

Deep Learning An Introduction

<u>Mirko Bunse</u>, Hans Dembinski, Quentin Führing, Jan Herdieckerhoff Color meets Flavor – March 18th–22nd, 2024

Further Reading

Goodfellow, Bengio, and Courville, Deep Learning, 2016:

- principled and rigurous approach
- great technical coverage
- community standard

Erdmann et al., Deep Learning for Physics Research, 2021:

- physics-oriented examples and exercises
- (some) coverage of uncertainties and custom loss functions

Lippe, UvA Deep Learning Tutorials, 2023:

• https://uvadlc-notebooks.readthedocs.io

Introduction / Machine Learning

Machine Learning = data o model o fit

Target: any quantity Y we want to predict (costly or impossible to measure)

Feature: any quantity X_i we compute from observable quantities

Training Data: D = $\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y} : 1 \le i \le m\}$

Target: any quantity *Y* we want to predict (costly or impossible to measure)

Feature: any quantity X_i we compute from observable quantities

Training Data: D = $\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y} : 1 \le i \le m\}$

Structured data:

- tabular representation
- X_i facilitate the prediction of Y, e.g., through well-designed preprocessing

Structured Data


```
df = fact.io.read data( # pandas.DataFrame
    "gamma simulations facttools dl2.hdf5",
    kev = "events"
X = df[[ # select features
    "length", # -> shape (n events, n features)
    "width".
    "num_islands",
    "num_pixel_in_shower",
    # ...
]].to_numpy()
v = df["corsika_event_header_total_energy"]
clf = sklearn.ensemble.RandomForestClassifier()
clf.fit(X, y)
```

Structured Data

Logistic Regression:

$$\widehat{\mathbb{P}}_{\beta}(Y = +1 \mid X = x) = \frac{e^{\langle \beta, x \rangle}}{1 + e^{\langle \beta, x \rangle}}$$

Structured Data

Logistic Regression:

$$\widehat{\mathbb{P}}_{\beta}(Y = +1 \mid X = x) = \frac{e^{\langle \beta, x \rangle}}{1 + e^{\langle \beta, x \rangle}}$$

- boost performance through ensembling

These models perform amazingly \bigotimes (if structure permits \bigotimes)

Unstructured Data

Deep Learning learns features as a part of the model 🚀

- no manual feature-engineering necessary 🙌
- instead, architecture optimization and more data needed 😟

- 2. Fitting
- 3. Data and Assumptions
- 4. Concluding Remarks
- 5. Hands-On Exercises (Quentin Führing, Jan Herdieckerhoff)

Modeling

Polynomial Regression:
$$y=f_{eta}(x)+\epsilon, \;\;$$
 where $\;\; f_{eta}(x)=\sum_{i=0}^n \langle eta_i,x^i
angle \;$

- $y \in \mathbb{R}$, $x \in \mathbb{R}^d$, and $\beta_i \in \mathbb{R}^d$
- $\langle a,b\rangle = \sum_{j=1}^d a_j \cdot b_j$ is the scalar product

Polynomial Regression:
$$y=f_{eta}(x)+\epsilon$$
, where $f_{eta}(x)=\sum_{i=0}^n\langleeta_i,x^i
angle$

- $y \in \mathbb{R}$, $x \in \mathbb{R}^d$, and $\beta_i \in \mathbb{R}^d$
- $\langle a,b
 angle \ = \ \sum_{j=1}^d a_j \cdot b_j$ is the scalar product
- typical loss: $\mathcal{L}_{D}(\beta) = \sum_{i=1}^{m} (y_i f_{\beta}(x_i))^2$ where $(x_i, y_i) \in D$ and $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y} : 1 \le i \le m\}$ is the training set

ogistic Regression:
$$\widehat{y} = \underset{i \in \{1,2,\dots,C\}}{\operatorname{arg\,max}} \widehat{\mathbb{P}}_{\beta}(Y = i \mid X = x)$$

L

ogistic Regression:
$$\widehat{y} = \underset{i \in \{1, 2, \dots, C\}}{\operatorname{arg\,max}} \underbrace{\widehat{\mathbb{P}}_{\beta}(Y = i \mid X = x)}_{= \rho(\langle \beta_i, x \rangle)}$$
where $\rho(v_i) = \begin{cases} \frac{1}{1 + \sum_{j=2}^k e^{v_j}} & i = 1\\ \frac{e^{v_i}}{1 + \sum_{j=2}^k e^{v_j}} & i \in \{2, 3, \dots, C\} \end{cases}$

L

The **soft-max** operation ρ projects to the unit simplex $\{p \in \mathbb{R}^C : p_i \ge 0, 1 = \sum_{i=1}^C p_i\}$

Motivation: the Logistic Regression represents linear models of the log-odds.

$$\log \frac{\mathbb{P}(Y=2 \mid X=x)}{\mathbb{P}(Y=1 \mid X=x)} = \langle \beta_2, x \rangle + \epsilon \stackrel{?}{>} 0$$
$$\log \frac{\mathbb{P}(Y=3 \mid X=x)}{\mathbb{P}(Y=1 \mid X=x)} = \langle \beta_3, x \rangle + \epsilon \stackrel{?}{>} 0$$

$$\log \frac{\mathbb{P}(Y=k \mid X=x)}{\mathbb{P}(Y=1 \mid X=x)} = \langle \beta_C, x \rangle + \epsilon \stackrel{?}{>} 0$$

. . .

• Polynomial Regression =

a linear model of exponentiated inputs x^i

- Logistic Regression = a linear model of the log-odds
- The **soft-max** operation maps these log-odds to (estimates of) class probabilities

Deep Nets: use multiple (logistic regression-like) layers

• learnable linear combinations $\langle \beta, \bullet \rangle$

Deep Nets: use multiple (logistic regression-like) layers

- learnable linear combinations $\langle \beta, \bullet \rangle$
- non-linear activations σ

Density: A family G of models can approximate any function $f \in C(\mathbb{R}^n)$, if $\forall \varepsilon > 0$, compact $K \subseteq \mathbb{R}^n$, $\exists g \in G$, such that

$$\max_{x \in K} \left\| f(x) - g(x) \right\| < \varepsilon$$

¹ Pinkus, "Approximation theory of the MLP model in neural networks", 1999.

² Kidger and Lyons, "Universal approximation with deep narrow networks", 2020.

Density: A family G of models can approximate any function $f \in C(\mathbb{R}^n)$, if $\forall \varepsilon > 0$, compact $K \subseteq \mathbb{R}^n$, $\exists g \in G$, such that

$$\max_{x \in K} \left\| f(x) - g(x) \right\| < \varepsilon$$

- One hidden layer of arbitrary width is dense iff σ is non-polynomial.¹
- Arbitrarily deep nets with minimum width d + C + 2 are dense.²

¹ Pinkus, "Approximation theory of the MLP model in neural networks", 1999.

² Kidger and Lyons, "Universal approximation with deep narrow networks", 2020.

Density: A family G of models can approximate any function $f \in C(\mathbb{R}^n)$, if $\forall \varepsilon > 0$, compact $K \subseteq \mathbb{R}^n$, $\exists g \in G$, such that

$$\max_{x \in K} \left\| f(x) - g(x) \right\| < \varepsilon$$

- One hidden layer of arbitrary width is dense iff σ is non-polynomial.¹
- Arbitrarily deep nets with minimum width d + C + 2 are dense.²
- Deep nets are often more *efficient* approximators than wide shallow nets.
- Density does not imply the existence of a learning algorithm to select g from G

¹ Pinkus, "Approximation theory of the MLP model in neural networks", 1999.

² Kidger and Lyons, "Universal approximation with deep narrow networks", 2020.

Under-Fitting:

- approximation
- high bias, low variance

Over-Fitting:

- memorization
- low bias, high variance

Double Descent:

• interpolation³

³ Belkin et al., "Reconciling modern machine-learning practice and the classical bias-variance trade-off", 2019

Convolution: $S(i,j) = (K * I)(i,j) = \sum_{m,n} I(i-m,j-n) \cdot K(m,n)$

Convolution: $S(i,j) = (K * I)(i,j) = \sum_{m,n} I(i-m,j-n) \cdot K(m,n)$

Convolution: $S(i,j) = (K * I)(i,j) = \sum_{m,n} I(i-m,j-n) \cdot K(m,n)$

Convolution:
$$S(i,j) = (K * I)(i,j) = \sum_{m,n} I(i-m,j-n) \cdot K(m,n)$$

Pooling: only maintain the **maximum** of each neighborhood.

Convolution:
$$S(i,j) = (K * I)(i,j) = \sum_{m,n} I(i-m,j-n) \cdot K(m,n)$$

Pooling: only maintain the maximum of each neighborhood.

- translation invariance
- sparse interactions
- parameter sharing

In general, specialized layers are used to introduce **biases**, depending on the data.

- Deep Nets use layers of increasingly abstract representations
- Layers consist of linear parameters and non-linear activations

- Deep Nets use layers of increasingly abstract representations
- Layers consist of linear parameters and non-linear activations
- Model Capacity should consider sample sizes (over-/under-fitting)
- Inductive Biases facilitate learning

- Deep Nets use layers of increasingly abstract representations
- Layers consist of linear parameters and non-linear activations
- Model Capacity should consider sample sizes (over-/under-fitting)
- Inductive Biases facilitate learning

Practical Recommendations:

• Build on Existing Solutions for similar problems
- Deep Nets use layers of increasingly abstract representations
- Layers consist of linear parameters and non-linear activations
- Model Capacity should consider sample sizes (over-/under-fitting)
- Inductive Biases facilitate learning

Practical Recommendations:

- Build on Existing Solutions for similar problems
- Extensively Tune the hyper-parameters (# layers, # features per layer, ...)

- Deep Nets use layers of increasingly abstract representations
- Layers consist of linear parameters and non-linear activations
- Model Capacity should consider sample sizes (over-/under-fitting)
- Inductive Biases facilitate learning

Practical Recommendations:

- Build on Existing Solutions for similar problems
- Extensively Tune the hyper-parameters (# layers, # features per layer, ...)
- Assumptions > Depth hence, prioritize baseline methods

Fitting

Notation:

- $h_{\beta}: \mathcal{X} \to \mathbb{R}^C$ is our model, parametrized by $\beta \in \mathbb{R}^B$ (fixed architecture)
- + $\ell(h_{eta}(x),y)$ measures the deviation between $h_{eta}(x)$ and y

Notation:

- $h_{\beta}: \mathcal{X} \to \mathbb{R}^C$ is our model, parametrized by $\beta \in \mathbb{R}^B$ (fixed architecture)
- + $\ell(h_{eta}(x),y)$ measures the deviation between $h_{eta}(x)$ and y

Ultimate Goal: minimize the *expected* risk:

$$R(h_{\beta},\ell) = \mathbb{E}_{(x,y)\sim\mathbb{P}}\big(\ell(h_{\beta}(x),y)\big) = \int_{\mathcal{X}\times\mathcal{Y}} \mathbb{P}\big(X=x, Y=y\big)\cdot\ell\big(h_{\beta}(x),y\big) \,\mathrm{d}x \,\mathrm{d}y$$

Notation:

- $h_{\beta}: \mathcal{X} \to \mathbb{R}^C$ is our model, parametrized by $\beta \in \mathbb{R}^B$ (fixed architecture)
- + $\ell(h_{eta}(x),y)$ measures the deviation between $h_{eta}(x)$ and y

Ultimate Goal: minimize the *expected* risk:

$$R(h_{\beta},\ell) = \mathbb{E}_{(x,y)\sim\mathbb{P}}\big(\ell(h_{\beta}(x),y)\big) = \int_{\mathcal{X}\times\mathcal{Y}} \mathbb{P}\big(X=x, Y=y\big)\cdot\ell\big(h_{\beta}(x),y\big) \,\mathrm{d}x\,\mathrm{d}y$$

Approach: approximate $R(h_{\beta}, \ell)$ empirically with the training data D:

$$\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) = \frac{1}{m} \sum_{i=1}^{m} \ell \left(h_{\beta}(x_i), y_i \right) \xrightarrow[m \to \infty]{} R(h_{\beta},\ell)$$

and choose $\beta^* = \arg \min_{\beta \in \mathbb{R}^B} \widehat{R}_D(h_\beta, \ell).$

Mean Squared Error:
$$\ell(h(x), y) = ||h(x) - y||_2^2$$

Cross Entropy / Logistic Loss: $\ell'(h(x), y) = -\sum_{i=1}^{C} \delta_{y=i} \log([h(x)]_i)$

Mean Squared Error:
$$\ell(h(x), y) = ||h(x) - y||_2^2$$

Cross Entropy / Logistic Loss: $\ell'(h(x), y) = -\sum_{i=1}^{C} \delta_{y=i} \log([h(x)]_i)$

Proper Scoring Rule: any $\ell : \mathcal{Z} \times \mathcal{Y} \to \mathbb{R}$ for which $\arg \min_{h \in \mathcal{H}} R(h; \ell) = \mathbb{P}(Y \mid X)$.

- cross entropy is proven to be such a loss function
- hence, ERM with cross entropy readily learns $\mathbb{P}(Y \mid X)$ 🚀

Ultimate Goal: minimize the *expected* risk:

$$R(h_{\beta}, \ell) = \mathbb{E}_{(x,y) \sim \mathbb{P}} \left(\ell(h_{\beta}(x), y) \right)$$

ERM: approximate $R(h_{\beta}, \ell)$ empirically with the training data D:

$$\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) = \frac{1}{m} \sum_{i=1}^{m} \ell \left(h_{\beta}(x_i), y_i \right) \xrightarrow[m \to \infty]{} R(h_{\beta},\ell)$$

and choose $\beta^* = \arg \min_{\beta \in \mathbb{R}^B} \widehat{R}_D(h_\beta, \ell).$

Ideas:

• $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell)$ is just a function to be minimized

Ideas:

- + $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell)$ is just a function to be minimized
- use gradient information to reduce $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell)$ until β^{*} is found.
- ignore higher-order derivatives to safe computation time.

Ideas:

- + $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell)$ is just a function to be minimized
- use gradient information to reduce $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell)$ until β^{*} is found.
- ignore higher-order derivatives to safe computation time.
- introduce randomness into the gradients to improve convergence.

Stochastic Gradient Descent (SGD): in each step k, reduce the risk $\widehat{R}_{D}(h_{\beta}, \ell)$ w.r.t. a *single, random* example.

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - \alpha^{(k)} \nabla_{\beta} \ell \Big(h\big(x_{i^{(k)}}, \beta^{(k)}\big), y_{i^{(k)}} \Big) \text{ where } \begin{cases} \beta^{(k)} & \text{the parameter vector of } h \\ \alpha^{(k)} & \text{the step size} \\ (x_{i^{(k)}}, y_{i^{(k)}}) & \text{the example} \end{cases}$$

Stochastic Gradient Descent (SGD): in each step k, reduce the risk $\hat{R}_{\rm D}(h_{\beta}, \ell)$ w.r.t. a *single, random* example.

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - \alpha^{(k)} \nabla_{\beta} \ell \Big(h\big(x_{i^{(k)}}, \beta^{(k)}\big), y_{i^{(k)}} \Big) \text{ where } \begin{cases} \beta^{(k)} & \text{the parameter vector of } h \\ \alpha^{(k)} & \text{the step size} \\ (x_{i^{(k)}}, y_{i^{(k)}}) & \text{the example} \end{cases}$$

Full Gradient Descent (GD): in each step k, reduce $\widehat{R}_{D}(h_{\beta}, \ell)$ w.r.t. all examples.

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - \alpha^{(k)} \nabla_{\beta} \widehat{R}_{\mathrm{D}}(h_{\beta}, \ell) = \beta^{(k)} - \alpha^{(k)} \frac{1}{m} \sum_{i=1}^{m} \nabla_{\beta} \ell \Big(h\big(x_i, \beta^{(k)}\big), y_i \Big)$$

Convergence Rate⁴: worst-case # iterations, in which $\widehat{R}_{D}(h_{\beta}, \ell) \leq \widehat{R}_{D}(h_{\beta^{*}}, \ell) + \epsilon$

⁴ Bottou, Curtis, and Nocedal, "Optimization Methods for Large-Scale Machine Learning", 2018.

Convergence Rate⁴: worst-case # iterations, in which $\widehat{R}_{D}(h_{\beta}, \ell) \leq \widehat{R}_{D}(h_{\beta^{*}}, \ell) + \epsilon$

- GD: $\propto m \cdot \log(\frac{1}{\epsilon})$
- SGD: $\propto \frac{1}{\epsilon}$ (independent of *m*)

⁴ Bottou, Curtis, and Nocedal, "Optimization Methods for Large-Scale Machine Learning", 2018.

Convergence Rate⁴: worst-case # iterations, in which $\widehat{R}_{D}(h_{\beta}, \ell) \leq \widehat{R}_{D}(h_{\beta^{*}}, \ell) + \epsilon$

- GD: $\propto m \cdot \log(\frac{1}{\epsilon})$
- SGD: $\propto \frac{1}{\epsilon}$ (independent of *m*)
- + For SGD, the same rate applies to $R(h_eta,\ell)$ (independent of D if $m\gg k)$ 🚀

Hence, SGD has an amazing performance for large data sets.

⁴ Bottou, Curtis, and Nocedal, "Optimization Methods for Large-Scale Machine Learning", 2018.

Noise Reduction: use mini-batches instead of single examples,

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - \alpha^{(k)} \frac{1}{b} \sum_{i=1}^{b} \nabla_{\beta} \ell \Big(h\big(x_{b_i}, \beta^{(k)}\big), y_{b_i} \Big). \quad \text{where} \quad b \ll m.$$

- smaller variance of update steps
- stepsize $\{\alpha^{(k)}\}$ is easier to tune
- most common approach for deep nets

Noise Reduction: use mini-batches instead of single examples,

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - \alpha^{(k)} \frac{1}{b} \sum_{i=1}^{b} \nabla_{\beta} \ell \Big(h\big(x_{b_i}, \beta^{(k)}\big), y_{b_i} \Big). \quad \text{where} \quad b \ll m.$$

- smaller variance of update steps
- stepsize $\{\alpha^{(k)}\}$ is easier to tune
- most common approach for deep nets

Learning Rate Scheduling:

- even with mini-batches, noise can eventually prevent the reduction of $\widehat{R}_{\rm D}(h_{\beta},\ell)$
- hence, decrease step sizes $\{\alpha^{(k)}\}$ over time

Momentum:

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - g(\beta^{(k)}) + \gamma^{(k)} \cdot (\beta^{(k)} - \beta^{(k-1)}) \text{ where } \begin{cases} g(\beta^{(k)}) & \text{SGD, GD, or mini-batch gradient} \\ \gamma^{(k)} & \text{a weighting parameter} \end{cases}$$

Momentum:

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - g(\beta^{(k)}) + \gamma^{(k)} \cdot (\beta^{(k)} - \beta^{(k-1)}) \text{ where } \begin{cases} g(\beta^{(k)}) & \text{SGD, GD, or mini-batch gradient} \\ \gamma^{(k)} & \text{a weighting parameter} \end{cases}$$

Accelerated Gradient a.k.a. Nesterov Momentum:

$$\beta^{(k+1)} \leftarrow \beta^{(k)} - g(\beta^{(k)} + \gamma^{(k)} \cdot (\beta^{(k)} - \beta^{(k-1)})) + \gamma^{(k)} \cdot (\beta^{(k)} - \beta^{(k-1)})$$

- momentum is applied before $g(\cdot)$
- GD: optimal convergence rate $\propto \frac{1}{\epsilon^2}$
- SGD: good practical performance but (theoretical) convergence rate is not improved

Backpropagation

Goal: compute $\nabla_{\beta}\ell(h(x_i,\beta),y_i)$ where

$$h(x_i,\beta) = \rho\Big(\big\langle\beta_d, \phi\big(\langle\beta_{d-1}, \dots \phi(\langle\beta_1, x_i\rangle)\,\big\rangle\Big)\,\Big\rangle\Big)$$
$$x \longrightarrow \boxed{\sigma(\langle\beta_1, x\rangle)} \longrightarrow \boxed{\sigma(\langle\beta_2, \cdot\rangle)} \longrightarrow \dots \longrightarrow \boxed{\rho(\langle\beta_d, \cdot\rangle)} \longrightarrow h(x)$$

Backpropagation

Goal: compute $\nabla_{\beta}\ell(h(x_i,\beta),y_i)$ where

$$h(x_i,\beta) = \rho\Big(\Big\langle \beta_d, \phi\big(\langle \beta_{d-1}, \dots, \phi(\langle \beta_1, x_i \rangle) \big\rangle\Big)\Big\rangle\Big)$$
$$x \longrightarrow \overline{\sigma(\langle \beta_1, x \rangle)} \longrightarrow \overline{\sigma(\langle \beta_2, \cdot \rangle)} \longrightarrow \cdots \longrightarrow \overline{\rho(\langle \beta_d, \cdot \rangle)} \longrightarrow h(x)$$

Chain rule of calculus:
$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g)}{\partial g} \frac{\partial g(x)}{\partial x}$$

Backpropagation

Goal: compute $\nabla_{\beta}\ell(h(x_i,\beta),y_i)$ where

$$h(x_i,\beta) = \rho\Big(\big\langle\beta_d, \phi\big(\langle\beta_{d-1}, \dots \phi(\langle\beta_1, x_i\rangle)\big\rangle\Big)\,\Big\rangle\Big)$$

$$x \longrightarrow \boxed{\sigma(\langle \beta_1, x \rangle)} \longrightarrow \boxed{\sigma(\langle \beta_2, \cdot \rangle)} \longrightarrow \cdots \longrightarrow \boxed{\rho(\langle \beta_d, \cdot \rangle)} \longrightarrow h(x)$$

Chain rule of calculus:
$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g)}{\partial g} \frac{\partial g(x)}{\partial x}$$

Automatic Differentiation: each function f(x) also implements its gradient

$$\nabla_x f(x) = (\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n})^\top$$

Deep Nets: use multiple (logistic regression-like) layers

- learnable linear combinations $\langle \beta, \bullet \rangle$
- non-linear activations σ

- ERM: we minimize $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) \xrightarrow[m \to \infty]{} R(h_{\beta},\ell)$
- + SGD: gradients randomized through sampling converge quickly for large $\,m\,$

- ERM: we minimize $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) \xrightarrow[m \to \infty]{} R(h_{\beta},\ell)$
- SGD: gradients randomized through sampling converge quickly for large m
- Mini-Batching: common practice to reduce SGD gradient noise
- LR Scheduling: common practice to balance the noise
- Nesterov Momentum: can improve convergence

- ERM: we minimize $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) \xrightarrow[m \to \infty]{} R(h_{\beta},\ell)$
- SGD: gradients randomized through sampling converge quickly for large m
- Mini-Batching: common practice to reduce SGD gradient noise
- LR Scheduling: common practice to balance the noise
- Nesterov Momentum: can improve convergence

Practical Recommendations:

• Carefully Design Loss Functions to reflect your goals

- ERM: we minimize $\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) \xrightarrow[m \to \infty]{} R(h_{\beta},\ell)$
- SGD: gradients randomized through sampling converge quickly for large m
- Mini-Batching: common practice to reduce SGD gradient noise
- LR Scheduling: common practice to balance the noise
- Nesterov Momentum: can improve convergence

Practical Recommendations:

- Carefully Design Loss Functions to reflect your goals
- Use Popular First-Order Methods like AdaBelief or SGD with Nesterov Momentum

Data and Assumptions

Machine Learning = data o model o fit

What we have learned:

- Deep Nets are universal function approximators
- Customized loss functions let them learn what we need
- We know effective ways of optimizing them

Machine Learning = data o model o fit

What we have learned:

- Deep Nets are universal function approximators
- Customized loss functions let them learn what we need
- We know effective ways of optimizing them

Recall that we approximate

$$R(h_{\beta},\ell) = \mathbb{E}_{(x,y)\sim\mathbb{P}}\big(\ell(h_{\beta}(x),y)\big)$$

through

$$\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) = \frac{1}{m} \sum_{i=1}^{m} \ell(h_{\beta}(x_i), y_i)$$

Recall that we approximate

$$R(h_{\beta}, \ell) = \mathbb{E}_{(x,y) \sim \mathbb{P}} \big(\ell(h_{\beta}(x), y) \big)$$

through

$$\widehat{R}_{\mathrm{D}}(h_{\beta},\ell) = \frac{1}{m} \sum_{i=1}^{m} \ell(h_{\beta}(x_i), y_i)$$

Independent and Identical Distribution (IID) Assumption:

$$(x,y) \sim \mathbb{P} \quad \forall \quad (x,y) \in \mathcal{D} \cup \mathcal{D}_{\text{test}}$$

Recall that we approximate

Types of Data Set Shift⁵

Recognize that $\mathbb{P}(X,Y) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$

⁵ Kull and Flach, "Patterns of dataset shift", 2014.
Recognize that $\mathbb{P}(X,Y) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$

Label Shift:

 $\mathbb{P}_{\mathcal{S}}(X \mid Y) = \mathbb{P}_{\mathcal{T}}(X \mid Y)$

 $\mathbb{P}_{\mathcal{S}}(Y) \neq \mathbb{P}_{\mathcal{T}}(Y)$

Recognize that
$$\mathbb{P}(X,Y) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$$

Label Shift:Concept Shift:
$$\mathbb{P}_{\mathcal{S}}(X \mid Y) = \mathbb{P}_{\mathcal{T}}(X \mid Y)$$
 $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$ $\mathbb{P}_{\mathcal{S}}(Y) \neq \mathbb{P}_{\mathcal{T}}(Y)$ $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$

Recognize that

$$\mathbb{P}(X,Y) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$$
$$= \mathbb{P}(X) \cdot \mathbb{P}(Y \mid X)$$

Recognize that

$$\mathbb{P}(X,Y) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$$
$$= \mathbb{P}(X) \cdot \mathbb{P}(Y \mid X)$$

Recognize that $\mathbb{P}(X,Y)$

$$= \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$$
$$= \mathbb{P}(X) \cdot \mathbb{P}(Y \mid X)$$

Label Shift:Concept Shift:(Also) Concept Shift:Covariate Shift:
$$\mathbb{P}_{\mathcal{S}}(X \mid Y) = \mathbb{P}_{\mathcal{T}}(X \mid Y)$$
 $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$ $\mathbb{P}_{\mathcal{S}}(X) = \mathbb{P}_{\mathcal{T}}(X)$ $\mathbb{P}_{\mathcal{S}}(Y \mid X) = \mathbb{P}_{\mathcal{T}}(Y \mid X)$ $\mathbb{P}_{\mathcal{S}}(Y) \neq \mathbb{P}_{\mathcal{T}}(Y)$ $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ $\mathbb{P}_{\mathcal{S}}(Y \mid X) \neq \mathbb{P}_{\mathcal{T}}(Y \mid X)$ $\mathbb{P}_{\mathcal{S}}(X) \neq \mathbb{P}_{\mathcal{T}}(X)$

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, ...) 🦨

Domain-Adversarial Unsupervised Domain Adaptation⁶

- Assume Concept Shift $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data $D_{\mathcal{T}} = \{x \sim \mathbb{P}_{\mathcal{T}}(X)\}$

⁶ Ganin et al., "Domain-Adversarial Training of Neural Networks", 2016.

Domain-Adversarial Unsupervised Domain Adaptation⁶

- Assume Concept Shift $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data $D_{\mathcal{T}} = \{x \sim \mathbb{P}_{\mathcal{T}}(X)\}$

⁶ Ganin et al., "Domain-Adversarial Training of Neural Networks", 2016.

Domain-Adversarial Unsupervised Domain Adaptation⁶

- Assume Concept Shift $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data $D_{\mathcal{T}} = \{x \sim \mathbb{P}_{\mathcal{T}}(X)\}$

⁶ Ganin et al., "Domain-Adversarial Training of Neural Networks", 2016.

Label Noise:

- Training Labels $\,\widehat{y}\,$ are randomly flipped versions of the ground-truth $\,y\,$
- Assumptions about the flipping process $y \to \widehat{y}$ are required

⁷ Menon et al., "Learning from Corrupted Binary Labels via Class-Probability Estimation", 2015.

Label Noise:

- Training Labels $\,\widehat{y}\,$ are randomly flipped versions of the ground-truth $\,y\,$
- Assumptions about the flipping process $y \to \hat{y}$ are required

Class-Conditional Noise: $\mathbb{P}(Y = +1 \mid X = x) = a \cdot \mathbb{P}(\widehat{Y} = +1 \mid X = x) + b$

⁷ Menon et al., "Learning from Corrupted Binary Labels via Class-Probability Estimation", 2015.

- Each instance is a set $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- + ${\mathcal Y}$ are properties of such sets

⁸ Zaheer et al., "Deep sets", 2017.

Deep Sets⁸

- Each instance is a set $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- + ${\mathcal Y}$ are properties of such sets

Deep Sets⁸

- Each instance is a set $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- + ${\mathcal Y}$ are properties of such sets

⁸ Zaheer et al., "Deep sets", 2017.

Concluding Remarks

Architecture Search vs feature engineering

Scale great for big data (but not for small data)

GPUs required as well as computation time for fitting

JAX, PyTorch, Tensorflow, or Keras?

- Keras, Tensorflow: established solutions
- PyTorch, JAX: maximum flexibility

JAX, PyTorch, Tensorflow, or Keras?

- Keras, Tensorflow: established solutions
- PyTorch, JAX: maximum flexibility

JAX:

- JIT compilation speedups
- API identical to Numpy/Scipy
- Clean functional programming style (clarity, separation of concerns)
- Evolving eco-system and fewer solutions

- 2. Fitting
- 3. Data and Assumptions
- 4. Concluding Remarks
- 5. Hands-On Exercises (Quentin Führing, Jan Herdieckerhoff)

#