
Performance-portability and task parallelism for Lattice Field Theory

Bartosz Kostrzewa∗, Stefan Krieg†, Estela Suarez‡

∗High Performance Computing & Analytics Lab
†Helmholtz Zentrum für Strahlen und Kernphysik

‡Institut für Informatik
Rheinische Friedrich-Wilhelms-Universität Bonn

†‡Juelich Supercomputing Center, Forschungszentrum Juelich

Colour meets Flavour – Innovative Algorithms Lab Kick-off meeting
2024.03.20

⟨NuMeriQS⟩
B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 1 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



Technical Challenges in Lattice Field Theory
⟨NuMeriQS⟩

Assume that sampling problems in lattice field theory can be tempered or overcome:

▶ critical slowing down

▶ ergodicity issues in the presence of multiple phases

▶ volume scaling of generative flow models

▶ multi-level sampling

What are the major technical challenges facing moonshot-type calculations?

▶ HPC heterogeneity: need write-once run-anywhere (as far as possible).

▶ Strong scalability: most efficient algorithms don’t scale well (maybe they don’t need to).

▶ Complex observables lead to hard-to-debug nested loops with horrible inter-dependencies and low re-use potential.

▶ Lack of task parallelism: lots of untapped resources which are inaccessible with current LFT frameworks.

▶ Storage: we cannot store millions of gauge configurations → might need on-the-fly calculations of everything.

▶ Programmer productivity: need high-performance backends with easy to use frontends for students (and for ourselves).

▶ Physics students: not enough training in software engineering / HPC / modern C++ (for this kind of work)

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 2 / 6



HPC heterogeneity
⟨NuMeriQS⟩

Need to target different architectures

Situation bound to get worse with future specialized hardware & Modular Supercomputing Architecture
▶ multi-purpose chiplet designs (EPI)

▶ in-memory computing

▶ neuromorphic devices

▶ tensor & stencil accelerators, large FPGAs

Existing libraries with some performance-portability Future directions explored in NuMeriQS B02

LQFT base layer: abstractions for memory space,
memory access patterns and execution space, paral-
lel patterns, asynchronicity via futures, etc.

std::execution

std::mdspan

std::async, std::future

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 3 / 6



HPC heterogeneity
⟨NuMeriQS⟩

Need to target different architectures

Situation bound to get worse with future specialized hardware & Modular Supercomputing Architecture
▶ multi-purpose chiplet designs (EPI)

▶ in-memory computing

▶ neuromorphic devices

▶ tensor & stencil accelerators, large FPGAs

Existing libraries with some performance-portability

Future directions explored in NuMeriQS B02

LQFT base layer: abstractions for memory space,
memory access patterns and execution space, paral-
lel patterns, asynchronicity via futures, etc.

std::execution

std::mdspan

std::async, std::future

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 3 / 6



HPC heterogeneity
⟨NuMeriQS⟩

Need to target different architectures

Situation bound to get worse with future specialized hardware & Modular Supercomputing Architecture
▶ multi-purpose chiplet designs (EPI)

▶ in-memory computing

▶ neuromorphic devices

▶ tensor & stencil accelerators, large FPGAs

Existing libraries with some performance-portability Future directions explored in NuMeriQS B02

LQFT base layer: abstractions for memory space,
memory access patterns and execution space, paral-
lel patterns, asynchronicity via futures, etc.

std::execution

std::mdspan

std::async, std::future

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 3 / 6



Complex observables and nested loops
⟨NuMeriQS⟩

Simple observable: two current insertions with momentum transfer between meson initial and final states
▶ lots of unused parallelism at the inversion / contraction stage (different flavours, different momenta, different Dirac

structures)

How to exploit this without writing really complicated nested loops with tons of conditionals?

▶ Collections of observables as forests of directed acyclic graphs

▶ Edges carry computational cost

▶ Vertices (may) carry computational and memory cost

⇒ Optimise calculation under machine constraints

▶ all dependencies taken care of automatically, no more nested loops, just descend down the graph hierarchy

▶ can trade memory or storage for computation or vice-versa

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 4 / 6



Complex observables and nested loops
⟨NuMeriQS⟩

Simple observable: two current insertions with momentum transfer between meson initial and final states
▶ lots of unused parallelism at the inversion / contraction stage (different flavours, different momenta, different Dirac

structures)

How to exploit this without writing really complicated nested loops with tons of conditionals?

▶ Collections of observables as forests of directed acyclic graphs

▶ Edges carry computational cost

▶ Vertices (may) carry computational and memory cost

⇒ Optimise calculation under machine constraints

▶ all dependencies taken care of automatically, no more nested loops, just descend down the graph hierarchy

▶ can trade memory or storage for computation or vice-versa

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 4 / 6



Complex observables and nested loops
⟨NuMeriQS⟩

Simple observable: two current insertions with momentum transfer between meson initial and final states
▶ lots of unused parallelism at the inversion / contraction stage (different flavours, different momenta, different Dirac

structures)

How to exploit this without writing really complicated nested loops with tons of conditionals?

▶ Collections of observables as forests of directed acyclic graphs

▶ Edges carry computational cost

▶ Vertices (may) carry computational and memory cost

⇒ Optimise calculation under machine constraints

▶ all dependencies taken care of automatically, no more nested loops, just descend down the graph hierarchy

▶ can trade memory or storage for computation or vice-versa

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 4 / 6



Complex observables and nested loops
⟨NuMeriQS⟩

Simple observable: two current insertions with momentum transfer between meson initial and final states
▶ lots of unused parallelism at the inversion / contraction stage (different flavours, different momenta, different Dirac

structures)

How to exploit this without writing really complicated nested loops with tons of conditionals?

▶ Collections of observables as forests of directed acyclic graphs

▶ Edges carry computational cost

▶ Vertices (may) carry computational and memory cost

⇒ Optimise calculation under machine constraints

▶ all dependencies taken care of automatically, no more nested loops, just descend down the graph hierarchy

▶ can trade memory or storage for computation or vice-versa

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 4 / 6



Complex observables and nested loops
⟨NuMeriQS⟩

Simple observable: two current insertions with momentum transfer between meson initial and final states
▶ lots of unused parallelism at the inversion / contraction stage (different flavours, different momenta, different Dirac

structures)

How to exploit this without writing really complicated nested loops with tons of conditionals?

▶ Collections of observables as forests of directed acyclic graphs

▶ Edges carry computational cost

▶ Vertices (may) carry computational and memory cost

⇒ Optimise calculation under machine constraints

▶ all dependencies taken care of automatically, no more nested loops, just descend down the graph hierarchy

▶ can trade memory or storage for computation or vice-versa

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 4 / 6



Task parallelism
⟨NuMeriQS⟩

HMC run on 4×A100 nodes at strong scaling limit

Lots of free resources when running at
strong-scaling limit.

GPU and CPU idle at different times.
▶ Wouldn’t it be neat to fully use the CPU on

a Grace-Hopper node?

Would like to exploit this to run
calculations in idle gaps, additional GPU
streams.

⇒ Need suitable programming model to
express task parallelism, work stealing, etc.

! Must be rather coarse-grained, existing
asynchronous many task systems (likely)
not suitable.

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 5 / 6



Task parallelism
⟨NuMeriQS⟩

HMC run on 4×A100 nodes at strong scaling limit

Lots of free resources when running at
strong-scaling limit.

GPU and CPU idle at different times.
▶ Wouldn’t it be neat to fully use the CPU on

a Grace-Hopper node?

Would like to exploit this to run
calculations in idle gaps, additional GPU
streams.

⇒ Need suitable programming model to
express task parallelism, work stealing, etc.

! Must be rather coarse-grained, existing
asynchronous many task systems (likely)
not suitable.

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 5 / 6



Task parallelism
⟨NuMeriQS⟩

HMC run on 4×A100 nodes at strong scaling limit

Lots of free resources when running at
strong-scaling limit.

GPU and CPU idle at different times.
▶ Wouldn’t it be neat to fully use the CPU on

a Grace-Hopper node?

Would like to exploit this to run
calculations in idle gaps, additional GPU
streams.

⇒ Need suitable programming model to
express task parallelism, work stealing, etc.

! Must be rather coarse-grained, existing
asynchronous many task systems (likely)
not suitable.

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 5 / 6



Task parallelism
⟨NuMeriQS⟩

HMC run on 4×A100 nodes at strong scaling limit

Lots of free resources when running at
strong-scaling limit.

GPU and CPU idle at different times.
▶ Wouldn’t it be neat to fully use the CPU on

a Grace-Hopper node?

Would like to exploit this to run
calculations in idle gaps, additional GPU
streams.

⇒ Need suitable programming model to
express task parallelism, work stealing, etc.

! Must be rather coarse-grained, existing
asynchronous many task systems (likely)
not suitable.

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 5 / 6



Task parallelism
⟨NuMeriQS⟩

HMC run on 4×A100 nodes at strong scaling limit

Lots of free resources when running at
strong-scaling limit.

GPU and CPU idle at different times.
▶ Wouldn’t it be neat to fully use the CPU on

a Grace-Hopper node?

Would like to exploit this to run
calculations in idle gaps, additional GPU
streams.

⇒ Need suitable programming model to
express task parallelism, work stealing, etc.

! Must be rather coarse-grained, existing
asynchronous many task systems (likely)
not suitable.

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 5 / 6



Summary
⟨NuMeriQS⟩

Assumption: sampling problems in lattice QFT will be tempered sufficiently

▶ produce millions of large volume gauge configurations

▶ impossible to store, need to calculate (almost) everything on the fly

⇒ Need: task parallelism, DAG representation of observables and dependencies, performance-portable kernels

Issue Performance-portability Task parallelism loops → DAGs Productivity layer
HPC heterogeneity ✔ – – –
Strong scaling – ✔ ✔ –
Wasted resources ✔ ✔ ✔ –
Complex observables – ✔ ✔ maybe
Storage – ✔ ✔ –
use ML frameworks – – – ✔

Overwhelmed students ✖ ✖ ✖ maybe

B. Kostrzewa (HPC/A-Lab) LFT Performance-portability CmF-IAL Kick-off, 2024.03.20 6 / 6


