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Why precision?

IF THAT'S CERN,
I'M NOT HERE.

» Precision physics as

« test of the Standard model
» gate to new physics
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» High-Lumi upgrade of LHC :
» theory and experiments must have comparable uncertainties
» needed: %-level accuracy:
perturbation theory @ NNLO and often N3LO



Hard Scattering

Looking @ QCD corrections:
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Perturbative series in the strong coupling

Beyond LO: contributions from diagrams with increasing loops and legs
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Real corrections!



looking @ m-jets cross section:
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KILN thm Kinoshita (1962); Lee, Nauenberg (1964)

finiteness when summing over all unresolved configurations

e Separate pieces are |IR-divergent:

* Explicit poles in € after loop integration
* Implicit divergencies from real radiation

* soft or collinear partons

How do we deal with
these divergencies?
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daﬁw T J dG]ELO & Hard to solve analytically @
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Idea: Subtraction Schemes
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e finite

e Add and subtract the same quantity do”

» Mimics singular behaviour in IR-limits of do", do®

* Makes the integrals individually finite

» Simple enough to be analytically integrated over d®,



e Antenna functions

- N e Built from simple matrix elements
X W « Mimic the divergent behaviour in singular limits

3 e Can be easily integrated over phase space
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2+ extra radiation " hard partons

\

» Exploit factorisation of What can happen?

matrix elements in IR limits



Jli, Jjllk,  jsoft

Final state hard radiators 43 Annihilation into

hadrons
K

Solved! ;)

[Chen,Jakubcik,Marcoli,

Stagnitto ’23]

Initial state hard radiators

: : ] : Drell-Yan
I

Initial-final state hard radiators

Deep Inelastic
Scattering




Focus: initial-final antenna type antenna function
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off-shell current éé

Initial-state parton

extra-radiation parton
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final-state parton
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NNLO phase-space integrals for exclusive DIS
g1+ 9, = p1+p,+ (p3)

kinematics invariants
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Phase space

Workflow

integral

Reverse
unitarity

Reduction to
master integrals

Boundaries




Reverse Unitarity

Anastasiou, Melnikov (2002)

phase space — (cut) loops
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Reduction to Master integrals B

Reduction into a basis of linearly independent master integrals coefficients

(G} c (I} B
L= ), G

{G;} = minimal linearly independent set

k master

. L . . . . integrals
Feynman integrals in dimensional regularization obey linear relations, e.g.

Integration By Parts identities + Lorentz Invariance ids, symmetry relations, ...
[Chetyrkin, Tkachov (1981), Laporta (2000)]
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/(ﬁde) ’ ( o ) — () H — péb = external
1=1 /Ok;"\Dy* ... Dy ’ k' = loop

[/

reduction as solution of a large
and sparse system of identities



DE for Feynman integrals

- IBP — MI obeys first order differential equations 0Z5 =M-G

- Magic transformation to new basis of Ml {g}: canonical form — solution is “straightforward”
[Henn (2013)]

a o — €A * 0 k ~ ~ = :
5 5 Solution e—exp. g(k) — Z [ dA - . dA . pl=)
4

e-dependence \/
Is factored out j=0

Encodes the class of special functions needed for the solution

J

7 Rational alphabet —results expressed as MPLs
dA = E a.dlog(a;) P - P
! ! [Kummer (1840); Remiddi, Vermaseren (1999); Goncharov (2000)]
! bodx
_ai letters G(ay,...,a,;t) = G(ay,...,a,;x), Vn e N,a, #0
* Independent letters: alphabet 0 X — a4



NNLO calculation in a nutshell

ddkl d?ky 1 1 1 L _/ d?k: / d%y 1 1 1
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e 4 families, 9 Ml e 3 families, 6 MI
e 2 loops, 3 cut propagators e 2 loops, 2 cut propagators
e DE in canonical form using FUCHSIA e DE in canonical form using FUCHSIA

[Gituliar & Magerya (2017)]



Lookingatz — 1 , endpoint singularity

Extract some relations from known behaviour of the integrals in the soft limit
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Extract the leading behavior of the Mls

Rescaling the integrals w.r.t. their leading behavior — regularity

Imposing that in this limit the terms log(1 — z) and poles in (1 — z) vanish

Relations between boundaries of different Mls

16



Based on the AMF Low algorithm but purely analytic

Looking at z — 1 soft limit, endpoint singularity
* Integral simplifies

* Allows to carry out this procedure analytically

9) - _ Iphys(ﬂ z) = 1" (e, Z, 772)
* Add aux mass #7“ to chosen propagators: auxiliary family

* limits in kinematical variable and ;72 need to commute

* Derive DE with respect to the mass

. anzldl/lx — A}/] . ICZMX

 Boundaries @ ;72 — 00 (large mass limit)

* Fix constants of integration in ;72 — 00 limit (easy!)

 “Flow” to ;72 — () for physical solution:

* method of regions to extract the physical solution



Required families to be calculated for obtaining all the boundaries

auxiliary topologies

RR LI_TIN __f)‘_zf e
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N3LO initial-final antennae

N3LO phase-space g +q, = p;+p,+ (pg) + (p4)
g3 =—-0*<0,¢' =0, p?=0, i=1234

integrals for exclusive DIS




Getting to know the RRR families

Physical 4-cuts of the 3 loop inclusive DIS amplitude

d%k, d?k d%ks 1 1 1 1 1
'RRR = / (27r)d / (Qﬂ)d / (27T)d I% lﬁz lﬁg ID4 H D;Xj

J

 Few number of Ml for each family —4 cuts
HM| PERTAMIY Total: 1620 Mis (No symmetries between families included)

MAX

» DE matrix M is a function of M(z, €)

= playground for automatic tools! eg LI1BRA
[Lee (2020)]
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Getting to a Canonical Basis (1): Balancing acts

M(z, €) Z M,(z, €)
Fuchsification: no PRt Normalizing
higher order poles —_— eigenvalues « €

* Build balancing transformations via graphical
interface

* Change pole order and eigenvalues of

residue matrix around poles

» Strategy for multi loop calculations: exploit block triangular structure

Diagonal blocks i Global fuchsification



Getting to a Canonical Basis (2): good candidates

» Sectors with higher number of propagators (top sector (TS), Next-to-TS, NNTS)
 Baikov representation

 Numerator Ansatz N(7)

» Check candidates with constant leading singularity with DLogBas1s
» Keep only the linearly independent candidates for a new basis

NG -
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cut condition



Results

Canonical DE for all the families v/

1 1 ] ] ] ye\
Letters:{—, , ] ) }
z l+z 11—z 14+2z2 1-127

Boundary conditions 5o

* Numerical evaluation with AMF Low @ 200 digits (~80% done...) & PSLQ

» Constraints from symmetry relations between the families

» Calculation of the amplitude — which boundaries are actually needed

_* Extend calculation to RVV and RRV layers
Outlook:

» Ultimate goal: obtaining the full set of integrated initial-final antennae






