16417 **Non-prompt charm hadron : Charm hadrons from beautyhadron decays**

- $\sqrt{\frac{1}{b}}$ (B⁰+B⁺) is a bit lower than non-prompt Λ_c^+ /D $^{\rm o}$ b
- ✓ Beauty, charm, and strange hadrons have a similar trend and are compatible within uncertainties
- ✓ PYTHIA with CR-BLC tune describes the data for $p_T > 2$ GeV/c and significantly higher at low p_T for heavyflavour hadrons

Non-prompt $Λ⁺_c$ /D^o ratio \mathcal{C}

Phys. Rev. D 108, 112003

Ratio of p_T-differential production cross section of non-prompt Λ_c^+ and D^o

Run:265338 Timestamp:2016-11-11 02:02:08(UTC) Colliding system:p-Pb
Energy: 5.02 TeV

Results in p–Pb collisions

Similar trend of in both pp and p–Pb collisions

• Shift towards higher p_T in $p-Pb$ collisions attributed to radial flow (described by QCM prediction)

Decreasing trend of non-prompt at midrapidity with increasing p_T

• Baryon enhancement at low $p_T \rightarrow$ hadronisation effects apart from invacuum fragmentation

QCM pp : Chin. Phys. C 45 (2021) 113105 p-Pb : Phys. Rev. C 97 (2018) 064915

Prompt and non-prompt Λ_c^+ /D^o ratio \mathcal{C}

Phys. Rev. C 107, 064901

R_{pPb} of prompt charm hadrons in p–Pb collisions

D-meson R_{pPb} is compatible with unity and compared to model predictions including CNM effects

Both Λ_c^+ and Ξ_c^0 R_{pPb} are **compatible within uncertainties → similar modification of the production in p–Pb collisions** \checkmark R_{pPb} of Ξ_c^0 is larger than unity \to no conclusion of increasing trend with p_T due to large uncertainties ✓ Models underestimate the data (only Λ_c^+ R_{pPb} is described below 2 GeV/c)

RpPb of non-prompt charm hadrons

✓ Observed a possible suppression for non-prompt *J*/*ψ* ✓ Suppression at forward rapidity whereas compatible with unity at backward rapidity

✓ Good agreement with model predictions within uncertainties • Consistent with B meson R_{pPb} result from CMS at high p_T 17

EPPS16 EPJC 77 (2017) 163 nCTEQ15 Phys. Rev. D 93 (2016) 085037 EPPS* Phys. Rev. Lett. 121 (2018) 052004

• **p_T-integrated R_{pPb} of measured at midrapidity**

Results in Pb–Pb collisions

Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb
System: Pb-Pb
Energy: 5.02 TeV

SHMc : JHEP 07 (2021) 035 Catania : Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb–Pb) TAMU : Phys. Lett. B 795 (2019) 117–121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb–Pb)

Ratio increases from pp to semicentral and central Pb–Pb collisions at the intermediate p_T region **๏ Compare to different model predictions**

✓ SHMc : describe the ratio in semicentral collisions and underestimate the data in 4 < pT < 8 GeV/c in central collisions ◆ Catania : underestimate the data in the intermediate p_T region **✓ TAMU : reproduce the magnitude and shape of the data, and better description within uncertainties**

Λ_c^+ /D⁰ ratio

Λ_c^+ /D⁰ ratio

pT-integrated ratio vs multiplicity from pp to Pb–Pb ✓No multiplicity dependence observed

Suggest a modified mechanism of hadronization in all hadronic collisions w.r.t e+e− and e−p collisions (PYTHIA 8)

Catania and TAMU describe the data, while SHMc underestimates the data

✓ unobserved charm-baryon states need to be assumed in normalisation

SHMc : JHEP 07 (2021) 035 Catania : Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb–Pb) TAMU : Phys. Lett. B 795 (2019) 117–121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb–Pb) PYTHIA 8 : Comput. Phys. Commun. 191 (2015) 159–17

Understanding the heavy-quark interactions with the medium constitutes by comparing RAA and v₂ with models \checkmark Models fairly describe the data, but challenging to describe the R_{AA} and v_2 simultaneously ✓ Realistic QGP evolution, collisional/radiative energy loss, and hadronization mechanisms (fragmentation/coalescence) are required to describe the data

Sensitive to quark diffusion, thermalisation with the medium, and hadronization mechanisms for $2 < p_T < 6$ GeV/c 21

RAA and v₂ of non-strange D mesons

ALI-PUB-501956

RAA of charm hadrons

- **charm quarks with the medium**
-
- For $p_T > 10$ GeV/c, all R_{AA} are compatible within uncertainties

Suppression of all charm species from $p_T > 6$ **GeV/c for 0–10% and from** $p_T > 4$ **GeV/c for 30–50% -> Interaction of**

• Hint of a hierarchy R_{AA}(Dº) < R_{AA}(D_S^+) < R_{AA}(Λ_c^+) in 4 < p_T < 8 GeV/c in 0–10%, while less pronounced in 30–50%

RAA ratio of non-prompt D mesons

 R_{AA} ratio of non-prompt D^+_s to prompt D^+_s and non-prompt D^o **✓** Larger energy loss of charm quark with respect to beauty quark in central collisions ✓ Consistent with unity in semicentral collisions

TAMU model describes the data for central collisions while overestimates for semicentral collisions ✓ Possible enhancement at low pT → the abundance of strange quarks and the hadronisation via recombination 23

TAMU Phys. Lett. B 735 (2014) 445

Elliptic flow of non-prompt D mesons

- ✓ Good agreement with LIDO predictions
- \checkmark No significant difference of decay kinematics between B meson and non-prompt D^o meson

✓ Different degree of participation between charm and beauty quarks in the medium expansion Compatible with the v2 of beauty-decay electrons within uncertainties

Non-prompt D^o v2 is lower than that of prompt non-strange D meson v2

Summary

In pp collisions :

-
- ๏ Production cross section described by pQCD calculations ๏ Fragmentation function universality is violated in pp collisions ✓ Hadronisation via recombination is dominant at low pT

In p–Pb collisions :

-
- ๏ Heavy-quark production is not significantly affected by CNM effects ๏ Enhanced baryon production in p–Pb collisions w.r.t pp collisions in the intermediate pT region

In Pb–Pb collisions :

- ๏ Baryon enhancement depends on the event multiplicity, while pT-integrated baryon-to-meson ratio is consistent across collision systems
- ๏ Both charm and beauty quarks lose energy in the medium ✓ Beauty quarks lose less energy than charm quarks
- ๏ Heavy quarks participate in a hydrodynamically expanding medium, v2(HF) > 0 ✓ v2(c) > v2(b)

What's going on ?

Recent results from Run3 : D_s^+ **and b→D⁰ production** s

• Measurements are extended to lower p_T and more granular w. r. t. run 2 Stronger constraints on the modelling of charm-quark hadronization

What's next?

What's next?

Find out more

27 October 2020

CERN-EP-2023-009 27 January 2023

ALICE upgrades during the LHC Long Shutdown 2

Backup

\triangleright Nuclear modification factor:

$$
R_{AA} = \frac{AA}{\text{rescaled }pp} = \frac{d^2N_{AA}/dp_{T} dy}{\langle N_{binary} \rangle d^2N_{pp}/dq}
$$

Elliptic flow: initial spatial anisotropy+ hydro = final momentum anisotropy ➤ Quantified by the second Fourier coefficient, $v₂$

$$
\frac{dN}{d\varphi}=\frac{N}{2\pi}\left[1+\sum_{n=1}^{\infty}2\widehat{\psi_{n}}\right]\cos\left(n\left(\varphi-\Psi\right)\right.
$$

$$
v_2 =
$$

 \rightarrow Related to pressure gradients & shear viscosity to entropy ratio (η /s) \rightarrow Sensitive to thermalization of the system

RAA ratio of prompt D0

ALI-PUB-534213

✓ Hint of a mass dependent in-medium energy loss

R_{AA} ratio of non-prompt D^o to prompt D^o as a function of p_T in 0–10% centrality compared to model predictions ◆ At low pT, formation of D mesons via coalescence makes a hardening of the prompt D^o meson pT ✓ At hight pT, beauty quarks lose less energy than charm quarks via radiative processes

TAMU Phys. Lett. B 735 (2014) 445 CUJET3.1 Chin. Phys. C 43 (2019) 044101 LGR EPJC 80 (2020) 671 Phys. J. C 80 (2020) 1113 MC@sHQ+EPOS2 Phys. Rev. C 89 (2014) 014905

Non-prompt D^o R_{AA} is systematically higher than that of prompt D^o for $p_T > 5$ GeV/c in both centrality classes

Recent results from Run3 : $\Sigma_c^{0,++}$ **(2520)/** $\Sigma_c^{0,++}$ **(2455)**

- SHM agrees with data within uncertainties
-
-

• PYTHIA with neither Monash nor CR-BLC reproduces data • Ratio sensitive to c-diquark spin-1 to spin-0 suppression factor