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Some examples | Pt
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HL-LHC ti event in ATLAS ITK
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A visual example of pile-up in the ATLAS tracker
Proc.Comp.Science v66 (2015) 540-545
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W—— A simulated ttbar event at average pile-up of 200 collisions per bunch crossing, with

Event 1605517 an ITk layout including the very forward extension. The bottom-left inset is a 2D r-z
view of the interaction region. The vertical scale is 2.5mm and the horizontal one
Pixel modules 12cm. All reconstructed tracks have pT>1 GeV. The tracks coming from the ttbar

vertex are coloured in cyan. Two secondary vertices can be reconstructed and the
tracks coming from them are highlighted in yellow.

An event from a jet-trigger data sample, where a high-mass vertex (circled) is the result of an apparently random, large-angle infersection
befween a track and alow-mass hadronic-interaction vertex produced in a pixel module. Tracks originafing from this vertex are shown in blug,
those from the primary vertex are green, and other fracks are orrange. The beampipe and pixel modules with track hits are shown.

Currently used various ad hoc
identification/reconstruction algorithms for
different vertex classes — PV, SV, b-tagging, etc.
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Vertexing problem definition b Pl

Given a set of reconstructed tracks, one needs to find all physics vertices in it.

A physics-motivated way to solve this problem is to construct a track compatibility (adjacency)
graph and to partition it into a collection of isolated, non-overlapping clusters. Each cluster
represents a vertex, the parameters of which can be computed from the assigned tracks.

Challenges
A priory unknown (big) amount of truth vertices with strongly different track multiplicity ( [2,%] );
Order of magnitude difference in reconstruction accuracy of the tracks;
Track-track distances comparable with the vertex-vertex distances;
High density of the tracks and vertices and big track position reconstruction errors result in a strong
overlap of the tracks from different true vertices;
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Pattern recognition/clustering
problem without an exact solution
=> dedicated performance metrics.
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Figure 3. Example display of overlapping tracks from different vertices caused by measurement errors (zoom
of a simulated DELPHES event with g = 150). The crosses at the ordinate value of O represent the track
positions, and the vertical error bars represent the corresponding position measurement errors. Squares at
ordinate values of 1.3 represent the truth vertex positions. The connecting lines show the origin vertex for
every track.

Primary vertices (1D space) is addressed in JINST 18 (2023) PO7013 - joint work with
M.Keuper from Computing Vision dept. (now in Mannheim)
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https://iopscience.iop.org/article/10.1088/1748-0221/18/07/P07013

Minimum-Cost Multicut Ul e
The Minimum-Cost Multicut problem definition in arXiv:1505.06973 :

The minimum cost multicut problem is a grouping problem defined for a graph ¢ = (V, E) and a
cost function ¢ : E — R which assigns to all edges e € E a real-valued cost or reward for being
cut. Then, the minimum cost multicut problem is to find a binary edge labelling y according to

min CeYe 2.1)
ye{0,1}F ;
subject to
VC € cycles(G) VeeC:y, < Z Ve’ - (2.2)
e’eC\{e}

Trivial optimal solutions are avoided by assigning positive (attractive) costs c, to edges between
nodes v, w € V that likely belong to the same component, while negative (repulsive) costs are
assigned to edges that likely belong to different components.

The minimum cost [iffed multicut problem (LMC) generalizes over the problem defined in

equation (2.1)}-equation (2.2) by adding a second set of edges that defines additional, potentially For the vertex-finding problem, this
long-range costs without altering the set of feasible solutions. It thus defines a second set of edges F formulation allows encoding Euclidean
between the nodes V of G, resulting in a lifted graph G’ = (V, E U F), on which we can define a distance constraints in the structure of graph
cost function ¢’ : EU F — . Then, equation (2.1) and equation (2.2) are optimized over all edges G (e.g. point observations that are spatially
in E U F and two additional sets of constraints are defined according to [9] distant cannot originate from the same
vertex), while the cost function can be
Yvowe F VP ev,w—paths(G) : yyw < Z Ve (2.3) naturally defined in the distance significance
ek space to account for measurement errors.
Yovowe F YCev,w—cuts(G) : 1 =y, < Z(l — Ye) (2.4) The lifted multicut approach encodes both
esC metrics in the same graph.

to ensure that the feasible solutions to the LMC problem still relate one-to-one to the decompositions
of the original graph G.
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https://arxiv.org/abs/1505.06973

Edge score options (1D space) | Pt

The edge weights are to be negative for edges that should be cut and positive for those connecting nodes that should be joined.

)2
1.  Probability distribution ratiow = log(;’;%) of the minimal track-track distance significance S = /";‘ng ;
alse S|

2. Logistic regression p = ——; where z = i, + ;- S . Then w = log (ﬁ) weight has necessary features.
3. BDT edge classification (7 variables) score in [-1,1] range
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1D performance: Comparison

From JINST 18 (2023) PO7013
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https://iopscience.iop.org/article/10.1088/1748-0221/18/07/P07013

Next steps | P

Switch to 3D space <-> simultaneous reconstruction of primary + secondary vertices (V%, B/C hadrons,
hadronic interactions, conversions, etc.) with a possibility to look for exotic LLPs(no a priory information).
Challenging benchmark - FCChh environment (~1000 PVs, ~10* tracks).

Main problem - construction of an efficient adjacency graph, 1D-type weights are insufficient.

What is planned:
1) 4D (+time) tracking and vertexing. Needs implementation in the track adjacency(compatibility) edge weights assignment.

2) Massive a priory information usage — expected vertex positions (beamline, material layers, invariant masses, jets, detector hits,
etc.). Can’t be implemented using pairwise node relations, multi-node relations are needed. E.g. edge==2-track_vertex, how
compatible/distant are 2 edges(vertices) of the same node(track)?

There is no well-defined efficient recipe for how to compile the 4D + various prior information to the
track compatibility weights (probabilities) for clustering;

1) Try Graph Neural Net with hidden states, which can be trained to provide improved edge weights
for the precise LMC clustering;

2) Differentiable vertex fitting in GNN to improve the accuracy of clustering (arXiv:2310.12804);
3) Optimal prior information sharing between GNN and LMC(constraints).
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(a) Edge update (b) Node update (¢) Global update




Full GNN solution? ol s

arXiv:2204.01366 “Learning to solve Minimum Cost Multicuts efficiently using Edge-Weighted Graph
Convolutional Neural Networks”

Table 2. Wall-clock runtime | and objective values | of MPNN-based solver vs. GAEC,
LP and ILP on a growing, randomly-generated graph. OOT indicates no termination
within 24hrs.

GAEC LP ILP GCN_W_BN
Nodes [ms] Objective [ms] Objective [ms] Objective | [ms] Objective
10! 0 —29) 6 —24 11 —30 | 29 —29
10? 4 —-327 191 —246 273 —-330 26 —276
103 24 —3051 6585 —2970 1299 —3093 29 —2643
10* 228 —32 264 ) 688 851 —31 531 18 604 —32 682 78 —27 552
10° 2534 —323 189 ooT 2171 134 —328 224 557 —269 122
10° | 35 181 —3 401 783 ooT ooT 8713 —2 182 589

LMP (GAEC here) is as fast as Convolutional Neural Net (GCN_W_BN here) up to ~10* nodes(tracks)
but much more precise (lower objective).

LMC doesn'’t require any prior information and training — perfect for search for unknown (LLP, etc.)

More advanced ML setup, e.g. foundation model?
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