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Further Reading

Goodfellow, Bengio, and Courville, Deep Learning, 2016:

• principled and rigurous approach

• great technical coverage

• community standard

Erdmann et al., Deep Learning for Physics Research, 2021:

• physics-oriented examples and exercises

• (some) coverage of uncertainties and custom loss functions

Lippe, UvA Deep Learning Tutorials, 2023:

• https://uvadlc-notebooks.readthedocs.io
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Supervised Learning

Target: any quantity Y we want to predict (costly or impossible to measure)

Feature: any quantity Xi we compute from observable quantities

Training Data: D =
{

(xi, yi) ∈ X × Y : 1 ≤ i ≤ m
}
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Structured data:

• tabular representation

• Xi facilitate the prediction of Y ,

e.g., through well-designed preprocessing
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Structured Data

df = fact.io.read_data( # pandas.DataFrame
"gamma_simulations_facttools_dl2.hdf5",
key = "events"

)

X = df[[ # select features
"length", # -> shape (n_events, n_features)
"width",
"num_islands",
"num_pixel_in_shower",
# ...

]].to_numpy()

y = df["corsika_event_header_total_energy"]

clf = sklearn.ensemble.RandomForestClassifier()
clf.fit(X, y)
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Structured Data
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Logistic Regression:

P̂β(Y = +1 | X = x) = e〈β,x〉

1 + e〈β,x〉

Y
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Decision Trees:

• recursively split X
• boost performance through ensembling

These models perform amazingly
(
if structure permits

)
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Unstructured Data
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Deep Learning learns features as a part of the model

• no manual feature-engineering necessary

• instead, architecture optimization and more data needed
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Agenda

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

assumptions

1. 2.3.

1. Modeling

2. Fitting

3. Data and Assumptions

4. Concluding Remarks

5. Hands-On Exercises (Quentin Führing, Jan Herdieckerhoff)
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Modeling



Shallow Models

Polynomial Regression: y = fβ(x) + ε, where fβ(x) =
n∑

i=0
〈βi, xi〉

• y ∈ R, x ∈ Rd, and βi ∈ Rd

• 〈a, b〉 =
∑d

j=1 aj · bj is the scalar product

• typical loss: LD(β) =
∑m

i=1
(
yi − fβ(xi)

)2
where (xi, yi) ∈ D

and D = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} is the training set
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Shallow Models

Logistic Regression: ŷ = arg max
i∈{1,2,...,C}

P̂β(Y = i | X = x)

where ρ(vi) =


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The soft-max operation ρ projects to the unit simplex
{

p ∈ RC : pi ≥ 0, 1 =
∑C

i=1 pi

}
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Shallow Models

Motivation: the Logistic Regression represents linear models of the log-odds.

log P(Y = 2 | X = x)
P(Y = 1 | X = x) = 〈β2, x〉+ ε

?
> 0

log P(Y = 3 | X = x)
P(Y = 1 | X = x) = 〈β3, x〉+ ε

?
> 0

. . .

log P(Y = k | X = x)
P(Y = 1 | X = x) = 〈βC , x〉+ ε

?
> 0
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Shallow Models

Synopsis:

• Polynomial Regression =

a linear model of exponentiated inputs xi

• Logistic Regression =

a linear model of the log-odds

• The soft-max operation maps these log-odds

to (estimates of) class probabilities
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

• learnable linear combinations 〈β, •〉

• non-linear activations σ
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Universal Approximation

Density: A family G of models can approximate any function f ∈ C(Rn),
if ∀ ε > 0, compact K ⊆ Rn, ∃ g ∈ G, such that

max
x∈K

∥∥f(x)− g(x)
∥∥ < ε

• One hidden layer of arbitrary width is dense iff σ is non-polynomial.1

• Arbitrarily deep nets with minimum width d + C + 2 are dense.2

• Deep nets are often more efficient approximators than wide shallow nets.

• Density does not imply the existence of a learning algorithm to select g from G

1 Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.
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Over- and Underfitting

model capacity
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Under-Fitting:

• approximation

• high bias, low variance

Over-Fitting:

• memorization

• low bias, high variance

Double Descent:

• interpolation3

3 Belkin et al., “Reconciling modern machine-learning practice and the classical bias-variance trade-off”, 2019
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Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

• translation invariance

• sparse interactions

• parameter sharing

la
ye
r i −

1

la
ye
r i

i +
1

In general, specialized layers are used to introduce biases, depending on the data.
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Modeling

Synopsis:

• Deep Nets use layers of increasingly abstract representations

• Layers consist of linear parameters and non-linear activations

• Model Capacity should consider sample sizes (over-/under-fitting)

• Inductive Biases facilitate learning

Practical Recommendations:

• Build on Existing Solutions for similar problems

• Extensively Tune the hyper-parameters (# layers, # features per layer, …)

• Assumptions > Depth hence, prioritize baseline methods
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Fitting



Empirical Risk Minimization

Notation:

• hβ : X → RC is our model, parametrized by β ∈ RB (fixed architecture)

• `(hβ(x), y) measures the deviation between hβ(x) and y

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
=

∫
X ×Y

P
(
X = x, Y = y

)
· `

(
hβ(x), y

)
dx dy

Approach: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).
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Loss Functions

Mean Squared Error: `
(
h(x), y

)
=

∥∥h(x)− y
∥∥2

2

Cross Entropy / Logistic Loss: `′(h(x), y
)

= −
C∑

i=1
δy=i log

(
[h(x)]i

)

Proper Scoring Rule: any ` : Z × Y → R for which arg minh∈H R(h; `) = P(Y | X).

• cross entropy is proven to be such a loss function

• hence, ERM with cross entropy readily learns P(Y | X)
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Empirical Risk Minimization (Revisited)

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)

ERM: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).
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Stochastic First-Order Optimization

Ideas:

• R̂D(hβ , `) is just a function to be

minimized

• use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

• ignore higher-order derivatives to

safe computation time.

• introduce randomness into the

gradients to improve convergence.

β

R̂D

R̂D

R̂D(β(k))
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Stochastic First-Order Optimization

Stochastic Gradient Descent (SGD): in each step k, reduce the risk R̂D(hβ , `)
w.r.t. a single, random example.

β(k+1) ← β(k)−α(k)∇β `
(

h
(
xi(k) , β(k)), yi(k)

)
where


β(k) the parameter vector of h

α(k) the step size

(xi(k) , yi(k)) the example

Full Gradient Descent (GD): in each step k, reduce R̂D(hβ , `) w.r.t. all examples.

β(k+1) ← β(k) − α(k)∇β R̂D(hβ , `) = β(k) − α(k) 1
m

m∑
i=1
∇β`

(
h

(
xi, β(k)), yi

)
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Stochastic First-Order Optimization

Convergence Rate4: worst-case # iterations, in which R̂D(hβ , `) ≤ R̂D(hβ∗ , `) + ε

• GD: ∝ m · log( 1
ε )

• SGD: ∝ 1
ε (independent of m)

• For SGD, the same rate applies to R(hβ , `) (independent of D if m� k)

Hence, SGD has an amazing performance for large data sets.

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.
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Stochastic First-Order Optimization

Noise Reduction: use mini-batches instead of single examples,

β(k+1) ← β(k) − α(k) 1
b

b∑
i=1
∇β`

(
h

(
xbi

, β(k)), ybi

)
. where b� m.

• smaller variance of update steps

• stepsize {α(k)} is easier to tune

• most common approach for deep nets

Learning Rate Scheduling:

• even with mini-batches, noise can eventually prevent the reduction of R̂D(hβ , `)
• hence, decrease step sizes {α(k)} over time
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Stochastic First-Order Optimization

Momentum:

β(k+1) ← β(k)−g
(
β(k))+γ(k) ·

(
β(k)−β(k−1)) where

{
g(β(k)) SGD, GD, or mini-batch gradient

γ(k) a weighting parameter

Accelerated Gradient a.k.a. Nesterov Momentum:

β(k+1) ← β(k) − g
(
β(k) + γ(k) ·

(
β(k) − β(k−1)))

+ γ(k) ·
(
β(k) − β(k−1))

• momentum is applied before g(•)
• GD: optimal convergence rate ∝ 1

ε2

• SGD: good practical performance but (theoretical) convergence rate is not improved
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Backpropagation

Goal: compute ∇β`(h(xi, β), yi) where

h(xi, β) = ρ
(〈

βd, φ
(
〈βd−1, . . . φ(〈β1, xi〉) 〉

) 〉)
x σ(〈β1, x〉) σ(〈β2, •〉) ρ(〈βd, •〉) h(x). . .

Chain rule of calculus:
∂f(g(x))

∂x
= ∂f(g)

∂g

∂g(x)
∂x

Automatic Differentiation: each function f(x) also implements its gradient

∇xf(x) = (∂f(x)
∂x1

, . . .
∂f(x)
∂xn

)>
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

• learnable linear combinations 〈β, •〉
• non-linear activations σ

−1 1
−1

1
〈β, •〉

σ
max(0, •)

tanh(•)

x

σ(〈β1,1, x〉)

σ(〈β1,2, x〉)
.
.
.

σ(〈β1,w, x〉)

σ(〈β2,1, •〉)

σ(〈β2,2, •〉)
.
.
.

σ(〈β2,w′ , •〉)

〈βd,1, •〉

〈βd,2, •〉
.
.
.

〈βd,w′′ , •〉

p1

p2
.
.
.

pC

( )
. . .
. . .

. . .

ρin
p
u
t h
id
d
e
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la
y
e
r
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h
id
d
e
n
la
y
e
r
2
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Stochastic First-Order Optimization

Synopsis:

• ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

• SGD: gradients randomized through sampling converge quickly for large m

• Mini-Batching: common practice to reduce SGD gradient noise

• LR Scheduling: common practice to balance the noise

• Nesterov Momentum: can improve convergence

Practical Recommendations:

• Carefully Design Loss Functions to reflect your goals

• Use Popular First-Order Methods like AdaBelief or SGD with Nesterov Momentum

Mirko Bunse Deep Learning – An Introduction 27



Stochastic First-Order Optimization

Synopsis:

• ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

• SGD: gradients randomized through sampling converge quickly for large m

• Mini-Batching: common practice to reduce SGD gradient noise

• LR Scheduling: common practice to balance the noise

• Nesterov Momentum: can improve convergence

Practical Recommendations:

• Carefully Design Loss Functions to reflect your goals

• Use Popular First-Order Methods like AdaBelief or SGD with Nesterov Momentum

Mirko Bunse Deep Learning – An Introduction 27



Stochastic First-Order Optimization

Synopsis:

• ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

• SGD: gradients randomized through sampling converge quickly for large m

• Mini-Batching: common practice to reduce SGD gradient noise

• LR Scheduling: common practice to balance the noise

• Nesterov Momentum: can improve convergence

Practical Recommendations:

• Carefully Design Loss Functions to reflect your goals

• Use Popular First-Order Methods like AdaBelief or SGD with Nesterov Momentum

Mirko Bunse Deep Learning – An Introduction 27



Stochastic First-Order Optimization

Synopsis:

• ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

• SGD: gradients randomized through sampling converge quickly for large m

• Mini-Batching: common practice to reduce SGD gradient noise

• LR Scheduling: common practice to balance the noise

• Nesterov Momentum: can improve convergence

Practical Recommendations:

• Carefully Design Loss Functions to reflect your goals

• Use Popular First-Order Methods like AdaBelief or SGD with Nesterov Momentum

Mirko Bunse Deep Learning – An Introduction 27



Data and Assumptions



A Premature Conclusion

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

What we have learned:

• Deep Nets are universal function approximators

• Customized loss functions let them learn what we need

• We know effective ways of optimizing them

What could possibly go wrong?
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Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

• D ∼ PS (e.g., a simulation)

• Dtest ∼ PT (e.g., a real detector)

• PS 6= PT

Mirko Bunse Deep Learning – An Introduction 29



Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

• D ∼ PS (e.g., a simulation)

• Dtest ∼ PT (e.g., a real detector)

• PS 6= PT

Mirko Bunse Deep Learning – An Introduction 29



Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

• D ∼ PS (e.g., a simulation)

• Dtest ∼ PT (e.g., a real detector)

• PS 6= PT

Mirko Bunse Deep Learning – An Introduction 29



Types of Data Set Shift5

Recognize that P(X, Y ) = P(X | Y ) · P(Y )

= P(X) · P(Y | X)

Label Shift:

PS(X | Y ) = PT (X | Y )

PS(Y ) 6= PT (Y )

Concept Shift:

PS(Y ) = PT (Y )

PS(X | Y ) 6= PT (X | Y )

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014.
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Domain-Adversarial Unsupervised Domain Adaptation6

• Assume Concept Shift PS(X | Y ) 6= PT (X | Y ) and PS(Y ) = PT (Y )
• Employ Unlabeled Data DT =

{
x ∼ PT (X)

}

x

la
y
e
r
1

la
y
e
r
2

la
y
e
r

n

…

n
+

1

n
+

2

y…

d
o
m
a
in

1

d
o
m
a
in

2

d =
{

1 if x ∈ DT

0 if (x, y) ∈ D
−∇

β RD
…

6 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016.
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Class-Conditional Label Noise7

Label Noise:

• Training Labels ŷ are randomly flipped versions of the ground-truth y

• Assumptions about the flipping process y → ŷ are required

Class-Conditional Noise: P(Y = +1 | X = x) = a · P(Ŷ = +1 | X = x) + b

+

−

+̂

−̂

1 − p+
p+

p−
1 − p−

y ŷ

7 Menon et al., “Learning from Corrupted Binary Labels via Class-Probability Estimation”, 2015.
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Class-Conditional Noise: P(Y = +1 | X = x) = a · P(Ŷ = +1 | X = x) + b
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Deep Sets8

• Each instance is a set {xi ∈ X : 1 ≤ i ≤ m} of variable size m

• Y are properties of such sets

xi
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n

…
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1

s
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2

y = ρ
( ∑m

i
φ(xi)

)m∑
i

φ(xi) …

ρ

8 Zaheer et al., “Deep sets”, 2017.
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Concluding Remarks



Should I Use Neural Networks?

Architecture Search vs feature engineering

Scale great for big data (but not for small data)

GPUs required as well as computation time for fitting

Mirko Bunse Deep Learning – An Introduction 34



Implementing Neural Networks

JAX, PyTorch, Tensorflow, or Keras?

• Keras, Tensorflow: established solutions

• PyTorch, JAX: maximum flexibility

JAX:

• JIT compilation speedups

• API identical to Numpy/Scipy

• Clean functional programming style (clarity, separation of concerns)

• Evolving eco-system and fewer solutions
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Agenda

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

assumptions

1. 2.3.

1. Modeling

2. Fitting

3. Data and Assumptions

4. Concluding Remarks

5. Hands-On Exercises (Quentin Führing, Jan Herdieckerhoff)
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Hands-On Exercises

https://git.e5.physik.tu-dortmund.de/
qfuehring/CmF_exercise
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