3 loops & 4 cuts: towards N3LO RRR antenna functions

Gaia Fontana (UZH)

Universität Zürich

- In collaboration with Thomas Gehrmann & Kay Schönwald
 - Based on JHEP 03 (2024) 159 & upcoming works
 - Fall Bonn HEP meeting 2024 Bonn, 07/10/2024

Why precision?

- Precision physics as
 - test of the Standard model
 - gate to new physics
- High-Lumi upgrade of LHC :
 - theory and experiments must have comparable uncertainties
 - needed: %-level accuracy:

GAULD for NEW SCIENTIS

perturbation theory @ NNLO and often N3LO

Hard Scattering

Looking @ QCD corrections:

$$\mathrm{d}\sigma = \mathrm{d}\sigma_{LO} + \alpha_S \,\mathrm{d}\sigma_N$$

Perturbative series in the strong coupling

 $_{NLO} + \alpha_S^2 d\sigma_{NNLO} + \alpha_S^3 d\sigma_{N3LO} + \dots$

Beyond LO: contributions from diagrams with increasing loops and legs

looking @ m-jets cross section:

$$= \int_{d\Phi_{m}} d\sigma_{Born}$$

$$d\sigma_{NLO}^{R} + \int_{d\Phi_{m}} d\sigma_{NLO}^{V}$$

$$d\sigma_{NNLO}^{RR} + \int_{d\Phi_{m}} d\sigma_{NLO}^{RV} + \int_{d\sigma_{NNLO}} d\sigma_{NNLO}^{VV}$$

$$\int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{N3LO}^{RRV} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{N3LO}^{RVV} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{N3LO}^{VVV}$$

 $J_{d}\Phi_{m}$

KLN thm

- Separate pieces are IR-divergent:
 - **Explicit** poles in ϵ after loop integration
 - Implicit divergencies from real radiation

- Kinoshita (1962); Lee, Nauenberg (1964)
- finiteness when summing over all unresolved configurations

• soft or collinear partons

How do we deal with these divergencies?

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NLO}^{R} + \int_{\mathrm{d}\Phi_{m}}$$

idea: Subtraction Schemes

$$d\sigma_{NLO} = \int_{d\Phi_{m+1}} \left(d\sigma_{NLO}^R - d\sigma_N^S - d\sigma_N^S \right)$$
• finite

- Add and subtract the same quantity $d\sigma^S$
 - Mimics singular behaviour in IR-limits of $\mathrm{d}\sigma^V,\mathrm{d}\sigma^R$
 - Makes the integrals individually finite
 - Simple enough to be analytically integrated over $\mathrm{d}\Phi_1$

Antenna Subtraction scheme

Antenna functions

- Built from simple matrix elements
- Mimic the divergent behaviour in singular limits
- Can be easily integrated over phase space

Exploit factorisation of matrix elements in IR limits

[Gehrmann-De Ridder, Gehrmann, Glover (2007)]

R limit factorization $j \parallel i, j \parallel k, j$ soft

Final state hard radiators

Initial state hard radiators

Initial-final state hard radiators

Solved! :) [Chen, Jakubčík, Marcoli, Stagnitto '23]

Drell-Yan

Deep Inelastic Scattering

Antenna functions

NNLO initial-final antennae

 $Q^2 = 1$

NNLO phase-space integrals for exclusive DIS

kinematics

- $q_2^2 = -Q^2 < 0$
- $q_1^2 = 0$ 2 0 1 2 2
- $p_i^2 = 0$, i = 1,2,3

invariants

Phase space integral

Reduction to master integrals

Workflow

DE & canonical form

Reverse Unitarity

Anastasiou, Melnikov (2002)

 $I_{RV} = \int d\Phi_2 (2\pi)^d \delta^{(d)} \left(q_1 + q_2 - \sum_{i=1}^2 p_i \right) \int \frac{d^d k}{(2\pi)^d} \prod_i \frac{1}{D_j^{\alpha_j}}$ $I_{RR} = \int d\Phi_3 (2\pi)^d \delta^{(d)} \left(q_1 + q_2 - \sum_{i=1}^3 p_i \right) \prod_i \frac{1}{D_i^{\alpha_j}}$

Reduction to Master integrals

Reduction into a basis of linearly independent master integrals $\{G_i\} \subset \{I_i\}$ $I_j = \sum_{ik} C_{ik} G_k$

 $\{G_i\}$ = minimal linearly independent set

Feynman integrals in dimensional regularization obey linear relations, e.g. Integration By Parts identities + Lorentz Invariance ids, symmetry relations, ...

$$\int \left(\prod_{i=1}^{\ell} d^{\mathrm{D}} k_i\right) \frac{\partial}{\partial k_i^{\mu}} \left(\frac{v_j^{\mu}}{D_1^{a_1} \dots D_n^{a_n}}\right)$$

reduction as solution of a large and sparse system of identities

[Chetyrkin, Tkachov (1981), Laporta (2000)]

k

rational

coefficients

master

 $= 0, \qquad v^{\mu} = \begin{cases} p_i^{\mu} = \text{external} \\ k_i^{\mu} = \text{loop} \end{cases}$

DE for Feynman integrals

- IBP \rightarrow MI obeys first order differential equations $\partial_{\tau} \vec{G} = M \cdot \vec{G}$

$$\partial_{z}\vec{g} = \epsilon A \cdot \vec{g}$$

$$\stackrel{\epsilon\text{-dependence}}{\text{is factored out}} \vec{g}^{(k)} = \sum_{j=0}^{k} \int_{\gamma} \underbrace{\mathrm{d}\tilde{A} \cdot \ldots \cdot \mathrm{d}\tilde{A}}_{j} \cdot \vec{b}^{(k-j)}$$

Encodes the class of special functions needed for the solution

$$d\tilde{A} = \sum a_i d\log(\alpha_i)$$

• α_i letters

independent letters: alphabet

 $G(a_1,\ldots$

Magic transformation to new basis of MI $\{\vec{g}\}$: canonical form \rightarrow solution is "straightforward" [Henn (2013)]

Rational alphabet \rightarrow results expressed as MPLs

[Kummer (1840); Remiddi, Vermaseren (1999); Goncharov (2000)]

$$(a_n; t) \equiv \int_0^t \frac{\mathrm{d}x}{x - a_1} G(a_2, \dots, a_n; x), \ \forall n \in \mathbb{N}, a_n \neq 0$$

NNLO calculation in a nutshell

RR

- 4 families, 9 MI
- 2 loops, 3 cut propagators
- DE in canonical form using FUCHSIA [Gituliar & Magerya (2017)]

$$I_{RV} = \int \frac{\mathrm{d}^{d} k_{1}}{(2\pi)^{d}} \int \frac{\mathrm{d}^{d} k_{2}}{(2\pi)^{d}} \frac{1}{\not D_{1}} \frac{1}{\not D_{2}} \prod_{i}$$

- 3 families, 6 MI
- 2 loops, 2 cut propagators
- DE in canonical form using FUCHSIA

Boundary Conditions

- Looking at $z \rightarrow 1$ soft limit, endpoint singularity
- Extract some relations from known behaviour of the integrals in the soft limit

$$I_i^{RR} \sim (1-z)^{n_i-2\epsilon} \sum_j c_j(\epsilon)(1-z)^j, \quad n_i \in \mathbb{Z}$$
$$I_i^{RV} \sim (1-z)^{m_i-2\epsilon} \sum_j d_j(\epsilon)(1-z)^j + (1-z)^{l_i-\epsilon} \sum_j e_j(\epsilon)(1-z)^j, \quad m_i, l_i \in \mathbb{Z}$$

- Extract the leading behavior of the MIs
- Rescaling the integrals w.r.t. their leading behavior \rightarrow regularity
- Imposing that in this limit the terms log(1 z) and poles in (1 z) vanish
- Relations between boundaries of different MIs

AANFlow [GF, Gehrmann, Schönwald (2024)]

Looking at $z \rightarrow 1$ soft limit, endpoint singularity

- Integral simplifies
- Allows to carry out this procedure analytically
- Add aux mass η^2 to chosen propagators: auxiliary family

• Derive DE with respect to the mass

$$\partial_{\eta^2} \vec{I}^{aux} = A_\eta \cdot \vec{I}^a$$

• Fix constants of integration in $\eta^2 \rightarrow \infty$ limit (easy!)

• "Flow" to $\eta^2 \rightarrow 0$ for physical solution:

- Based on the AMFlow algorithm but purely analytic [Liu, Ma (2022)]

$$I^{phys}(\epsilon, \vec{z}) \to I^{aux}(\epsilon, \vec{z}, \eta^2)$$

• limits in kinematical variable and η^2 need to commute

 $\mathcal{U}\mathcal{X}$

• Boundaries @ $\eta^2 \rightarrow \infty$ (large mass limit)

method of regions to extract the physical solution

Required families to be calculated for obtaining all the boundaries

Towards N3LO RRR antennae •• ••• .6 gai 1030 030 U.S.

Getting to know the RRR families

Physical 4-cuts of the 3 loop inclusive DIS amplitude

$$I_{RRR} = \int \frac{\mathrm{d}^d k_1}{(2\pi)^d} \int \frac{\mathrm{d}^d k_2}{(2\pi)^d} \int \frac{\mathrm{d}^d k_3}{(2\pi)^d} \frac{1}{\not D_1} \frac{1}{\not D_2} \frac{1}{\not D_3} \frac{1}{\not D_4} \prod_j \frac{1}{D_j^{\alpha_j}}$$

• Few number of MI for each family \rightarrow 4 cuts

• Total: 1620 MIs (No symmetries between families included)

• DE matrix M is a function of $M(z, \epsilon)$

 \Rightarrow playground for automatic tools! eg LIBRA Lee (2020)]

Getting to a Canonical Basis (1): Balancing acts

- - residue matrix around poles

Strategy for multi loop calculations: exploit block triangular structure

Diagonal blocks

Getting to a Canonical Basis (2): good candidates

- **Baikov representation**

$$I = \int \left(\prod_{i=1}^{\ell} \mathrm{d}^d k_i\right) \frac{1}{z_1^{\nu_1} \cdots z_n^{\nu_n}} = K \int \mathrm{d}z_1 \cdots \mathrm{d}z_n \, B(\mathbf{z})^{\gamma} \, \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}}$$

- Numerator Ansatz $N(\vec{z})$
- Check candidates with constant leading singularity with DLogBasis
- Keep only the linearly independent candidates for a new basis

$$\int dz_1 \dots dz_n B^{\gamma} \frac{N(\vec{z})}{z_1^{\alpha_1} \dots z_n^{\alpha_n}}$$

Sectors with higher number of propagators (top sector (TS), Next-to-TS, NNTS)

[Wasser (2020)]

cut condition

Results

Canonical DE for all the families $\sqrt{}$

Letters:
$$\left\{ \frac{1}{z}, \frac{1}{1+z}, \frac{1}{1-z} \right\}$$

Boundary conditions

- Numerical evaluation with AMFlow @ 200 digits (~80% done...) & PSLQ
- Constraints from symmetry relations between the families
- Calculation of the amplitude \rightarrow which boundaries are actually needed
- Extend calculation to RVV and RRV layers **Outlook:** Ultimate goal: obtaining the full set of integrated initial-final antennae

Thank you for your attention!

