Rare decays

Les devises Shadok

EN ESSAYANT CONTINUELLEMENT ON FINIT PAR REUSSIR. DONC: PLUS GA RATE, PLUS ON A DE CHANCES QUE GA MARCHE.

(very) rare decays: $b \rightarrow s \ell^+\ell^-$ transitions

 $B_s \rightarrow \ell^+ \ell^-$

$$B_{s/d} \rightarrow \ell^+ \ell^- \qquad \ell = e \text{ or } \mu$$

SM : very rare (V_{tq} , helicity suppression)

In the SM, in the massless limit: left-handed antiparticle &right-handed particle are forbidden

$$\ell^ S_B=0$$
 ℓ^+

left-handed particle left-handed anti-particle

right-handed particle right-handed anti-particle

$$\mathcal{B}(B_s^0 \to e^+e^-) = (8.60 \pm 0.36) \times 10^{-14} \qquad \mathcal{B}(B_s^0 \to \mu^+\mu^-) = (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to e^+e^-) = (2.41 \pm 0.13) \times 10^{-15} \qquad \mathcal{B}(B^0 \to \mu^+\mu^-) = (1.03 \pm 0.05) \times 10^{-10} \\ \text{Jheric}(2019) \text{ 232}$$

SM

Due to CKM, the B_d modes are further suppressed by a factor 1/30

Analysis in a nutshell

- Huge sample of B mesons
- o Efficient trigger
- Powerful selection
 - Vertex resolution
 - Mass resolution
 - o Muon ID
- o BDT algorithm

• Branching fraction estimated from a fit in 5 BDT bins (first one excluded since it's background dominated) and two run periods (Run 1 & Run 2)^{color} & Run 2)^{color} Bad Honnef March 2024</sup>

https://doi.org/10.1016/j.physletb.2023.137955

LHCb-PAPER-2021-007

Important to check B_d vs B_s : if there is New Physics does it couples as SM?

 $BR(B_s \to \mu^+ \mu^-) = 3.52^{+0.32}_{-0.30} \times 10^{-9}$

Combination from arXiv:2210.07221

Color meets Flavor school Bad Honnef March 2024

SM-like given the current precision

$H_b \rightarrow H_s \ell^+ \ell^-$: what do we measure ?

Branching Fractions

Angular observables

Lepton Flavour Universality observables: Branching Fractions ratios angular observables ratios theoretical cleanness

there is no free lunch

resonant (control) modes

 $-- \mathsf{B} \rightarrow \mathsf{K}^* \ell \ell$

---- B→K ℓℓ

One example of a BF measurement: $B_s \rightarrow \phi \ \mu \ \mu$

- two muons
- $\phi \rightarrow KK$ and is a narrow resonance

Use of $B_s \rightarrow J/\psi (\rightarrow \mu \mu) \phi$ as a normalisation mode $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) = (1.018 \pm 0.032 \pm 0.037) \times 10^{-3}$

PRL 127 (2021) 151801

Measurements below predictions Predictions correlated from a bin to another Better agreement at higher-q² (LQCD)_{lor meets Flavor school Bad Honnef March 2024}

Similar patterns for other decay modes

To have more information: angular analyses

3 angles and $q^2 = M^2(\ell \ell)$

 $B \rightarrow V \ell \ell$

 $\begin{array}{ll} \Lambda_{\rm b} & \to \Lambda^{*} \, \ell \ell \\ \Lambda_{\rm b} & \to \Lambda \, \ell \ell \end{array} \quad \begin{array}{l} {\rm Assuming \ that \ the \ } \Lambda_{\rm b} \ {\rm is} \\ {\rm produced \ unpolarized \ at \ LHC} \end{array}$

A set of anomalies in $b \rightarrow s \mu \mu$ transitions

 $B^{0} \to K^{*0} \mu^{+} \mu^{-} \text{with } 6 \,\text{fb}^{-1} \left(\sim 4600 \,\text{evts.} \right)$ $B^{+} \to K^{*+} \mu^{+} \mu^{-} \text{ with } 9 \,\text{fb}^{-1} \left(\sim 700 \,\text{evts.} \right)$ $B_{s} \to \phi \mu^{+} \mu^{-} \text{ with } 9 \,\text{fb}^{-1} \left(\sim 1900 \,\text{evts.} \right)$

 $B_s \rightarrow \phi \ \mu \ \mu \ dBR/dq^2$

PRL 127 (2021) 151801 Phys. Rev. Lett. 125 (2020) 011802 LHCb 9 fb⁻¹ $^{-2}c^{4}$ LHCb 14⊢ Ā LHCb 3 fb^{-1} LHCb Run 1 + 2016 $dB(B_s^0 \rightarrow \phi \mu^+ \mu^-)/dq^2(10^- ^8 \text{GeV})$ 12 SM (LCSR+Lattice) SM from DHMV SM (LCSR) 0.5 SM (Lattice) J/ψ ψ(2S) ⊨t= -0.5 μ(2S) 10 15 10 15 5 0 $q^{2} \, [\text{GeV}^{2}/c^{4}]$ $q^2 \,[{\rm GeV}^2/c^4]$

 $B_d \rightarrow K^* \mu \mu$ angular fits

 $C_i = C_i^{SM} + C_i^{NP}$

- In the SM Wilson coefficients are real, no necessarily the case for New Physics
- Many parameters fit... reduced configurations

from plots from Peter Stangl La Thuile 2021

with TH input for the non-local contributions

- ► ABCDMN (M. Algueró, A. Biswas, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet) Statistical framework: χ^2 -fit, based on private code
- AS / GSSS (W. Altmannshofer, P. Stangl / A. Greljo, J. Salko, A. Smolkovic, P. Stangl) Statistical framework: χ²-fit, based on public code flavio
 arXiv:2212.10497.
- CFFPSV (M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli) Statistical framework: Bayesian MCMC fit, based on public code HEPfit
- ▶ HMMN (T. Hurth, F. Mahmoudi, D. Martínez-Santos, S. Neshatpour) Statistical framework: χ^2 -fit, based on public code SuperIso

No TH input for the non-local contributions

From B. Capdevila FPCP 2023

arXiv:23xx.xxxx

arXiv:2212.10516

$B_{s/d} \rightarrow \mu^+ \mu^-$:

- clean prediction (relative precision ~ 4 5 %)
- clean measurement for B_s (~ 10%) ; B_d not yet measured.

- $H_b \rightarrow H_s \mu^+ \mu^-$:
- clean measurements (~ 10% on BR in various q² bins)
- TH predictions not very precise for the BR. Better for angular observables.
- How to mitigate/constraint the impact of non-local contributions ?

Why not electrons ?

Let's use the electrons and double our statistics !

Electrons emit Bremsstrahlung

Energy loss $\propto E_e$ Energy loss \propto material

In both cases E/p is correct

е

Bremsstrahlung recovery algorithm is ~ 50% efficient Well described in simulation

3500

Hardware trigger is very different for electrons and muons

Slide borrowed from Renato Quagliani

Color meets Flavor school Bad Honnef March 2024

Using modes with electrons to increase the statistics is not the best idea Use electrons for:

measurements which cannot be done with muons or where the SM contribution is so tiny that any sign of a channel is NP

search for New Physics •

Why don't you look at $B_s \rightarrow ee$?

1a

Want to know about the photon polarization in $b \rightarrow s\gamma$?

 $B^0 \to K^{*0}\ell^+\ell^- \times 10^6$

Electrons should give us access to C_7 and C'_7 Wilson coefficients

 $B \rightarrow \forall \ell \ell$

Complicated full $B \rightarrow K^* \mu \mu$ angular fit (8 parameters) can be reduced to the variables of interest to probe the photon pole (4 parameters)

$$= \frac{9}{16\pi} \Big[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_{\rm L}) \sin^2 \theta_K \cos 2\theta_\ell - F_{\rm L} \cos^2 \theta_K \cos 2\theta_\ell \\ + (1 - F_{\rm L}) A_T^{Re} \sin^2 \theta_K \cos \theta_\ell \\ + \frac{1}{2} (1 - F_{\rm L}) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\tilde{\phi} \\ + \frac{1}{2} (1 - F_{\rm L}) A_T^{lm} \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\tilde{\phi} \Big] .$$

$$egin{aligned} &A_T^{(2)}(q^2 o 0) = rac{2 \mathcal{R} e \left(\mathcal{C}_7 \mathcal{C}_7^{'*}
ight)}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2} \ &A_T^{lm}(q^2 o 0) = rac{2 \mathcal{I} m \left(\mathcal{C}_7 \mathcal{C}_7^{'*}
ight)}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2} \end{aligned}$$

 \rightarrow 0 for purely left-handed photon

 $\begin{array}{rcl} F_{\rm L} &=& 0.044 \pm 0.026 \pm 0.014, \\ A_{\rm T}^{\rm Re} &=& -0.06 \pm 0.08 \pm 0.02, \\ A_{\rm T}^{(2)} &=& +0.11 \pm 0.10 \pm 0.02, \\ A_{\rm T}^{\rm Im} &=& +0.02 \pm 0.10 \pm 0.01, \end{array}$

 $A_{\rm T}^{(2)}({
m SM}) = 0.033 \pm 0.020,$ $A_{\rm T}^{
m Im}({
m SM}) = -0.00012 \pm 0.00034.$

5% precision on the photon polarization in $b \rightarrow s\gamma$ transitions

Lepton Flavour Universality tests in $b \rightarrow s\ell\ell$ transitions

In the SM only difference : kinematics (lepton masses)

Color meets Flavor school Bad Honnef March 2024

Any ratio of observables in principle

Start with the simplest (?) one: ratio of branching fractions

ℓ=e, μ

Practically at LHCb:

$$R_{H} = \frac{N(B \to H\mu^{+}\mu^{-})}{N(B \to He^{+}e^{-})} \times \frac{\epsilon(B \to He^{+}e^{-})}{\epsilon(B \to H\mu^{+}\mu^{-})} + r_{J/\psi} = \frac{BR(B \to HJ/\psi(\mu^{+}\mu^{-}))}{BR(B \to HJ/\psi(e^{+}e^{-}))} = 1$$
Vields from mass fits
$$H = K, K^{*}, pK \dots$$
Well tested LFU in J/\psi modes

 \Rightarrow Use of the double ratio using the resonant channels

$$R_{H} = rac{N(B
ightarrow H\mu^{+}\mu^{-})}{N(B
ightarrow HJ/\psi(\mu^{+}\mu^{-}))}}{N(B
ightarrow HJ/\psi(e^{+}e^{-}))}{N(B
ightarrow HJ/\psi(e^{+}e^{-}))}} imes rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow HJ/\psi(\mu^{+}\mu^{-}))}}{\epsilon(B
ightarrow HJ/\psi(\mu^{+}\mu^{-}))}$$

 \Rightarrow cancels out most of the systematics due to e/µ differences

\Rightarrow the LHCb R_x analysis

- Simultaneous fit of
- $B \rightarrow K \ \ell \ell \ and \ B \rightarrow K^* \ \ell \ell$
- in 2 kinematical regions (low and central-q²)
- Full correction of the MC samples using data control samples
- Extraction of the misld background in the ee- samples from the same data

Simultaneous fit for R_x extraction: electron modes

A factor ~ 4 in yields between electron and muon modes

Measured yields from simultaneous fit to R_X

LU observable	Muon ($\times 10^3$)	Electron $(\times 10^3)$
low- $q^2 R_K$	1.25 ± 0.04	0.305 ± 0.024
low- $q^2 R_{K^*}$	1.001 ± 0.034	0.247 ± 0.022
central- $q^2 R_K$	4.69 ± 0.08	1.19 ± 0.05
central- $q^2 R_{K^*}$	1.74 ± 0.05	0.443 ± 0.028
$J\!/\!\psiR_K$	$(2.964 \pm 0.002) \times 10^3$	$(7.189 \pm 0.015) imes 10^2$
$J\!/\!\psi \ R_{K^*}$	$(9.733 \pm 0.010) \times 10^2$	$(2.517 \pm 0.009) \times 10^2$

$B \to K \nu \bar{\nu}$

B-Factories

Experimentally very challenging

Low branching fraction with large backgrounds (eg $K+K_{L}K_{L}$)

K⁺

10

 $10^5 \times \text{Br}(B^+ \rightarrow K^+ \nu \bar{\nu})$

12

No peak

arXiv:2311.14647

Color meets Flavor school Bad Honnef March 2024

Conclusion

- Mostly launched by B-factories (BaBar & Belle) even if started before (ARGUS, CLEO, LEP)
- Nowadays mostly LHCb and Belle-II : complementarity
- At the electroweak scale, the CKM mechanism dominates CP violation
- Still room for physics beyond SM at ~ 20% in FCNC
- In 1964 the discovery of the small amount of CP violation came as a surprise
- A bunch of tensions in FCNC $b \rightarrow sll$ transitions, more data is needed to pin-point the origin.
- Heavy Flavour physics is much more that what I had time to touch upon

new detectors / new data / more sophisticated analyses ⇒ exciting times ahead !

Many thanks to J. Rouxel & JP Couturier for the Shadoks

Precision !

Back-up slides

Update using Run2 full statistics $\Rightarrow x 9$ statistics of the published result ! (x2 selection, x3 integrated luminosity, x cross section changes with energy)

Color meets Flavor school Bad Honnef March 2024

Beam energy const. + tag-side \rightarrow kinematical constraints

Inclusive decays

Access to absolute BR

BaBar & Belle ~ 1.1 ab⁻¹

Belle-II (ICHEP2020 schedule) : 10 ab⁻¹ in 2025, 50 ab⁻¹ in 2031

Very large boost→ flight distance reconstruction → kinematical constraints

All b-hadrons species

No access to absolute BR

LHCb: 9fb⁻¹ at hand

LHCb-Upgrade 1 (soft. trigger) : at the end of Run3 (2024) : 23 fb⁻¹ at the end of 2020s : 50 fb⁻¹ LHCb-Upgrade 2 : 300 fb⁻¹

Color meets Flavor school Bad Honnef March 2024

FCCee B_{tag} vtx B_{sig} vtx Flight distance reco. and beam+other hemisphere \rightarrow kinematical constraints All b-hadrons species Access to absolute BR FCCee (from late 2030) 5 10¹² Z⁰

1.5 10⁸ WW

Branching fractions for $b \rightarrow s \mu\mu$ transitions

Many parameters extracted in a large number of bins

Life is not that simple ...

$$\mathcal{L}_{\text{eff}} \propto G_F V_{tb} V_{ts}^* \sum_{i=7,9,10} (C_i \mathcal{O}_i + C_i' \mathcal{O}_i')$$

non-local contributions

Would appear as a shift in C_9 Varying as function of q^2 (not the case for NP) Searched for during ~ 30 years. First evidence in Nov 2012 (LHCb)

135

$$L_{ ext{int}}, \sigma_{bb}, arepsilon$$
 have large systematic errors

Normalize with respect to another decay with a very well known BR (BFactories crucial inputs) :

 $B^+ \to J/\psi K^+$ or $B^0 \to K^+ \pi^-$

$$\frac{BR(B_s \to \mu\mu)}{BR(B^+ \to J\Psi K^+)} = \frac{N(B_s \to \mu\mu)_{obs}}{N(B \to J\Psi K)_{obs}} \times \frac{\mathcal{E}_{B \to J\Psi K}}{\mathcal{E}_{B_s \to \mu\mu}} \times \frac{f_u}{f_s}$$

Most of systematic uncertainties cancel in the ratio of efficiency

This cancellation is very efficient if you have a normalization channel similar to your signal and selected in the same way!

 $B^0 \rightarrow K^{*0} \mu \mu$

 I_i (i=1,9) are encoding the matrix elements of the decay

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi} = \frac{9}{32\pi} \begin{bmatrix} I_1^s \sin^2\theta_K + I_1^c \cos^2\theta_K \\ + I_2^s \sin^2\theta_K \cos2\theta_\ell + I_2^c \cos^2\theta_K \cos2\theta_\ell \\ + I_3 \sin^2\theta_K \sin^2\theta_\ell \cos2\phi + I_4 \sin2\theta_K \sin2\theta_\ell \cos\phi \\ + I_5 \sin2\theta_K \sin\theta_\ell \cos\phi + I_6 \sin^2\theta_K \cos\theta_\ell \\ + I_7 \sin2\theta_K \sin\theta_\ell \sin\phi + I_8 \sin2\theta_K \sin2\theta_\ell \sin\phi \\ + I_9 \sin^2\theta_K \sin^2\theta_\ell \sin2\phi \end{bmatrix},$$

The I_i depend on the amplitudes

CP violation in the mixing

Mass eigenstates Flavour eigenstates $|M_L\rangle = p|M\rangle + q\overline{M}\rangle$ $|M_{H}\rangle = p|M\rangle - q\overline{M}\rangle$ $\left|\frac{q}{p}\right| \neq 1$ $P(B \rightarrow \overline{B}) \neq P(\overline{B} \rightarrow B)$ $a_{sl}^{q} = \frac{P(\overline{B_q} \to B_q) - P(B_q \to \overline{B_q})}{P(\overline{B_q} \to B_q) + P(B_q \to \overline{B_q})} = \frac{1 - |q/p|^4}{1 + |q/p|^4} \approx \frac{\Delta \Gamma_q}{\Delta m_q} \tan \phi_q^{12}$

So far only observed in the K system Expected to be small in the SM ; ~ -5 10^{-4} (B_d) and 2 10^{-5} (B_s)

 $B_s \rightarrow J/\Psi \phi$ analog of the previous case $(B_d \rightarrow J/\Psi K_s)$

$$\phi_{
m s} = \phi_{
m mix} - 2\,\phi_{
m dec}$$

CP-even states, measure also $\Delta\Gamma_s$. \Rightarrow 3 "P-wave" amplitudes of KK system \circ 1 "S-wave" amplitude (A_s) \circ 10 terms with all the interferences $\circ \varphi_s$, $\Delta\Gamma_s$, Γ_s

 $PS \rightarrow VV$, admixture of CP-odd and

Probing CKM matrix elements complex at higher order

$$\mathbf{V}_{\mathsf{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

<u>HFLAV</u>

SM : Φ_s =-0.0370 ±0.0008 rad (prediction from a fit using other measurements)

Experimentally:

$$A_{raw} = \frac{N(D^0 \to f) - N(\bar{D}^0 \to f)}{N(D^0 \to f) + N(\bar{D}^0 \to f)} = A_{CP} + A_D(\pi_s^+/\mu) + A_P(D^{*+}/D_{\text{from }B}^0)$$

$D^0 \rightarrow KK \text{ or } \pi\pi$ charge symmetric

$$\Delta A_{CP} = A_{raw}(KK) - A_{raw}(\pi\pi) \cong A_{CP}(KK) - A_{CP}(\pi\pi)$$

Kinematical reweighting \Rightarrow production and detection asymmetries cancel

 π tag

Run2 dataset (6 fb⁻¹) Phys. Rev. Lett. 122 (2019) 211803

Color meets Flavor school Bad Honnef N

|V_{ub}| Measurements over Time

Long standing discrepancies ... (not due to statistics)

IV_{cb}I : inclusive determinations

Not a statistical issue

Kinematical constraints from other B reconstruction

 $|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$ PDG

Using q² moments and Belle + Belle-II data

 $|V_{cb}| = (41.69 \pm 0.59|_{\text{fit}} \pm 0.23|_{\text{h.o.}}) \cdot 10^{-3} = (41.69 \pm 0.63) \cdot 10^{-3}$

 $|V_{cb}|$: exclusive determinations (B \rightarrow D^(*)|v)

B→ D*lv extremely clean samples, B→ Dlv less clean (D* feed-down) FF parametrization Measurement of the differential rates $_{PRD \ 108, \ 092013 \ (2023)}$

$$|V_{cb}| = (39.4 \pm 0.8) \times 10^{-3}$$

 $|V_{cb}|_{\rm BGL} = (40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3},$

arXiv:2205.10274

|V_{ub}|/ |V_{cb}| by LHCb

$$\frac{\mathcal{B}(\Lambda_b \to p \mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2/c^4}}$$

$$\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)_{q^2 < 7}}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)_{Full q^2}}$$

$$\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)_{q^2 > 7}}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)_{Full q^2}}$$

$B^0_s ightarrow K^+ \mu^- u$ vs $\Lambda^0_b ightarrow p \mu u$			
Decay	Λ_b^0	B^0_s	
theory error	5%	$\sim 5\%$	
prod frac	20%	10%	
BF	4×10^{-4}	1×10^{-4}	
$\mathcal{B}(X_c)$ error	$\pm 5\%$	$\pm 2.8\%$	
background	Λ_c^+	$\Lambda_c^+, D_s, D^+, D^0$	

Importance of X_c BF measurements

Importance of FF knowledge for the backgrounds

2012 data !

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004$$

 $|V_{ub}|/|V_{cb}|(\text{high}) = 0.0946 \pm 0.0030 \,(\text{stat})^+_{-0.0025} \,(\text{syst}) \pm 0.0013 \,(D_s) \pm 0.0068 \,(\text{FF})$